

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Applied Mathematics	LP: MA18354 Rev. No: 00
B.Tech: Artificial Intelligence & Data Science Regulation: 2018	Date:
Sub. Code / Sub. Name : MA18354 / Mathematics for Data Analysis	23.08.2021
Unit I : Combinatorics	

Unit Syllabus: Sets - Operations - Inclusion and exclusion principle and its applications - Mathematical induction - Strong induction and well ordering - The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions.

Objective: Apply the concepts of basic principles of Combinatorics and its Applications.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Sets and Operations	R3, Ch 2, Pg. No 115 - 138.	PPT/Black board
2	Inclusion and exclusion principle	R3, Ch 8, Pg No 552 - 558.	PPT/Black board
3	Applications of Inclusion and exclusion principle	R3, Ch 8, Pg No 558 - 565.	PPT/Black board
4	Mathematical induction	R3, Ch 5, Pg No 311 - 332.	PPT/Black board
5	Strong induction and well ordering	R3, Ch 5, Pg No 333 - 343.	PPT/Black board
6	Tutorial class	R3, Ch 2, 5, 8.	PPT/Black board
7	The basics of counting, Pigeonhole principle	R3, Ch 6, Pg No 385 - 406.	PPT/Black board
8	Permutations and combinations	R3, Ch 6, Pg No 407 - 414.	PPT/Black board
9	Tutorial class	R3, Ch 6.	PPT/Black board
10	Recurrence relations and solving linear recurrence relations	R3, Ch 8, Pg No 501 - 526.	PPT/Black board
11	Generating functions	R3, Ch 8, Pg No 537 - 557.	PPT/Black board
12	Tutorial class	R3, Ch 8.	PPT/Black board

Content beyond syllabus covered (if any):

Functions, sequences and summations.

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: MA18354 / Mathematics for data analysis

Unit II: Divisibility theory and canonical decompositions

Unit Syllabus: Division algorithm – Base - b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM

Objective: Understand the basic concepts in Number Theory and its Applications in Data Science.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Division algorithm	T1, Ch 2, Pg No 69 - 79.	PPT/Black board
14	Base - b representations	T1, Ch 2, Pg No 80 - 88.	PPT/Black board
15	Number patterns	T1, Ch 2, Pg No 98 - 102.	PPT/Black board
16	Tutorial class	T1, Ch 2.	PPT/Black board
17	Prime and composite numbers	T1, Ch 2, Pg No 103 - 127.	PPT/Black board
18	GCD	T1, Ch 3, Pg No 155 - 165.	PPT/Black board
19	Tutorial class	T1, Ch 3.	PPT/Black board
20	Euclidean algorithm	T1, Ch 3, Pg No 166 - 170.	PPT/Black board
21	Problems in Euclidean algorithm	T1, Ch 3, Pg No 170 - 172.	PPT/Black board
22	Fundamental theorem of arithmetic	T1, Ch 3, Pg No 173 - 183.	PPT/Black board
23	LCM	T1, Ch 3, Pg No 184 - 187.	PPT/Black
24	Tutorial class	TI, Ch 3.	PPT/Blac board

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: MA18354 / Mathematics for data analysis

Unit III: Regression analysis

Unit Syllabus: Introduction – The Simple Linear Regression Model – Estimating Model Parameters. Inferences about the Slope Parameter and the Prediction of Future Y Values. Introduction to Non-Linear and Multiple Regression Models.

Objective: Provide the required support to develop regression models which can be used in data analytics.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Introduction	T3, Ch 11, Pg No 324 - 326	PPT/Black board
26	The Simple Linear Regression Model	T3, Ch 11, Pg No 327 - 331	PPT/Black board
27	Problems involving the Simple Linear Regression Model	T3, Ch 11, Pg No 327 - 331	PPT/Black board
28	Tutorial class	T3, Ch 11	PPT/Black board
29	Estimating Model Parameters	T3, Ch 11, Pg No 332 - 334	PPT/Black board
30	Problems involving estimating model parameters	T3, Ch 11, Pg No 339 - 344	PPT/Black board
31	Inferences about the Slope Parameter	T3, Ch 11, Pg No 334 - 338	PPT/Black board
32	Prediction of Future Y Values	T3, Ch 11, Pg No 334	PPT/Black board
33	Tutorial class	T3, Ch 11	PPT/Black board
34	Non-Linear Models	T3, Ch 11, Pg No 346 - 351	PPT/Black board
35	Multiple Regression Models	T3, Ch 11, Pg No 352 - 358	PPT/Black board
36	Tutorial class	T3, Ch 11	PPT/Black board

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: MA18354 / Mathematics for data analysis

Unit 1V: Fundamentals of graph theory

Unit Syllabus: Graphs and Interconnection Networks - Types of Graphs - Trees and Decision Trees - Planar Graphs - Kuratowski's Theorem - Degree Sequence - Matrix Representation of Graphs and Graph Isomorphism, Spectrum of Graphs - Graph Measurements: Length, Distance, Diameter, Eccentricity, Bisection width and Betweenness Centrality - Euler and Hamilton Concepts.

Objective: Understand the fundamental concepts of graph theory.

Session	Topics to be covered	Ref	Teaching Aids
No * _	Graphs and Interconnection Networks	T2, Ch I, Pg No 1 - 4	PPT/Black board
38	Types of Graphs	T2, Ch 1, Pg No 4 - 14	PPT/Black board
39	Trees and Decision Trees	T2, Ch 2, Pg No 25 - 27	PPT/Black board
40	Tutorial class	T1, Ch 1, 2	PPT/Black board
41	Planar graphs and Kuratowski's Theorem	T2, Ch 9, Pg No 135 -151	PPT/Black board
42	Degree Sequence	T2, Ch I, Pg No 11.	PPT/Black board
43	Matrix Representation of Graphs and Graph	T2, Ch 1, Pg No 4 - 8	PPT/Black board
44	Isomorphism Tutorial class	T1, Ch 1, Ch 9.	PPT/Black board
45	Length, Distance, Diameter, Eccentricity, Bisection width and Betweenness Centrality	T1, Ch 1, Pg No 14.	PPT/Black board
46	Eulerian graphs	T2, Ch 4, Pg No 51 - 53	PPT/Black board
47	Hamiltonian graphs	T2, Ch 4, Pg No 53 - 60	PPT/Black board
48	Tutorial class	T1, Ch 4.	PPT/Black

Content beyond syllabus covered (if any):

Finding the shortest path in a directed graph.

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: MA18354 / Mathematics for data analysis

Unit V: Applications of graph theory

Unit Syllabus: Connectivity and Paths: Cuts and Connectivity, Menger's Theorem, k-Network Flow – Ford-Fulkerson Algorithm, Max-Flow Min-cut Theorem – Labeling: Graceful and Cordial – Domination: Independent and Connected, Matching: Matching and Perfect Matching applications to optimal assignment problem- Colorings and Vizing's Theorem – Timetabling Problem

Objective: Understand the advanced concepts of graph theory and its applications to computer science.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Connectivity and Paths, Cuts and Connectivity	T2, Ch 3, Pg No 42 - 44	PPT/Black board
50	Max-Flow Min-cut Theorem	T2, Ch 11, Pg No 196 - 198	PPT/Black board
51	Ford-Fulkerson Algorithm	T2, Ch 11, Pg No 198 - 200	PPT/Black board
52	Menger's Theorem	T2, Ch 11, Pg No 203 - 205	PPT/Black board
53	Tutorial class	T2, Ch 3 and Ch 11	PPT/Black board
54	Graceful and Cordial Labelling	Appendix IV, Pg No 248.	PPT/Black board
55	Matching and perfect matching	T2, Ch 5, Pg No 70 – 78.	PPT/Black board
57	Optimal assignment problem	T2, Ch 5, Pg No 86 - 90	PPT/Black board
56	Tutorial class	T2, Ch 5	PPT/Black board
58	Colorings and Vizing's Theorem	T2, Ch 6, Pg No 91 – 95.	PPT/Black board
59	Timetabling Problem	T2, Ch 6, Pg No 96 – 100.	PPT/Black board
60	Tutorial class	T2, Ch 6	PPT/Blac board

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: MA18354 / Mathematics for data analysis

TEXT BOOKS:

- 1. Koshy, T., "Elementary number theory with applications", Elsevier Publications. New
- 2. Bondy, J. A and Murty, U. S. R., "Graph theory and Applications", The Macmillan
- 3. Johnson, R. A., and Gupta, C. B., "Miller and Freund's Probability and Statistics for Engineers", Pearson education, Asia, 7th edition, 2007.

REFERENCE BOOKS:

- 1. Devore, J. L., "Probability and statistics for engineering and the sciences", Cengage learning, New Delhi, 8th edition, 2012.
- 2. Niven, I., Zuckerman, H.S., and Montgomery, H.L., "An introduction to theory of numbers", John Wiley and Sons, Singapore, 2004.
- 3. Kenneth Rosen, H., and Krithivasan, K., "Discrete mathematics and its applications with Combinatorics and graph theory", McGraw Hill companies, 7th edition, 2012.

	Prepared by	Approved by
Signature	e sau	1 Conte
	Dr. G. Satheesh Kumar	Dr. R, Muthucumarswamy
Name	Assistant Professor	Professor and Head
Designation		23.08.21
Date	23.08.21	
Remarks *:		Land of
Remarks *:		
		t comester/year it should be mentioned

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD