

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Applied Mathematics		LP: MA18182
M.E/M.Tech : Applied Electronics	Regulation: 2018	Rev. No: 00
Sub. Code / Sub. Name : MA18181/ Applied Math	Date: 24.01.22	
Unit : I		

Unit Syllabus: LINEAR ALGEBRA

Vector spaces – norms – Inner Products – Eigen values using QR transformations – QR factorization - generalized eigenvectors – Canonical forms – singular value decomposition and applications - pseudo inverse – least square approximations --Toeplitz matrices and some applications

Objective: To develop the ability to use the concepts of linear algebra and special functions for solving problems related to networks.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction – Unit syllabus: Vector spaces – norms	1-Ch.2;pp85-90	LCD/BB
2	Inner Products	1-Ch.5;pp295- 303	LCD/BB
3	generalized eigenvectors	1-Ch.5;pp310, 384-389	LCD/BB
4	Canonical forms	1-Ch.5;390-395	LCD/BB
5	QR factorization	1-Ch.5;pp310- 329	LCD/BB
6	Problems solved	1-Ch.5;pp330- 331	LCD/BB
7	Least squares method	1-Ch.5;pp331- 339	LCD/BB
8	Tutorial	1-Ch.5;pp339	LCD/BB
9	Singular value decomposition	1-Ch.5;pp310	LCD/BB
10	Toeplitz matrices and some applications	1-Ch.5;pp340- 341	LCD/BB
11	Summarization of Unit I		LCD/BB
	CAT 1		
	eyond syllabus covered (if any):		•

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: MA18181/ Applied Mathematics for Engineers Unit : II

Unit Syllabus: LINEAR PROGRAMMING

Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Models

Objective: To formulate and construct a mathematical model for a linear programming problem in real life situation.

Session No *	Topics to be covered	Ref	Teaching Aids
12	Introduction – Unit Syllabus	3. Ch.5; Pg,5.1 – 5.21	LCD
13	Formulation and Graphical Solution	3. Ch.5; Pg,5.1 – 5.21	LCD
14	Formulation and Graphical Solution – Problems	3. Ch.5; Pg,5.1 – 5.21	LCD
15	Simplex method	3. Ch.5; Pg,5.21 – 5.23	LCD/BB
16	Simplex method	3. Ch.5; Pg,5.23 – 5.25 & Pg 5.28 – 5.50	LCD
17	Tutorial		BB
18	Two – Phase method	3. Ch.5;Pg,5.23 – 5.25 & Pg 5.28 – 5.50	LCD
19	Two – Phase method	3. Ch.5;Pg,5.23 – 5.25 & Pg 5.28 – 5.50	LCD
20	Transportation problems	3. Ch.5; Pg,5.51 – 5.71	LCD
21	Transportation problems	3. Ch.5; Pg,5.51 – 5.71	LCD
22	Assignment problems	3. Ch.5; Pg,5.71 – 5.98	LCD
23	Assignment problems	3. Ch.5; Pg,5.71 – 5.98	LCD
24	Summarization of Unit II		
	eyond syllabus covered (if any):		

SRI VENKATESWARA COLLEGE OF ENGINEERING

FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: MA18181/ Applied Mathematics for Engineers Unit : III

Unit Syllabus: ORDINARY DIFFERENTIAL EQUATIONS

Runge Kutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method, Galerkin finite element method. **Objective:** To expose the students to solve differential equations by various techniques.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Runge kutta methods I and II order for system of IVPs	4-Ch.6: Pg.333-340 & 5-Ch.5 –pp.167-172	LCD
26	Runge kutta methods III and IV order for system of IVPs	4-Ch.6: Pg.333-340 & 5-Ch.5 –pp.167-172	LCD
27	Stability analysis of R.K methods	4-Ch.6: Pg.350-355 & 5-Ch.5 –pp.178-185	LCD/BB
28	Tutorial Class		
29	Adams Bashforth multi step method	4-Ch.6: Pg.385-388 & 5-Ch.5 –pp.157-160	LCD
30	Tutorial Class		
31	Solution of stiff ODEs	4-Ch.6: Pg.385-388 & 5-Ch.5 –pp.157-160	LCD
32	Shooting method	5-Ch.5 –pp.187-188	LCD
33	BVP : Finite difference method	4-Ch.6: Pg.417-419 & 5-Ch.6 –pp.260-264	LCD
34	Orthogonal collocation method	5-Ch.6 –pp.167-172	LCD/BB
35	Orthogonal collocation with finite element method	5-Ch.6 –pp.229-238	LCD
36	Galerkin finite element method	5-Ch.6 –pp.246-250	LCD/BB
37	Summarization of Unit II	5-Ch.6 –pp.252-259	LCD
	CAT II		
Content b	eyond syllabus covered (if any):	1	I

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: MA18181/ Applied Mathematics for Engineers

Unit : IV

Unit Syllabus: TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and Conditional distributions – Functions of two dimensional random variables – Regression Curve – Correlation.

Objective: To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems etc in communication engineering.

Session No *	Topics to be covered	Ref	Teaching Aids
38	Introduction – Unit syllabus, Joint distributions	2 – Ch.2: Pg.2.1 – 2.2	LCD
39	Marginal distributions.	2 – Ch.2: Pg.2.4 – 2.5 & P.g.2.11 – 2.15	LCD
40	Conditional distributions	2 – Ch.2: Pg.2.23 – 2.26	LCD
41	Conditional distributions	2 – Ch.2: Pg.2.23 – 2.26	LCD
42	Covariance	2 - Ch.2: Pg.2.5 - 2.6 &P.g.2.15 - 2.23	LCD/BB
43	Properties, Problems or correlation	2 - Ch.2: P.g.2.23 - 2.26	LCD
44	Regression - Properties	2 - Ch.2: P.g.2.26 - 2.28	LCD
45	Problems on regression	2 – Ch.2: P.g.2.29 – 2.31	LCD/BB
46	Problems on regression	2 – Ch.2: P.g.2.29 – 2.31	LCD
47	Problems on Transformation of random variables	2 - Ch.2: P.g.2.37 - 2.41	LCD
48	Problems on Transformation of random variables	2 - Ch.2: P.g.2.37 - 2.41	LCD
			LCD/BB

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: MA18181/ Applied Mathematics for Engineers Unit : V

Unit Syllabus: QUEUEING MODELS

Vector spaces – norms – Inner Products – Eigen values using QR transformations – QR factorization - generalized eigenvectors – Canonical forms – singular value decomposition and applications - pseudo inverse – least square approximations --Toeplitz matrices and some applications

Objective: To develop the ability to use the concepts of linear algebra and special functions for solving problems related to networks.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Introduction – Unit syllabus.	4-Ch.4; Pg.499– 500	LCD
50	Poisson Process	4-Ch.4 Pg.506– 508	LCD
51	Markovian queues	4-Ch.4; Pg.509– 510	LCD/BB
52	Problems solved	4-Ch.4; Pg.511– 514	LCD
53	Single server Model	4-Ch.4; Pg521– 524	LCD
54	Multi-server Model	4-Ch.4; Pg.530-531	LCD
55	Little's formula	4-Ch.4; Pg.532-534	LCD
56	Machine Interference Model	4-Ch.4; Pg.540-542	LCD/BB
57	Problems solved	4-Ch.4; Pg.499– 524	LCD
58	Steady State analysis	4-Ch.4; Pg.512-515	LCD/BB
59	Self Service queue	4-Ch.4; Pg.538-539	LCD
	Summarizing the unit.	4-Ch.4;	LCD

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: MA18181/ Applied Mathematics for Engineers

REFERENCES:

- 1. Richard Bronson, Gabriel B.Costa, "Linear Algebra", Academic Press, Second Edition, 2007.
- 2. Richard Johnson, Miller & Freund's Probability and Statistics for Engineers, 7th Edition, Prentice Hall of India, Private Ltd., New Delhi (2007).
- 3. Taha, H.A., Operations Research, An introduction, 7th edition, Pearson Education editions, Asia, New Delhi, 2002.
- 4. Donald Gross and Carl M. Harris, Fundamentals of Queuing theory, 2nd Edition, John Wiley and Sons, New York (1985).
- 5. Gupta S.K, "Numerical Methods for Engineers", New Age Publishers, 1995.

	Prepared by	Approved by
Signature	1 feb	1 ft
Name	Dr R. MUTHUCUMARASWAMY	Dr R. MUTHUCUMARASWAMY
Designation	Professor & Head	Professor & Head
Date	24.01.2022	24.01.2022
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD