			Q. Code: 4197							9741			
		Reg. No	•										
		BF/BTFCH DFCRFF		/IIN	A T	IONS)))));	2			
		Second	Seme	ester			9 IVI <i>I</i>	11 /	202.	J			
		PH22252 – PHYSI	CS O	FN	IA1	FERI	ALS						
		(Common (Described)	to $E($	<i>C, EE</i>	E)								
ΤI	ME:	3 HOURS	10n 2	022))				MA	X. N	ЛАІ	RKS:	100
COURSE		ST	STATEMENT										RBT LEVEL
CO 1		Gain knowledge about conducting propert branches of study	ies of	mate	erial	s whic	h is v	ery 1	nucł	n usef	ful to	o the	3
CO 2		Evaluate the concepts of semiconductors											3
CO 3		Inculcate the exposure of the dielectric pro	pertie	s and	l its	applica	ations	in v	ariou	is fiel	lds.	41 !	3
CO 4		applications in engineering and technology	g and	mag	netio	c prop	erties.	. Exj	plore	e iew	01	their	3
CO 5		Develop an understanding the characteris designing of logic gates and construction of	tics of f K-n	f eleo nap	etron	nic dev	ices a	and g	gain	know	ledg	ge in	4
		PART- A(2)x2=4	40Ma	arks	5)							
		(Answer a	ll Qu	estio	ns)								
	N		1									co	RBT LEVEL
l.	Men	tion mean free path in the conducting materi	als.									1	2
2.	Device the way to arrive at microscopic form of Ohm's law.								1	2			
3.	The	Fermi temperature of a metal is 24600 K. Ca	Iculat	the the	Fer	mi velo	ocity.					1	3
4.	Poin	t out the significance of photo electric effect	1									1	2
5.	Disti	nguish between intrinsic and extrinsic semic	ondu	ctors.								2	3
6. 7	Anal	yse the significance of compound semicond	uctors	•								2	2
7.	Men	tion the applications of Hall effect.										2	2
8.	Selea	t the junctions of the Schottky diode.	1	1. 1	<i>,</i> .	1						2	2
9. 10	Repo	ort the difference between dielectric constant	and c	lielec	etric	loss.						3	3
10.	Corr	oborate the piezo electricity in dielectric ma	erials	1 [.]	CNT	,	. ,	0 1 50				3	2
11.	Calc	ulate the electronic polarisability of Neon. 1	he rac	lius c	of Ne	eon ato	m 18 (0.158	s nm	•		3	3
10	(Giv	en $\varepsilon_0 = 8.854 \times 10^{12} \text{ F/m}$										2	•
12.	Enlist the applications of terroelectric materials.									3	2		
13.	Express the transition temperature in superconductors.									4	2		
14.	Prov	Prove that superconductors are perfect diamagnets with the relation, $\chi = -1$.								4	3		
15.	Sket	cn the spin arrangement of Para and Ferro n	agnet	tic m	ateri	als.						4	2
16. 1 -	Inter	vene the significance of magnetic semicond	ictors	•								4	2
17.	Infer	the basic principle of junction field effect the	ansist	or.								5	2
18.	Exar	nine spintronics against the conventional ele	ctroni	cs.								5	2
19.	Anal	yse the principle of single electron transistor	•									5	2
20.	Inter	tere the concept of Karnaugh mapping.										5	3

	PART- B(5x 10=50Marks)	-		
		Marks	CO	RBT LEVEL
21. (a)	Derive the expression for electrical conductivity and thermal conductivity and hence prove Wiedemann-Franz law.	(10)	1	3
	(OR)			
(b)	Derive an expression for density of energy states in metal and hence deduce the expression of Fermi energy at zero Kelvin.	(10)	1	3
22. (a)	(i) Obtain an expression for the concentration of electrons in the conduction band of an intrinsic semiconductor.	(5)	2	3
	(ii) With necessary theory describe a method to determine the energy band gap of an intrinsic semiconductor.	(5)	2	3
	(OR)			
(b)	Describe a theory and experimental procedure for the measurement of the Hall coefficient of a semiconductor and discuss its applications.	(10)	2	3
23. (a)	Arrive at the expression for the local field in a dielectric for a cubic structure and deduce Clausius-Mosotti equation.	(10)	3	3
	(OR)			
(b)	Explain different types of dielectric breakdown mechanisms with remedies.	(10)	3	3
24. (a)	(i) Compare and contrast between Type-I and Type-II superconductors.	(5)	4	4
	(ii) Concatenate the principle how "MAGLEV" train is made to float above the rails?	(5)	4	4
	(OR)			
(b)	Discuss the various energies involved in domains of ferromagnetic materials and enlighten hysteresis by domain theory.	(10)	4	4
25. (a)	Illustrate the working mechanism of JFET with necessary diagram. (OR)	(10)	5	4
(b)	Construct any two logic gates using transistor.	(10)	5	4
	<u>PART- C(1x 10=10Marks)</u>			
	(Q.No.26 is compulsory)			
		Marks	CO	RBT LEVEL
				_

Q. Code: 419741