

COURSE DELIVERY PLAN - THEORY

Page I of 6

Department of Applied Mathematics

B.E/B.Tech: Common to BT/CE/CH/EC/EE/MERegulation: 2018

Sub. Code / Sub. Name : MA18351 - Engineering Mathematics - III

Unit II : Fourier Series LP: MA18351

Rev. No.: 00

Date: 20.08.2021

Unit Syllabus: Dirichlet's conditions - General Fourier series - Odd and even functions -Half range sine series - Half range cosine series - Parseval's identity - Harmonic Analysis. Objective: To introduce Fourier series analysis this is central to many applications in engineering apartfrom its uses in solving boundary value problems.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to periodic functions, Bernoulli's formula, Fourier series and Dirichlet's conditions.	2 - Ch 10; Pg 395-401	LCD/BB
2	General Fourier series and problems based on that.	2 - Ch.10; Pg. 401-408	LCD/BB
3	Fourier series for functions with arbitrary intervals	2 - Ch.10, Pg. 401-408	LCD/BB
4	Tutorial class	Worksheet	LCD/BB
5	Introduction to odd and even functions and Fourier series for odd and even functions	2 - Ch.10; Pg. 408-412 3-Ch.7 Pg. 294-298	LCD/BB
6	Half range cosine series and problems.	2 – Ch.10; Pg 412-416	LCD/BB
7	Half range sine series and problems.	2 - Ch. 10, Pg. 412-416	LCD/BB
8	Tutorial class	Worksheet	LCD/BB
9	RMS value of a function, Derivation of Parseval's Identity	2 – Ch.10; Pg. 418- 419	LCD/BB
10	Problems using Parseval's Identity	2 - Ch.10; Pg. 417-418	LCD/BB
11	Harmonic analysis for functions with period 2π and arbitrary period	2 - Ch.10; Pg. 420- 423	LCD/BB
12	Tutorial class eyond syllabus covered (if any):	2 - Ch 10: Pg 424- 425	LCD/BB

nd syllabus covered (if any):

Application to specific area's included (like medical electronics) heat pulse.

^{*} Session duration: 50 minutes

problems.

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: MA18351 - Engineering Mathematics - III

:Applications of Partial Differential Equations UnitIII

Unit Syllabus: Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). Objective: To understand the application of the Fourier series concept in Boundary value

Teaching Session Ref Topics to be covered Aids No * 2 - Ch.18; LCD/BB Introduction and Classification of PDE. 13 Pg. 600 2 - Ch.18; LCD/BB Method of separation of variables. 14 Pg. 600-601 Solutions of one dimensional wave equation by method 2 - Ch.18; LCD/BB 15 Pg. 602-603 of separation of variables Problems on wave equation with the given initial 2 - Ch.18; LCD/BB 16 Pg. 603-609 and boundary conditions LCD/BB Worksheet 17 Tutorial class Solution of one-dimensional heat equation by 2 - Ch.18; LCD/BB 18 Pg. 611 method of separation of variables Problems on heat equation with the given initial 2 - Ch.18; LCD/BB 19 Pg. 612-616 and boundary conditions Worksheet LCD/BB 20 Tutorial class Steady state solution of two dimensional equation of 2 - Ch. 18; 21 LCD/BB heat conduction by method of separation of variables Pg. 618-620 2 - Ch.18; Problems on Laplace equation for a finite plate. 22 LCD/BB Pg. 621-623 Problems on Laplace equation for a semi - infinite 2 - Ch.18; 23 LCD/BB plate. Pg. 620-621 24 Tutorial class Worksheet LCD/BB Content beyond syllabus covered (if any): Knowledge of heat transfer in circular plate is included.

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: MA18351- Engineering Mathematics - III

Unit IV

:Fourier Transforms

Unit Syllabus: Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

Objective: To understand the basic concepts of the Fourier transform techniques and its

application in Engineering..

Session No *	Topics to be covered	Ref	Teaching Aids
25	Introduction to infinite Fourier transform and Fourier integral theorem	2 - Ch 22; Pg.766-768	LCD/BB
26	Fourier transforms pair and problems.	2 – Ch 22; Pg 769-772	LCD/BB
27	More problems on Fourier transform pair	2 - Ch 22 Pg 769-772	LCD/BE
28	Tutorial class	Worksheet	LCD/BE
	Continuous Assessment Test-I		
29	Fourier cosine and sine transform and problems	2 - Ch.22, Pg.769& Pg.772-777	LCD/BB
30	More problems on Fourier cosine and sine transform	2 – Ch.22, Pg.769& Pg.772-777	LCD/BB
31	Properties of Fourier transforms,	3- Ch.8; Pg.4 - 7 Pg.23 - 24	LCD/BB
32	Properties of Fourier sine transforms and cosine transforms.	3- Ch.8, Pg.4 - 7 Pg.23 - 24	LCD/BB
33	Problems on properties of Fourier transforms, Fourier sine transforms and cosine transforms.	3- Ch 8: Pg 4 - 7 Pg 23 - 24	LCD/BB
34	Transforms of simple functions and problems.	3- Ch 8. Pg 4 - 7 Pg 23 - 24	LCD/BB
35	Derivation of Convolution theorem and Parseval's identity for Fourier transforms	2 - Ch 22; Pg 777-778	LCD/BB
36	Problems using Parseval's identity and convolution theorem	2 – Ch 22, Pg 778-779	LCD/BB

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: MA18351 - Engineering Mathematics - III

Unit V

:Z -Transforms and Difference Equations

Unit Syllabus: Z- Transforms - Elementary properties - Inverse Z - transform (using partial fraction, long division method and residue technique) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

Objective: To develop Z transform techniques for discrete time systems.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction to Z- transforms and Elementary properties of Z-transforms	2 - Ch 23, Pg 793	LCD/BB
38	Problems based on elementary properties of Z- transforms	2 - Ch 23; Pg 793-799	LCD/BB
39	Initial and Final value theorems on Z – transforms.	2 - Ch 23; Pg 799-800	LCD/BB
40	Inverse Z – transform using partial fraction	2 - Ch 23 Pg 805-806	LCD/BB
41	Inverse Z – transform using long division method	2 - Ch 23. Pg 805	LCD/BB
42	Inverse Z - transform using residues	2 - Ch.23, Pg 806-807	LCD/BB
43	Derivation of Convolution theorem.	2 - Ch 23, Pg 802,807	LCD/BB
44	Inverse Z – transform using Convolution theorem.	2 - Ch 23; Pq.802	LCD/BB
45	Tutorial class	Worksheet	LCD/BB
46	Formation of difference equations	2 - Ch 23; Pg 808	LCD/BB
47	Solution of difference equation using Z-transforms	2 - Ch 23. Pg 808-811	LCD/BB
48	Tutorial class	Worksheet	LCD/BB

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: MA18351-Engineering Mathematics III

Unit 1 :Partial Differential Equations

Unit Syllabus: Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear homogeneous partial differential equations of second and higher order with constant coefficients.

Objective: To introduce the effective mathematical tools for the solutions of partial

differential equationsthat model several physical processes

Session No *	Topics to be covered	Ref	Teaching Aids
49	Introduction to PDE and Formation of PDE by elimination of arbitrary constants and by elimination of arbitrary functions.	2 - Ch.17, Pg 577-579	LCD/BB
50	Formation of PDE by elimination of arbitrary functions.	2 - Ch 17; Pg.577-579	LCD/BB
51	Tutorial class	Worksheet	LCD/BB
52	Various solutions of a general PDE – complete, singular, particular and general integrals	2 – Ch 17; Pg 579-5584	LCD/BB
53	Solving standard types of PDEs of the form $F(p, q) = 0$ and $F(z, p,q)=0$.	2 - Ch 17, Pg 584-586	LCD/BB
54	Solving standard types of PDEs of the form $z = px+qy+f(p, q)$ and $F_1(x, p)=F_2(y,q)$.	2 - Ch 17, Pg 586-587	LCD/BB
55	Equations reducible to standard forms	3 – Ch 6. Pg 241-244	LCD/BB
56	Tutorial class	Worksheet	LCD/BB
57	Solving Lagrange's linear equation by Method of multipliers	3 - Ch 6; Pg 244-251	LCD/BB
58	Tutorial class	Worksheet	LCD/BB
59	Solution of homogeneous linear partial differential equations of second and higher order with constant coefficients.	2 - Ch.17, Pg 590-596	LCD/BB
60	More problems on homogeneous linear partial differential equations of second and higher order with constant coefficients.	2 - Ch.17; Pg 590-596	LCD/BB
	Continuous Assessment Test-II		

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: MA18351-Engineering Mathematics III

TEXT BOOKS:

- Erwin Kreyszig, "Advanced Engineering Mathematics", 10 th Edition, Wiley India, 2011.
- Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi 2012.
- Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "AdvancedMathematics forEngineering Students" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd. 1998.

REFERENCES:

- Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd., 2007.
- Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, 2011.
- Veerarajan. T., "Transforms and Partial Differential Equations". Tata MGraw Hill PublishingCompany Ltd., New Delhi, 2012.
- Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, New Delhi, 2012.
- 5 Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India Pvt. Ltd. 7th Edition, New Delhi, 2012.

Name Ms. Visalakshi Subramanian & Dr. R. Muthucumara:	
Name Dr RiMuthucumara	
2000 CH (ACCOUNT)	swamy
Designation Assistant Professor Professor and He	ead
Date 20/08/2021 20/08/2021	
Remarks *: -	

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD