Page 1 of 6

Date: 11-01-2021

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Department of Information Technology

LP: IT18602

Rev. No: 00

B.E/B.Tech/M.E/M.Tech: INT Regulation: 2018

PG Specialisation : NA

Sub. Code / Sub. Name : IT18602 / AUTOMATA AND COMPILER DESIGN

Unit : I

Unit Syllabus:

UNIT I INTRODUCTION TO FINITE AUTOMATA 9+3

Introduction- Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with \in - moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA's with and without \in -moves – Equivalence of finite Automaton and regular expressions –Minimization of DFA.

Objective:

To understand deterministic and non-deterministic machines.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to Finite Automata, Basic Mathematical Notation and techniques	1-Ch-1; Pg 2-5,27-30 3-Ch-2; Pg 10-14	online
2	Finite State systems, Basic Definitions	1-Ch-2; Pg 35-43 3-Ch-3; Pg 16-25	online
3	Finite Automaton – DFA	1-Ch-2; Pg 43-52	online
4	Finite Automaton –NDFA	1-Ch-2; Pg 53-64 4- Ch-2; Pg 15-18	online
5	Finite Automaton with €- moves	1-Ch-2; Pg 68-75	online
6	Regular Languages	1-Ch-4; Pg 122-135	online
7	Regular Expression	1-Ch-3; Pg 79-85 4- Ch 2; Pg 10-15	online
8	Equivalence of NFA and DFA, Equivalence of NDFA's with and without €-moves	1-Ch-4; Pg 143-148	online
9	Minimization of DFA	1-Ch-4; Pg 148-152 4-Ch- 2; Pg 30-35	online
10	Tutorial		online
11	Tutorial		online
12	Tutorial		online
Content b	eyond syllabus covered (if any):		

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT18602 / AUTOMATA AND COMPILER DESIGN

Unit: II

Unit Syllabus:

UNIT II LEXICAL AND SYNTAX ANALYSIS

12

Lexical Analysis-Translators -The Phases of Compiler-Errors Encountered in Different Phases-compiler Construction Tools, Role of Lexical Analyzer-Specification and Recognition of Tokens-Thompson Construction –LEX.

Syntax Analysis-Role of the Parser-Top Down Parsing - Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser, YACC.

Objective:

To learn the design principles and tools of the compiler.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Lexical Analysis- Introduction to Translators – The Language Processing Systems	2-Ch-1; Pg 1-4	online
14	The Phases of Compiler, Compiler Construction Tools, Errors Encountered in Different Phases	2-Ch-1; Pg 4-10,12 2-Ch-3; Pg 113-114 2-Ch-4; Pg 194-195 4- Ch-1; Pg 2-3	online
15	Role of Lexical Analyzer, Specification of Tokens – Regular Expressions	2-Ch-3; Pg 103-124	online
16	Recognition of Tokens – NFA, DFA, State Transition Diagrams	2-Ch-3; Pg 128-140	online
17	Converting Regular Expression to DFA(Thomson's methods) - Steps, Algorithms, Problems	2-Ch-3; Pg 152-166	online
18	LEX	2-Ch-3; Pg 140-146	online
19	Syntax Analysis-Role of the Parser, Top Down Parsing, Predictive Parser-LL(1) Parser	2-Ch-4; Pg 192-193, 217-231 4-Ch-3; Pg 79-84	online
20	Shift Reduce Parser-LR Parser, SLR Parser	2-Ch-4; Pg 241-259	online
21	YACC	2-Ch-4; Pg 287-297	online
22	Tutorial		online
23	Tutorial		online
24	Tutorial		online
Content b	eyond syllabus covered (if any):		

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT18602 / AUTOMATA AND COMPILER DESIGN

Unit: III

Unit Syllabus:

UNIT III SYNTAX DIRECTED TRANSLATION

9 + 3

Syntax Directed Definitions-Intermediate Code Generation-Representation and Implementation -Types And Declarations -Type Checking -Control Flow Statements-Back Patching -Procedures.

Objective:

To learn and understand the design principles of syntax analyzer

Session No *	Topics to be covered	Ref	Teaching Aids
25	Syntax Directed Definitions- Inherited and Synthesized attributes,	2-Ch-5; Pg 304-306	online
26	Evaluating an SDD	2-Ch-5; Pg 306-309	online
27	Intermediate Code Generation-Representation and Implementation	2-Ch-6; Pg 357-369	online
28	Types And Declarations – Type Expressions, Type Equivalence, Storage Layout for local names, Field in	2-Ch-6; Pg 370-378	online
29	Type Checking- Rules, Type Conversions, Overloading, Type Inference, Algorithm for	2-Ch-6; Pg 386-399	online
30	Control Flow Statements – Boolean Expressions, Short Circuit code	2-Ch-6; Pg 399-403	online
31	Control Flow statements-Translation, Avoiding redundant codes, Boolean Values	2-Ch-6; Pg 403-410	online
32	Back Patching – One-pass code generation, Flow of control statements, Break, Continue and Goto	2-Ch-6; Pg 410-418	online
33	Intermediate code for Procedures	2-Ch-6; Pg 422-424	online
34	Tutorial		online
35	Tutorial		online
36	Tutorial		online

Content beyond syllabus covered (if any):

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT18602 / AUTOMATA AND COMPILER DESIGN

Unit:IV

Unit Syllabus:

UNIT IV CODE OPTIMIZATION AND RUN TIME ENVIRONMENT 9 + 3 Code Optimization -Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow Analysis.

Run-time Environment- Source Language Issues-Storage Organization-Storage Allocation-Parameter Passing-Symbol Tables-Dynamic Storage Allocation

Objective:

To learn how to optimize the code

Session No *	Topics to be covered	Ref	Teaching Aids
37	Code Optimization -Principal Sources of Optimization	2-Ch-9; Pg 584-595	online
38	Directed Acyclic Graph- DAG representation of basic blocks	2-Ch-8; Pg 533-534	online
39	Optimization of Basic Blocks	2-Ch-8; Pg 534-542	online
40	Global Data Flow Analysis- Abstraction, Schema, Basic blocks, Live variable Analysis, Available expressions	2-Ch-9; Pg 597-600	online
41	Run-time Environment- Source Language Issues- Storage Organization	2-Ch-7; Pg 427-430	online
42	Storage Allocation – Activation trees, Activation records	2-Ch-7; Pg 430-436	online
43	Parameter Passing	2-Ch-7; Pg 436-437	online
44	Symbol Tables	2-Ch-7; Pg 423-425	online
45	Dynamic Storage Allocation	2-Ch-7; Pg 452-463	online
46	Tutorial		online
47	Tutorial		online
48	Tutorial		online

Content beyond syllabus covered (if any):

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: IT18602 / AUTOMATA AND COMPILER DESIGN

Unit: V

Unit Syllabus:

UNIT V CODE GENERATION

9 + 3

Issues -Design of Code Generator -Addresses in the Target Code -Basic Blocks in Flow Graph -Simple Code Generator -Peephole Optimization -Machine Independent Optimization

Objective:

To learn how to obtain specific object code from source language

Session No *	Topics to be covered	Ref	Teaching Aids
49, 50	Issues in the design of code generator	2-Ch-8; Pg 506-512	online
51	Addresses in the Target Code – static allocation, stack allocation, Run-Time addresses for names	2-Ch-8; Pg 518-525	online
52	Basic Blocks	2-Ch-8; Pg 525-529	online
53	Flow Graphs	2-Ch-8; Pg 529-532	online
54, 55	Simple Code Generator-Register and address descriptors, Algorithm, Design of the function getReg	2-Ch-8; Pg 542-549	online
56	Peephole Optimization- Eliminating Redundant loads and stores, Unreachable code, Flow-of-control	2-Ch-8; Pg 549-553	online
57	Machine Independent Optimization	2-Ch-9, Pg 639-655	online
58	Tutorial		online
59	Tutorial		online
60	Tutorial		online

Content beyond syllabus covered (if any):

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: IT18602 / AUTOMATA AND COMPILER DESIGN

REFERENCES:

- 1.John. E. Hopcroft, Rajiv Motwani and Jeffrey D Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, 2014.
- 2.Alfred Aho, Ravi Sethi and Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Second Edition, Pearson Education, 2013.
- 3. Alexander Meduna, Petr Zemek," Regulated Grammars and Automata", Springer, 2014.
- 4. Torben Mogensen, "Basics of Compiler Design", Springer, 2010.

Prepared by	Approved by
d kalı	CH
A.Kala	Dr.V.Vidhya
Assistant Professor	Professor & Head
11-01-2021	11-01-2021
*	10 20 20 20 20 20
	A.Kala Assistant Professor

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD