

### COURSE DELIVERY PLAN - THEORY

Page 1 of 6

|                       | LP: IT16002                 |                  |                  |
|-----------------------|-----------------------------|------------------|------------------|
| B.E/B.Tech/M.E/M.Tech | n: B.Tech                   | Regulation: 2016 | Rev. No: 01      |
| PG Specialisation     | : -NA-                      |                  | Date: 26/12/2018 |
| Sub. Code / Sub. Name | : IT16002                   |                  |                  |
| Unit                  | : Data science using nython |                  |                  |

Unit Syllabus: Data Science-Python -the basics- visualizing data-matplotlib, bar charts, line charts, scatterplots, linear algebra- Vectors, Matrices.

Objective: To understand the fundamentals of data science.

| Session<br>No *                           | Topics to be covered                                                | Ref                                    | Teaching<br>Aids |
|-------------------------------------------|---------------------------------------------------------------------|----------------------------------------|------------------|
| 1.                                        | Introduction to Data Science and Data Sciencester                   | 1.Ch 1: Pg:1-13                        | BB/LCD           |
| 2.                                        | Python - the basics, Zen of python, White space formatting          | 1.Ch 2: Pg:15-17<br>2.Ch 2: Pg:16-28   | BB/LCD           |
| 3.                                        | Modules, Arithmetic, Functions, Strings                             | 1.Ch 2: Pg:17-19<br>2.Ch 2: Pg:69-75   | BB/LCD           |
| 4.                                        | Exceptions, Lists, Tuples, Dictionaries, Sets, Control Flow         | 1.Ch 2: Pg:19-25<br>2.Ch 2: Pg:29-46   | BB/LCD           |
| 5.                                        | Truthiness ,The Not-So-Basics ,Sorting ,List Comprehensions         | 1.Ch 2: Pg:25-28<br>2.Ch 2: Pg:51-67   | BB/LCD           |
| 6.                                        | Generators and Iterators ,Randomness ,Regular Expressions           | 1.Ch 2: Pg:29-39                       | BB/LCD           |
| 7.                                        | Object-Oriented Programming, Functional Tools, enumerate            | 1.Ch 2: Pg:30-34                       | BB/LCD           |
| 8.                                        | Visualizing data, matplotlib, Bar Charts, Line Charts, Scatterplots | 1.Ch 3: Pg:37-47<br>2.Ch 9: Pg:253-285 | BB/LCD           |
| 9.                                        | Linear algebra- Vectors, Matrices.                                  | 1.Ch 4: Pg:49-55                       | BB/LCD           |
| Content beyond syllabus covered (if any): |                                                                     |                                        |                  |

Content deyond sylladus covered (if any):

<sup>\*</sup> Session duration: 50 minutes



### COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT16002/ Data science using python

Unit: II

Unit Syllabus: Statistics- describing a single set of data, correlation, Simpson's Paradox, Correlation and causation, Probability –Dependence and Independence, Conditional Probability, Bayes theorem, random variables, continuous distributions, normal distribution, Central Limit Theorem, Hypothesis & Inference- statistical hypothesis testing, flipping a coin example, p-values, confidence intervals, p-hacking, running an A/B test example, Bayesian Inference, Gradient Descent-idea, estimation, stochastic.

Objective: To explore data and to produce visualizations using python libraries.

| Session<br>No *                          | Topics to be covered                                                                                          | Ref               | Teaching       |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 10                                       | Introduction to Statistics - Describing a Single Set of Data,<br>Central Tendencies, Dispersion, Correlation  | 1.Ch 5: Pg: 57-62 | Aids<br>BB/LCD |
| 11                                       | Simpson's Paradox, Some Other Correlational Caveats,<br>Correlation and Causation                             | 1.Ch 5: Pg:65-68  | BB/LCD         |
| 12                                       | Dependence and Independence ,Conditional Probability                                                          | 1.Ch 6: Pg:69-71  | BB/LCD         |
| 13                                       | Bayes's Theorem, Random Variables                                                                             | 1.Ch 6: Pg:71-73  | BB/LCD         |
| 14 🍌                                     | Continuous distributions, normal distribution, Central Limit Theorem                                          | 1.Ch 6: Pg:74-80  | BB/LCD         |
| 15                                       | Hypothesis & Inference- statistical hypothesis testing, flipping a coin example                               | 1.Ch 7: Pg:81-84  | BB/LCD         |
| 16                                       | p-values, confidence intervals, p-hacking, Running an A/B test example ,Bayesian Inference.                   | 1.Ch 7: Pg:85-88  | BB/LCD         |
| 17                                       | Gradient Descent-idea, Estimating the Gradient, Using the Gradient, Choosing the Right Step Size, For Further | 1.Ch 8: Pg:93-97  | BB/LCD         |
| 18                                       | Putting It All Together, Stochastic Gradient Descent                                                          | 1.Ch 8: Pg:98-10  | BB/LCD         |
| ontent beyond syllabus covered (if any): |                                                                                                               |                   |                |

<sup>\*</sup> Session duration: 50 mins



# SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT16002/ Data science using python

Unit: III

Unit Syllabus: Reading files, Scraping the web, using APIs, using twitter API example, Exploring Data – cleaning and munging, manipulating data, rescaling, dimensionality reduction.

Objective: To learn about reading, working and exploring data for interpretation.

| Session<br>No *                           | Topics to be covered                                     | Ref                                        | Teaching<br>Aids |
|-------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------|
| 19                                        | Getting data - Reading files                             | 1.Ch 9: Pg: 103-105<br>2.Ch 6: Pg: 167-176 | BB/LCD           |
| 20                                        | Basics of text files, Delimited files                    | 1.Ch 9: Pg: 105-106                        | BB/LCD           |
| 21                                        | Scraping the web- HTML and the Parsing Thereof           | 1.Ch 9: Pg: 107-110                        | BB/LCD           |
| 22                                        | Using APIs - JSON (and XML) Using an Unauthenticated API | 1.Ch 9: Pg: 114-116<br>2.Ch 6: Pg: 178-180 | BB/LCD           |
| 23                                        | Using twitter API example, Getting credentials           | 1.Ch 9:Pg: 117-120                         | BB/LCD           |
| 24                                        | Working with data - Exploring Data                       | 1.Ch 10: Pg: 121-123                       | BB/LCD           |
| 25                                        | Single dimension, Two dimension and many dimension       | 1.Ch 10: Pg: 123-125                       | BB/LCD           |
| 26                                        | Cleaning and Munging, Manipulating Data                  | 1.Ch 10:Pg: 127-131<br>2.Ch 7: Pg: 191-195 | BB/LCD           |
| 27                                        | Rescaling, Dimensionality Reduction                      | 1.Ch 10: Pg: 132-139                       | BB/LCD           |
| Content beyond syllabus covered (if any): |                                                          |                                            |                  |

Content beyond synabus covered (if any):

<sup>\*</sup> Session duration: 50 mins



### COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT16002/ Data science using python

Unit: IV

**Unit Syllabus :** Over fitting and under fitting, Feature Extraction and Selection, K- Nearest Neighbors, Naïve Bayes, Simple Linear, Multiple and Logistic Regression.

**Objective:** To use existing data to learn and develop machine learning models and perform classification, prediction and regression techniques for new data.

| Session<br>No * | Topics to be covered                               | Ref                  | Teaching<br>Aids |
|-----------------|----------------------------------------------------|----------------------|------------------|
| 28              | Introduction to Machine learning and data modeling | 1.Ch 11: Pg: 141-142 | BB/LCD           |
| 29              | Over fitting and under fitting data                | 1.Ch 11: Pg: 143-145 | BB/LCD           |
| 30              | Correctness, Bias Variance Trade off               | 1.Ch 11: Pg: 146-148 | BB/LCD           |
| 31              | Feature Extraction and Selection                   | 1.Ch 11: Pg: 148-150 | BB/LCD           |
| 32              | K- Nearest Neighbors                               | 1.Ch 12: Pg: 151-155 | BB/LCD           |
| 33              | The curse of dimensionality                        | 1.Ch 12: Pg: 156-163 | BB/LCD           |
| 34              | Naïve Bayes - A More Sophisticated Spam Filter     | 1.Ch 13: Pg: 165-172 | BB/LCD           |
| 35              | Simple Linear Regression, Multiple Regression.     | 1.Ch 14: Pg: 173-183 | BB/LCD           |
| 36              | Logistic Regression.                               | 1.Ch 10: Pg: 189-200 | BB/LCD           |

Content beyond syllabus covered (if any):

<sup>\*</sup> Session duration: 50 mins



## SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

### Page 5 of 6

Sub. Code / Sub. Name: IT16002 / Data Science with Python

Unit: V

**Unit Syllabus :** ADVANCED TOPICS - Decision Trees, Neural Networks, Clustering, Natural Language Processing, Recommender Systems, MapReduce.

**Objective:** To use existing data to learn and develop machine learning models such as decision trees, neural networks, clustering and recommender systems.

| Session<br>No * | Topics to be covered                                                                           | Ref                  | Teaching<br>Aids |
|-----------------|------------------------------------------------------------------------------------------------|----------------------|------------------|
| 37              | Decision Trees- Entropy, Random Forests                                                        | 1.Ch 17: Pg: 201-212 | BB/LCD           |
| 38              | Neural Networks- Perceptrons, Feed forward neural networks                                     | 1.Ch 18: Pg: 213-215 | BB/LCD           |
| 39              | Neural Networks-Back Propogation networks                                                      | 1.Ch 18: Pg: 218-224 | BB/LCD           |
| 40              | Clustering, Model, Choosing K                                                                  | 1.Ch 19: Pg: 225-230 | BB/LCD           |
| 41              | Clustering- Bottom up hierarchical clustering                                                  | 1.Ch 19: Pg: 225-230 | BB/LCD           |
| 42              | Natural Language Processing - Word Clouds, n-gram models                                       | 1.Ch 20: Pg: 239-241 | BB/LCD           |
| 43              | Natural Language Processing – Grammars, Gibbs sampling                                         | 1.Ch 20: Pg: 242-553 | BB/LCD           |
| 44              | Recommender Systems- User based collaborative filtering and Item Based collaborative filtering | 1.Ch 22: Pg: 267-274 | BB/LCD           |
| 45              | MapReduce- Word Count, Examples, combiners.                                                    | 1.Ch 24: Pg: 89-296  | BB/LCD           |

Content beyond syllabus covered (if any):

Model evaluation and Ensemble learning

<sup>\*</sup> Session duration: 50 mins



### COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: IT16002/ Data science using python

### **TEXT BOOKS:**

- 1. Joel Grus, Data Science from Scratch- First Principles with Python, O'reily, First edition, 2015.
- 2. Wes mckinney, Python for data analysis, O'reily 2012.

### **REFERENCES:**

- 3. Alexandre Devert, Matplotlib Plotting Cook book, Packt Publishing, 2014. Cathy O'Neil,
- 4. Rachel Schutt, Doing Data Science -Straight Talk from the Frontline, O'Reilly Media, 2013.

|             | Prepared by         | Approved by          |
|-------------|---------------------|----------------------|
| Signature   | B. P. Sydan 18      | ्रीनीर्टी ४<br>विकास |
| Name        | B.T.Shobana         | Dr.V.Vidhya          |
| Designation | Assistant Professor | HOD/IT               |
| Date        | 17-12-2018          | 17-12-2018           |
| Remarks *:  |                     |                      |
| Remarks *:  |                     |                      |

<sup>\*</sup> If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD