Reg. No. \square

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

First Semester

PH22152 - Engineering Physics

(Common to $A E, C E, M E, M N \& M R$)
(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

Course	statement	RBT
OUTCOMES		EVEL
CO 1	Formulate general mechanics parameters and Gain knowledge in Mechanics	4
CO 2	Evaluate the concepts of properties of matter and thermal physics	3
CO 3	Learn to solve the issues related to defects in the buildings due to acoustic design and the significance of ultrasonic waves	3
CO 4	Describe the basic laser physics and develop an understanding about photonics and Fiber Optic communication system	3
CO 5	Classify and demonstrate the fundamentals of crystals and their defects.	3

PART- A ($20 \times 2=40$ Marks $)$

(Answer all Questions)

	(Answ	CO	$\begin{gathered} \text { RBT } \\ \text { LEVEL } \end{gathered}$
1.	Define Radius of Gyration. Give its unit.	1	2
2.	Obtain the relation between kinetic energy of the rotating body and moment of inertia.	1	3
3.	State theorem of Perpendicular Axis.	1	2
4.	A solid disc has a mass of 5 kg and radius 1 m . Find its moment of Inertia	1	3
5.	How does mass density of the fluid vary with pressure and temperature?	2	3
6.	Describe three states of equilibrium based on center of Gravity and center of Buoyancy.	2	2
7.	Sketch measurement of Gauge and Absolute Pressure at Points A and B.	2	3
8.	Define Relative density of a fluid.	2	2
9.	What are the characteristics of Musical sound?	3	2
10.	State Weber-Fechner law.	3	2
11.	Calculate the frequency of 40 mm length of pure iron rod. Given the density of pure iron is $7.25 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$ and its Young's Modulus is 115 GPa .	3	3
12.	What is SONAR?	3	2
13.	Give the conditions for Laser action.	4	2
14.	Give the Principle of Magnetostriction Oscillator.	4	3
15.	Calculate Numerical Aperture and Acceptance angle of an optical fibre having core and cladding refractive index 1.5 and 1.45 respectively.	4	3
16.	What is Attenuation loss in Optical fibre?	4	2
17.	Determine atomic radius of iron crystal of edge length 0.38 nm .	5	3
18.	Define Unit Cell.	5	2
19.	Draw following planes by determining its intercept (110), (111)	5	3
20.	What is Crystal Defect?	5	2

21. (i) Obtain an expression for moment of inertia of a Hollow sphere in
(a) which mass is concentrated over the surface of the sphere.
(ii) Obtain an expression for moment of inertia of a Hollow cylinder and hence deduce the moment of inertia if inner radius is zero and outer radius ' R '.

> (OR)
(b) With an experiment, Deduce the expression for moment of inertia of the disc and rigidity modulus of the wire of length ' l ' by producing Torsional oscillations.
22. Explain various properties of fluids with units and how it varies with
(a) temperature and pressure
(OR)
(b) Derive an expression for heat conduction through a compound media with same dimensions connected in series and Parallel.
23. Describe the factors affecting good acoustics of a building and how it can be (a) minimized.
(OR)
(b) With a neat diagram, describe the production of ultrasonic waves by Magnetostriction method and discuss its merits and demerits.
24. Discuss various types of Optical fibers based on materials, modes of
(a) propagation and refractive index profile.
(OR)
(b) Applying the Principle of Doped Insulator Laser, Explain the construction and working of Nd-YAG laser with a neat diagram.
25. What are Miller Indices? Deduce an expression relating interplanar distance,
(a) lattice constant and miller indices.
(OR)
(b) Show that FCC crystals are closely packed than BCC Crystals.

$$
\frac{\text { PART- C }(1 \times 10=10 \text { Marks })}{(\text { Q.No. } 26 \text { is compulsory })}
$$

| 26. With a neat diagram describe a method to determine Coefficient of Thermal | Marks | CO | RBT
 REVEL |
| :--- | :--- | :---: | :---: | :---: |
| conductivity of a bad conductor. | $\mathbf{2}$ | $\mathbf{3}$ | |

