Page 1 of 7

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Department of Information Technology		LP: GE 16451 Rev. No: 00
B.E/ B.Tech/M.E/M.Tech : Information Technology	Date: 26-06-2017	
PG Specialisation : NA		
Sub. Code / Sub. Name : GE 16451 ENVIRONMENTAL SCIE		
Unit : I. ENVIRONMENT, ECOSY		

3 CREDITS

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

12

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – bio-geographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds. Field study of simple ecosystems – pond, river and hill slopes, etc.

Objective: To create an awareness about the fundamentals and importance of ecosystems and biodiversity to the students.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards	T1, Ch4, p127-166	PPT
2	Biological hazards in the environment and concept of an ecosystem	R4, Ch2, p20-24	PPT
3	Structure and function of an ecosystem, producers, consumers and decomposers	R4, Ch2, p25-30	PPT
4	Bio Geo chemical cycles: Oxygen cycle and Nitrogen cycle	T2, Ch4, p79-84	PPT/BB
5	Energy flow in the ecosystem and ecological succession processes	R1, Ch. 3, p113- 118,	PPT/BB
6	Introduction, types, characteristic features, structure and function of the Forest ecosystem and Grassland ecosystem	R4, Ch4, p36-43	PPT
7	Introduction, types, characteristic features, structure and function of the Desert ecosystem and Aquatic ecosystems such as ponds, streams, lakes, rivers	R4, Ch4, p43-65	PPT
8	Introduction, types, characteristic features, structure and function of the Aquatic ecosystems such as oceans, estuaries.	R3, Ch4, p43-65	PPT
9	Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values	T2, Ch5, p94-101	PPT
10	Biodiversity at global, national and local levels, India as a mega biodiversity nation, hot-spots of biodiversity	R4, Ch6, p71-82	PPT
11	Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, endangered and endemic species of India & Revision	R4, Ch6, p83-84	PPT
12	Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds. Field study of simple ecosystems – pond, river and hill slopes, etc.	R5, Ch6, p85-95	PPT

COURSE DELIVERY PLAN - THEORY

Page 2 of 7

Content beyond syllabus covered (if any):

Discussion about the bio-geographical classification of India

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 3 of 7

Sub. Code / Sub. Name: GE 16451 ENVIRONMENTAL SCIENCE AND ENGINEERING

Unit II: II. ENVIRONMENTAL POLLUTION

UNIT II ENVIRONMENTAL POLLUTION

10

Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry- Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO2, NOX, CO and HC) (b) Water pollution: Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

Objective: To improve the knowledge about the various types of environmental pollution and their effects on

plants and animals.

	CAT - 1		
22	Pollution case studies & Revision	T2, Ch6, p200-202	Group Discussion
21	Causes, effects and control measures of nuclear hazards, role of an individual in prevention of pollution	T2, Ch5, p204-206	PPT
20	Causes, effects and control measures of Thermal pollution	T2, Ch6, p168-169	PPT
19	Causes, effects and control measures of Marine pollution and Noise pollution	T2, Ch6, p160-168	PPT
18	Soil pollution, soil waste management: causes, effects and control measures of municipal solid wastes	T2, Ch6, p153-160	PPT
17	Absorption of heavy metals, Water treatment processes.	T2, Ch6, p146-152	PPT/BB
16	Water pollution :- Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters such as physical chemical and biological	T2, Ch6, p137-145	PPT
15	Control of particulate and gaseous emission, Control of SO2, NOX, CO and HC	R4, Ch11, p177-178	PPT
14	Formation of SMOG, PAN, Acid rain, Oxygen and Ozone chemistry, Mitigation procedures	R4, Ch11, p174-176	PPT
13	Definition, causes, effects and control measures of Air pollution (Atmospheric chemistry, Chemical composition of the atmosphere, Chemical and photochemical reactions in the atmosphere	T2, Ch6, p118-130	PPT
Session No *	Topics to be covered	Ref	Teaching Aids

Content beyond syllabus covered (if any):

Discussion about the Air Pollution and Nuclear pollution case studies

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 7

Sub. Code / Sub. Name: GE 16451 ENVIRONMENTAL SCIENCE AND ENGINEERING

Unit: III. NATURAL RESOURCES

UNIT III NATURAL RESOURCES

10

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

Objective: To impart knowledge about the dynamic process available in the nature and resources available on this earth crust.

Session No *	Topics to be covered	Ref	Teaching Aids
23	Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, Mining, Dams and their effects on forests and tribal people	T2, Ch2, p17-27	PPT
24	Water resources: Use and overutilization of surface and ground water, Dams:- benefits and problems	T2, Ch2, p28-47	PPT
25	Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies	R4, Ch10, p161-169	PPT
26	Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems	R4, Ch10, p156-161	PPT
27	Water logging, salinity, case studies. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.	R4, Ch10, p153-156	PPT
28	Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies	R4, Ch8, p119-135	PPT
29	Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification	R4, Ch10, p153-156	PPT
30	Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles	R4, Ch2, p82	PPT
31	Introduction to Environmental Biochemistry: Proteins	R4, Ch6, p94-99	PPT
32	Biochemical degradation of pollutants, Bioconversion of pollutants & Revision	R4, Ch6, p100-102	PPT

Content beyond syllabus covered (if any):

Discussion about the Dams:- benefits and problems

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 7

Sub. Code / Sub. Name : GE 16451 ENVIRONMENTAL SCIENCE AND ENGINEERING

Unit : IV. SOCIAL ISSUES AND THE ENVIRONMENT

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

7

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization- environmental ethics: Issues and possible solutions – 12 Principles of green chemistry- nuclear accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – Environment protection act – Air act – Water act – Wildlife protection act – Forest conservation act –The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Eco-mark). Enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

Objective:

To elucidate the students about the various laws available in the country to protect the environment

Session No *	Topics to be covered	Ref	Teaching Aids
33	From unsustainable to sustainable development – urban problems related to energy – Water conservation, Rain Water Harvesting,	T2, Ch7, p210- 220	PPT
34	Resettlement and Rehabilitation of people; its problems and concerns, case studies, Role of Non-Governmental Organization,	R5, Ch18, p289-	Group Discussion/
35	Nuclear accidents and Holocaust, case studies. Wasteland reclamation, consumerism and waste products.	T2, Ch7, p243- 246	PPT
36	Air (Prevention and Control of Pollution) act, Water (Prevention and Control of Pollution) act, Wildlife protection act, Forest conservation act	T2, Ch7, p243- 246	PPT
37	Biomedical Waste (Management and Handling) Rules; 1998 and amendments, scheme of labeling of environmentally friendly products	R3, Ch5, p74-78	PPT
38	Enforcement machinery involved in environmental legislation, Central and State pollution control boards & Revision	R3, Ch5, p79-94	PPT
39	Disaster management: floods, earthquake, cyclone and landslides. Public awareness & Revision	T2, Ch6, p200- 202	PPT
	CAT - 2	-	

Content beyond syllabus covered (if any):

Discussion about the disaster management

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 7

Sub. Code / Sub. Name : GE 16451 ENVIRONMENTAL SCIENCE AND ENGINEERING

Unit : V. HUMAN POPULATION AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – population explosion – family welfare program – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA) -GIS-remote sensing-role of information technology in environment and human health – Case studies.

Objective:

To impart knowledge about the Environmental Management to the students.

Session No *	Topics to be covered	Ref	Teaching Aids
40	Population growth, variation among nations, population explosion, family welfare program	R4, Ch15, p200-	PPT
41	Environment and Human health, Human rights	T2, Ch8, p274- 277	PPT
42	Value education: HIV / AIDS – Women and Child welfare	T2, Ch8, p277 R6,	PPT
43	Environmental Impact Analysis (EIA), GIS, remote sensing	T2, Ch7, p246- 251	PPT
44	Role of information technology in environment and human health, Case studies	T2, Ch8, p288- 289	PPT
45	Revision		Group Discussion
Content be	Content beyond syllabus covered (if any): Discussion about the HIV / AIDS		

* Session duration: 50 mins

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd ed, Pearson Education 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2006).

REFERENCES:

- R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II. Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press (2005).
- 5. Wager. K. D. "Environmental Management", W.B. Saunders Co., Philadelphia.
- 6. Townsend C, Harper J and Michel Begon, "Essentials of Ecology", Blackwell Science.
- 7. Trivedi R. K, and P.K. Goel, "Introduction to Air Pollution", Techno-Science Publications.

COURSE DELIVERY PLAN - THEORY

Page 7 of 7

REFERENCES:

	Prepared by	Approved by
Signature	Jeshangaran	C P
Name	Dr. A. BHASKARAN	Dr. V. VIDHYA
Designation	Professor and Head	Professor and Head, Dept of Information Technology
Date	26-06-2017	26-06-2017

Remarks *:

This lesson plan may be used for teaching **GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING** in even semester also.

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD