

COURSE DELIVERY PLAN - THEORY

Page 1 of 7

Department o	f INFORMATI	ION TECHNOLOGY	
			LP: IT16008
B.E/B.Tech/M.E/M.Tech	: IT	Regulation: 2016	Rev. No: 00
PG Specialisation	: -		Date:23/07/2021
Sub. Code / Sub. Name	: IT16008 – De	ep Learning(Elective)	
Unit	: I		

Unit Syllabus

UNIT I APPLIED MATH AND MACHINE LEARNING BASICS

Linear Algebra - Norms, Singular Value Decomposition, the Moore-Penrose Pseudo inverse, Probability and Information Theory, Machine Learning Basics.

Objective:

Students are given an overview of basics of linear algebra and machine learning algorithms.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Linear Algebra – scalars, vectors, matrices, tensors, special kind of matrices.	T1,CH 2 (Pg 29-35)	LCD / ONLINE
2	Norms- Eigen value decomposition	T1,CH 2(Pg 37-40)	LCD / ONLINE
3	Singular Value Decomposition and problems	T1,CH2 (Pg 41-43)	LCD / ONLINE
4	Moore-Penrose Pseudo inverse and problems	T1,CH2(Pg 43-46)	LCD / ONLINE
5	Probability and Information Theory- marginal, conditional and chain rule	T2,CH 3(Pg 52-58)	LCD / ONLINE
6	Information Theory – Structured probabilistic models	T2,CH3(Pg 71-73)	LCD / ONLINE
7	Machine Learning Basics – learning algorithm, hyperparameters, validation sets	T2,CH4 (Pg 96-118)	LCD / ONLINE
8	Supervised and unsupervised learning algorithms	T2,CH4(Pg 137-149)	LCD / ONLINE
9	Building ML algorithm and challenges motivating deep learning	T2,CH4(Pg 151-153)	LCD / ONLINE
Content be	yond syllabus covered (if any):		· · · · · · · · · · · · · · · · · · ·

COURSE DELIVERY PLAN - THEORY

Page 2 of 7

Sub. Code / Sub. Name: IT16008 – DEEP LEARNING Unit : II

Unit Syllabus:

UNIT II INTRODUCTION TO DEEP NETWORKS: MODERN PRACTICES

Deep Feed forward Networks, Regularization for Deep Learning, optimization for Training Deep Models.

Objective

Students acquire the knowledge about the deep networks and optimization of models.

Session No *	Topics to be covered	Ref	Teaching Aids			
10	Deep Feed forward Networks –learning XOR, gradient based learning	T1,CH6(Pg 164-172)	LCD / ONLINE			
11	Hidden units and architecture design	T1,CH6(Pg 187-200)	LCD / ONLINE			
12	Back propagation and other differentiation algorithms	T1,CH6(Pg 200-220)	LCD / ONLINE			
13	Regularization for Deep Learning	T1,CH7(Pg 224-235)	LCD / ONLINE			
14	Sparse representation, bagging, ensemble methods, drop out and adversarial	T1,CH7(Pg 251-265)	LCD / ONLINE			
15	Dataset augmentation, multitask learning, early stopping, parameter tuning	T1,CH7(Pg 236-249)	LCD / ONLINE			
16	Optimization for Training Deep Models	T1,CH8(Pg 271-279)	LCD / ONLINE			
17	Basic algorithm, parameter initialization strategies	T1,CH8(Pg 290-302)	LCD / ONLINE			
18	Adaptive learning rate, approximate second order methods and meta algorithms	T1,CH8(Pg 302-313)	LCD / ONLINE			
	CONTINUOUS ASSESSMENT TEST – I					
	ond syllabus covered (if any):					

COURSE DELIVERY PLAN - THEORY

Page 3 of 7

Sub. Code / Sub. Name: IT16008 –DEEP LEARNING Unit : III

Unit Syllabus:

UNIT III MODERN PRACTICES

Convolutional Networks, SequenceModeling,: recurrent and recursive Nets, Practical methodology, Linear Factor Models, Autoencoders, Representation Learning, Monte Carlo methods, Confronting the partition function.

Objective

Students acquire the knowledge about the concepts and implementation of Convolutional Neural Networks and Recurrent Neural Networks for handling image and text datasets.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Convolutional Networks – pooling and variants of convolution function	T1,CH9(Pg 326-352)	LCD / ONLINE
20	SequenceModeling – Bidirectional RNN	T1,CH10(Pg 367-388)	LCD / ONLINE
21	Recurrent and recursive Nets	T1,CH10(Pg 394-399)	LCD / ONLINE
22	Practical methodology – baseline model, gathering data and hyperparameters	T1,CH11(Pg 416-435)	LCD / ONLINE
23	Linear Factor Models – PCA, ICA and sparse coding	T1,CH13(Pg 482-496)	LCD / ONLINE
24	Autoencoders – Stochastic, denoising and contractive encoders	T1,CH14(Pg 499-518)	LCD / ONLINE
25	Representation Learning – Transfer learning	T1,CH15(Pg 524-552)	LCD / ONLINE
26	Monte Carlo methods – Gibbs Sampling	T1,CH17(Pg 587-597)	LCD / ONLINE
27	Confronting the partition function- loglikelihood gradient	T1,CH18(Pg 603-628)	LCD / ONLINE
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 4 of 7

Sub. Code / Sub. Name: IT16008 – DEEP LEARNING Unit : IV

Unit Syllabus:

UNIT IV INTRODUCTION TO DEEP GENERATIVE MODELS

Approximate Inference, Deep Generative Models - Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines, Convolutional Boltzmann Machines, Back-Propagation through Random Operations, Directed Generative Nets, Generative Stochastic Networks, Evaluating Generative Models.

Objective

Students acquire the knowledge about the different types of deep generative models with case studies.

Session No *	Topics to be covered	Ref	Teaching Aids
28	Approximate Inference Introduction	T1,CH20(Pg 651-653)	LCD / ONLINE
29	Deep Generative Models - Boltzmann Machines, Restricted Boltzmann Machines	T1,CH20(Pg 653-673)	LCD / ONLINE
30	Deep Belief Networks	T1,CH20(Pg 653-660)	LCD / ONLINE
31	Deep Boltzmann Machines	T1,CH20(Pg 660-673)	LCD / ONLINE
32	Convolutional Boltzmann Machines	T1,CH20(Pg 679-683)	LCD / ONLINE
33	Back-Propagation through Random Operations	T1,CH20(Pg 684-688)	LCD / ONLINE
34	Directed Generative Nets	T1,CH20(Pg 688-707)	LCD / ONLINE
35	Generative Stochastic Networks	T1,CH20(Pg 707-712)	LCD / ONLINE
36	Evaluating Generative Models	T1,CH20(Pg 713-716)	LCD / ONLINE
	CONTINUOUS ASSESSME	NT TEST – II	
Content bey			ONLI

COURSE DELIVERY PLAN - THEORY

Page 5 of 7

Unit Syllabus:

UNIT V DEEP LEARNING FRAMEWORK AND APPLICATIONS

Introduction to TensorFlow, MXNET, TORCH, Applications of Deep Learning – TEXT, IMAGE, SPEECH.

Objective

To apply different deep learning framework and to learn about various models in test, image and speech applications.

Session No *	Topics to be covered	Ref	Teaching Aids			
37	Introduction to TensorFlow	Internet	LCD / ONLINE			
38	MXNET	Internet	LCD / ONLINE			
39	TORCH	Internet	LCD / ONLINE			
40	Applications of Deep Learning	Internet	LCD / ONLINE			
41	Text applications	Internet	LCD / ONLINE			
42	Speech applications	Internet	LCD / ONLINE			
43	Image applications	Internet	LCD / ONLINE			
44	Implementation of case studies using various models	Internet	LCD / ONLINE			
45	Summary	Internet	LCD / ONLINE			
	CONTINUOUS ASSESSMENT TEST – III					
Content be	eyond syllabus covered (if any): Cloud security algo	orithms				

COURSE DELIVERY PLAN - THEORY

Course Outcome 1: Understand basics for linear algebra.
Course Outcome 2: Learn the machine learning algorithms.
Course Outcome 3 Learn programming models for deep networks
Course Outcome 4: Learn programming models for modern practices.
Course Outcome 5: Explore about deep generative models.
Course Outcome 6: Learn about various deep learning frameworks and its applications.

Mapping CO – PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	X	X		X		X		X	X	Х	X	X
CO2	X	X		X	Х		X		X	Х		X
CO3	X		Х	X		Х			X	Х		X
CO4	X	X		X	X		X		X	Х		X
CO5	X		Х	X	X	X	X	X	X	Х	Х	Х
CO6	Х	X	Х	Х	Х	Х	Х		Х	Х	Х	X

A-Strong; B-Moderate; C - weak

TEXT BOOKS:

1. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

REFERENCES:

Li Deng, Dong Yu, —Deep Learning: Methods and Applicationsl, Now publishers, 2014.
Special Issue on deep learning for speech and language processing, IEEE Transaction on

Audio, Speech and Language Processing, vol. 20, iss. 1, pp. 7 – 54, 2012.

COURSE DELIVERY PLAN - THEORY

Page 7 of 7

	Prepared by	Approved by			
Signature	QJ-12C	CP p			
Name	Ms. D.Jayanthi, AP/IT	Dr. V.Vidhya HoD/IT			
Date	23/07/2021	23/07/2021			
Remarks *:					
Remarks *:					

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD