

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Information Technology	LP: IT16401
Department of Information Technology	Rev. No: 01
B.Tech : Information Technology	Date: 15.12.2017
Regulation: 2016	
Sub. Code / Sub. Name : IT16401 / Paradigms of Algorithm Design	
Unit : I	

Unit Syllabus

FUNDAMENTALS

Algorithms - The Importance of Developing Efficient Algorithms - Analysis of Algorithms Order - Computational Complexity-sorting, searching, hashing, selection problem

Objective: To understand existing algorithms for simple computational problems, to write algorithms as pseudo-code for sorting and searching problems and compute their time complexity

Session No *	Topics to be covered		Teaching Aids
1	Algorithms - The Importance of Developing Efficient Algorithms, Writing simple algorithms – Linear Search, Matrix Operations		LCD/BB
2	Analysis of Algorithms – Order - Computational Complexity-sorting,		LCD/BB
3	Insertion Sort and its Analysis		LCD/BB
4	Searching – Linear Search Analysis Internet		LCD/BB
5	Hashing		LCD/BB
6	Selection Problem		LCD/BB
7	7 Recursive Algorithms and Solving Recurrences		LCD/BB
8	8 Factorial and Towers of Hanoi problems using Recursion		LCD/BB
Content Beyond Syllabus : Recursive algorithms and Analysis of Recursive algorithms			

* Session duration: 50 minutes

Sub. Code / Sub. Name: IT16401 / Paradigms of Algorithm Design

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Unit : II

Unit Syllabus

ALGORITHM STRATEGY:

Divide-and-Conquer - Sorting -Searching- Strassen's Matrix Multiplication Algorithm Arithmetic with Large Integers. Dynamic Programming - Binomial co-efficient - Floyd's Algorithm for Shortest Paths - Chained Matrix Multiplication - Dynamic Programming and Optimization Problems- Optimal Binary Search Trees - The Traveling Salesperson Problem

Objective: To learn Divide and Conquer and Dynamic Programming strategies and apply them to solve computational problems.

Session No *	Topics to be covered	Ref	Teaching Aids
9	Divide-and-Conquer – General Strategy, Sorting -Merge Sort	I(2.2) II (2.3.1)	LCD/BB
10	Quick Sort		LCD/BB
11	Searching - Binary Search, Strassen's Matrix Multiplication		LCD/BB
12	Arithmetic with Large Integers – Large Integer Addition and I(Multiplication		LCD/BB
13	Dynamic Programming - General Strategy, Fibonacci Series, Binomial co-efficient		LCD/BB
14	DP and Optimization Problems - All Pair Shortest Path Problem - Floyd's Algorithm for Shortest Paths		LCD/BB
15	15 Chained Matrix Multiplication		LCD/BB
16	16 Longest Common Subsequence (LCS) Problem		LCD/BB
17	17 Optimal Binary Search Trees		LCD/BB
18	The Traveling Salesperson Problem	I(3.6)	LCD/BB
Content beyond syllabus covered (if any): Longest Common Subsequence (LCS) Problem.			

• Session duration: 50 mins

Sub. Code / Sub. Name: IT16401 / Paradigms of Algorithm Design

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Unit : III

Unit Syllabus

DESIGN TECHNIQUES

Greedy Approach - Minimum Spanning Trees-scheduling - The Greedy Approach versus Dynamic Programming: The Knapsack Problem – Backtracking - Using a Monte Carlo Algorithm - The Sumof-Subsets Problem - Graph Coloring - The Hamiltonian Circuits Problem - Branch-and-Bound - Best-First Search

Objective: To learn Greedy, Backtracking and Branch & Bound techniques and apply them to solve computational problems.

Session No *	Topics to be covered	Ref	Teaching Aids	
19	Greedy Approach – General Strategy, Change Making problem		LCD/BB	
20	Minimum Spanning Trees – Prims and Kruskal Algorithms I(4.1) II(23.1- LCI		LCD/BB	
21	Scheduling-Minimizing total time in Systems, Scheduling with I(4.3) LC		LCD/BB	
22	The Greedy Approach versus Dynamic Programming: The Knapsack I(4.5)			
23	Backtracking - General Strategy, N Queen ProblemI(5.1-5.2)			
24	Using a Monte Carlo Algorithm to estimate Backtracking algorithm I(5.3)		LCD/BB	
25	The Sum-of-Subsets Problem ,Graph Coloring Problem I(5.4-5.5) LC		LCD/BB	
26	Hamiltonian Circuit Problem,0/1 Knapsack ProblemI(5.6-5.7)LCD/		LCD/BB	
27	Branch & Bound technique – General Strategy, Best-First Search I(6.1)			
Content beyond syllabus covered (if any): N Queen Problem, 0/1 Knapsack Problem				

• Session duration: 50 mins

Sub. Code / Sub. Name: IT16401 / Paradigms of Algorithm Design

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Unit : IV

Unit Syllabus

NP COMPLETENESS

NP-completeness – Polynomial Time - Polynomial Time Verification - Reducibility - NPcompleteness proofs - Approximation Algorithms - Vertex-Cover problem – Travelling-Salesman problem

Objective: To understand the difference between Polynomial and Non-Deterministic Polynomial algorithms. To get exposed to NP Complete problems

Session No *	Topics to be covered	Ref	Teaching Aids
28	Classes of algorithms – Polynomial, NP, NP Complete, NP-Hard	I(Ch9)	LCD/BB
29	29 NP Completeness, Polynomial Time		LCD/BB
30	Polynomial Time Verification	II(34.2)	LCD/BB
31	Reducibility	II(34.3)	LCD/BB
32	32 NPcompleteness proofs		LCD/BB
33 NPcomplete Problems		II(34.5)	LCD/BB
34 Approximation Algorithms – Introduction		II(p1106- 1108)	LCD/BB
35	Vertex Cover Problem	II(35.1)	LCD/BB
36	Travelling-Salesman problem	II(35.2)	LCD/BB
Content beyond syllabus covered (if any): NPcomplete Problems			

• Session duration: 50 mins

Sub. Code / Sub. Name: IT16401 / Paradigms of Algorithm Design

Unit : V

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Unit Syllabus

PARALLEL ALGORITHMS AND GENETIC ALGORITHMS

Parallel Architectures - The PRAM Model - Designing Algorithms for the CREW PRAM Model - Designing Algorithms for the CRCW PRAM Model - Genetic Algorithm - Travelling salesperson, Genetic Programming - Artificial ant and Financial trading application.

Objective: To understand Parallel Architectures and design parallel algorithms. To get exposed to genetic algorithms and Genetic Programming

Session No *	Topics to be covered	Ref	Teaching Aids
37	Parallel Architectures	I(11.1)	LCD/BB
38	The PRAM Model - Designing Algorithms for the CREW PRAM Model	I(11.2.1)	LCD/BB
39	Designing Algorithms for the CRCW PRAM Model	I(1.2.2)	LCD/BB
40	Genetic Algorithms Introduction	Internet	LCD/BB
41,42	Genetic Algorithm for TSP	Internet	LCD/BB
43	43 Genetic Programming Introduction		LCD/BB
44,45	Genetic Programming for Trading Application	Internet	LCD/BB
	·	·	

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: IT16401 / Paradigms of Algorithm Design

TEXTBOOKS

1. Foundations of Algorithms, Richard E Neapolitan, 5th Edition, Jones & Bartlett 2. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning,2014. Learning Private Limited, 2012.

REFERENCES

1. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, First Edition,

2. Steven S Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2010. 3. Robert Sedgewick and Kevin Wayne, -Algorithmsl, Fourth Edition, Pearson Education,

2011.

	Prepared by	Approved by
Signature	Bush yet	
Name	E.Sivakumar	Dr.V. Vidiga
Designation	AP/IT	Bol. Streakingin
Date	15.12.2017	15/12/17
Remarks* :		
Remarks*:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD