

COURSE DELIVERY PLAN - THEORY

			LP: IT16503
Depa	rtment of Information Technology	ology	Rev. No: 00
B.E/B.Tech/M.E/M.Tech	a: B.Tech	Regulation: 2016	Deter
PG Specialisation	:		Date:
			29/06/2018
Sub. Code / Sub. Name	: IT16503 – COMPUTATIONAL	L INTELLIGENCE	
Unit	: I		

PROBLEM SOLVING METHODS

Unit Syllabus: Problems, Problem Spaces and Search - problem characteristics -production system characteristics-Heuristic Search Techniques – Generate and Test- Hill Climbing- Best First Search-Problem Reduction-Constraint Satisfaction Problems – Game Playing – Minimax procedure - Alpha-Beta Pruning

Objective:

- To understand the concepts of Artificial Intelligence
- To learn the methods of solving problems using Artificial Intelligence

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to AI - Problem Formulation : Defining the Problem as a state space search for Water Jug	1 - Ch 1 ; Pg 1 – 30 3- Ch 1; Pg 1-7	LCD
2	Problem characteristics	1 - Ch 1 ; Pg 36-43	LCD
3	Production System and its Characteristics	1 - Ch 2 ; 30 – 36,40-43	LCD
4	Heuristic Search Techniques : Generate-and-Test, Hill Climbing and its variants and Simulated	1 - Ch 3 : Pg 50 – 57 6 – Ch 4; Pg 111-115	BB/ LCD
5	Best-First Search : OR Graphs	1 - Ch 3; Pg 57-59	BB/ LCD
6	Best-First Search : A* algorithm	1 - Ch 3; Pg 59 – 64 6 - Ch 4 ; 95 – 100	BB/ LCD
7	Problem Reduction : AND-OR graphs, AO*	1 - Ch 3; Pg 64 – 68	BB/ LCD
8	Constraint satisfaction Problem: Cryptarithmetic problem	1 - Ch 3; Pg 68-72 6 - Ch 5 ; 137 – 141	BB/ LCD
9	Game playing : Overview, Minimax search procedure, Alpha-beta pruning	1 - Ch 12; Pg 231 – 240 6 -Ch 6; 165 & 167-171	BB/ LCD
10	Tutorial on Cryptarithmetic problem		BB/ LCD
11	Tutorial on Game playing		BB/ LCD
12	Tutorial on alpha-beta pruning		BB/ LCD
Content	beyond syllabus covered (if any):		

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT16503 – COMPUTATIONAL INTELLIGENCE Unit : II

KNOWLEDGE REPRESENTATION

Unit Syllabus : Knowledge representation-Using Predicate logic- Representing Simple Facts-Representing Instance – Computable Functions and Predicates -Resolution, Knowledge Inference – Backward chaining, Forward chaining

Objective:

- To represent knowledge for problem solving using various logic
- To infer knowledge using various techniques

Session No *	Topics to be covered	Ref	Teaching Aids
13	KnowledgeRepresentationIssues:Representations and Mappings	1 - Ch 4 ; Pg 79 –82	LCD
14	Approaches to Knowledge representation	1 - Ch 4 ; Pg 82-86	LCD
15	Knowledge representation using Predicate logic	1 - Ch 5 ; Pg 98 – 99	BB/ LCD
16	Representing simple facts in logic	1 - Ch 5 ;Pg 99-103 3- Ch 4; Pg 49-60	BB/ LCD
17	Representing Instance and ISA relationships	1 - Ch 5 ; Pg 103-105	BB/ LCD
18	Computable Functions and Predicates	1 - Ch 5 ; Pg 105-108	BB/ LCD
19	Predicate logic : Resolution	1 - Ch 5 ; Pg 108-124 6 – Ch 9; Pg 295-306	BB/ LCD
20	Knowledge Inference using Forward chaining	6 – Ch 9; Pg 280-287	BB/ LCD
21	Knowledge Inference using Backward chaining	6 – Ch 9; Pg 287-290	BB/ LCD
22	Tutorial on Predicate logic		BB/ LCD
23	Tutorial on Resolution		BB/ LCD
24	Tutorial on Knowledge Inference		BB/ LCD
Content b	beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT16503 – COMPUTATIONAL INTELLIGENCE Unit : III

DATA MINING

Unit Syllabus: Fundamentals – Data reduction – Classification - Decision tree Induction – Learning - Supervised Learning – Unsupervised Learning – Reinforcement Learning –Associations-Frequent Itemset Mining Methods, Clustering- Partitioning methods - Hierarchical methods- Data Mining Applications

Objective:

• To understand the fundamentals and various concepts of data mining.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Fundamentals- Type of data, Pattern types, technologies	2 - Ch 1; Pg 1-21	LCD
26	Data reduction-Wavelet Transforms, PCA, Regression, Histograms, Sampling	2 - Ch 3; Pg 99-111	LCD
27	Classification - Decision tree Induction- Attribute Selection, Tree Pruning	2 - Ch 8; Pg 330-350	BB/ LCD
28	Learning - Supervised Learning –Unsupervised Learning	Internet	LCD
29	Reinforcement Learning	Internet	LCD
30	Associations- Frequent Itemset Mining Methods- Apriori algorithm	2 - Ch 6; Pg 248-264	BB/ LCD
31	Clustering- Partitioning methods- k-Means, k- Medoids	2 - Ch 10; Pg 451-457	LCD
32	Clustering- Hierarchical methods- Agglomerative, BIRCH, Chameleon	2 - Ch 10; Pg 457-470	BB/ LCD
33	Data Mining Applications	2 - Ch 13; Pg 607-618	LCD
34	Tutorial on Classification		BB/ LCD
35	Tutorial on Associations		BB/ LCD
36	Tutorial on Clustering		BB/ LCD
Content be	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT16503 – COMPUTATIONAL INTELLIGENCE

Unit : IV

EXPERT SYSTEMS

Unit Syllabus : Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition –Meta knowledge, Heuristics. , Expert systems shells- Typical expert systems - MYCIN, DART, XCON

Objective:

• To introduce the concepts of Expert Systems with case studies for various applications.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Expert systems : Introduction and Characteristics	3- Ch 15; Pg 326-330	LCD
38	Architecture of expert systems	3 - Ch 15 ;Pg 330 – 347	LCD
39	Roles of expert systems	3- Ch 15; Pg 326-330	LCD
40	Knowledge Acquisition- Meta knowledge,	1- Ch 20; Pg 427- 429	LCD
41	Expert systems shells	1- Ch 20; Pg 424 – 427	LCD
42	Architecture of MYCIN Expert system	3- Ch 15; Pg 326-330	LCD
43	Knowledge Acquisition in MYCIN Expert	Internet	LCD
44	Architecture and Knowledge Acquisition of DART Expert system	Internet	LCD
45	Architecture and Knowledge Acquisition of XCON Expert system	3- Ch 15; Pg 326-330	LCD
46	Tutorial on Expert systems		BB/ LCD
47	Tutorial on MYCIN		BB/ LCD
48	Tutorial on DART, XCON		BB/ LCD
Content b	eyond syllabus covered (if any): Deep learning		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: IT16503 - COMPUTATIONAL INTELLIGENCE

Unit : V

ADVANCED TOPICS

Unit Syllabus : Evolutionary Computation- Genetic Algorithms –Crossover- Mutation, Genetic programming ; Evolutionary Programming- Operators- Parameters- Implementations; Neural Networks – Multi layer Feed Forward Neural Network-Applications of Neural Networks- Fuzzy Systems- Fuzzy Sets – Fuzzy Logic and Reasoning – Creating a bot – Weather Monitoring bot

Objective:

• To introduce the advanced concepts of Computational Intelligence

Session No *	Topics to be covered	Ref	Teaching Aids
49	Evolutionary Computation - Introduction	4 – Ch 8; Pg 127-141	LCD
50	Genetic Algorithms – Crossover- Mutation	4 – Ch 9; Pg 143-156	LCD
51	Genetic programming	4 – Ch 10; Pg 177-184	LCD
52	Evolutionary Programming- Operators- Parameters- Implementations	4 – Ch 10; Pg 187-206	LCD
53	Neural Networks – Multi layer Feed Forward Neural Network	6- Ch 20; Pg 744-748	LCD
54	Applications of Neural Networks	1- Ch 18; Pg 396-399	LCD
55	Fuzzy Systems- Fuzzy Sets	4 – Ch 20; Pg 453-463	LCD
56	Fuzzy Logic and Reasoning	4 – Ch 21; Pg 465-472	LCD
57	Creating a bot – Weather Monitoring bot	5	LCD
58	Tutorial on Genetic Algorithms		BB/ LCD
59	Tutorial on Neural Networks		BB/ LCD
60	Tutorial on Fuzzy Systems		BB/ LCD
Content b	evond syllabus covered (if any):		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

ę

Sub. Code / Sub. Name: IT16503 – COMPUTATIONAL INTELLIGENCE

REFERENCES:

- 1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill- 2008.
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.
- 3. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.
- 4. Andries .P. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edition, John Wiley & Sons, 2012
- 5. https://en.wikipedia.org/wiki/Wikipedia:Creating_a_bot
- 6. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 3rd Edition, 2009

Prepared by	Approved by
P. & avent - 1976/18	C Lagette
P.Sharon Femi	Dr.V.Vidhya
Assistant Professor	Professork HOD i/c
29.06.2018	29.06.2018
	Prepared by P. & avent i 2976118 P.Sharon Femi Assistant Professor 29.06.2018

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD