

COURSE DELIVERY PLAN – THEORY

Page 1 of 6

	Department of Applied Mathematics	LP: MA22151
		Rev. No: 00
B.E / B.Tech	: Common to all branches except Marine Engineering	Date: 02/11/2022
Regulation	: 2022	
Sub. Code / Sub. Name	: MA22151 / Applied Mathematics I	
Unit I	: Matrices	

Unit Syllabus:

Eigen Values and Eigen Vectors of a real matrix – Characteristic Equation – Properties of Eigen values and Eigen Vectors – Statement and Applications of Cayley-Hamilton Theorem – Diagonalization of matrices– Reduction of a quadratic form to canonical form by orthogonal transformation-Nature of quadratic forms.

Objective:

On completion of the unit, the students should be made to compute eigen values and eigen

vectors and use them in diagonalization and classification of real quadratic form

Session No *	Topics to be covered	Ref	Teaching Aids
1	Eigen values and Eigen vectors of a real matrix, characteristic equation	R1-Ch 3,pg 227-228	PPT/BB
2	Problems on Eigen values and Eigen vectors	R1-Ch 3, pg 228-229	PPT /BB
3	Properties of Eigen values and Eigen vectors	2- Ch 2, pg 62-63	PPT /BB
4	Tutorial Class	2 & R1	PPT /BB
5	Statement and Applications of Cayley – Hamilton Theorem	R1- Ch 3, pg 231-232	PPT /BB
6	Orthogonal Transformation, Diagonalization	3- Ch 14, pg 14.8	PPT /BB
7	Orthogonal Transformation of a symmetric matrix to Diagonal form -Distinct Eigen values	3- Ch 14, pg 14.8-14.9	PPT /BB
8	Orthogonal Transformation of a symmetric matrix to Diagonal form -Repeated Eigen values	3- Ch 14, pg 14.8-14.9	PPT /BB
9	Tutorial class	3- Ch 14, pg 14.8-14.9	PPT /BB
10	Nature of Quadratic forms	2- Ch 2, pg 70-72	PPT /BB
11	Reduction of quadratic form to canonical form by orthogonal transformation	2- Ch 2, pg 70-72	PPT /BB
12	Tutorial class	1 & 2	PPT /BB

COURSE DELIVERY PLAN – THEORY

Page 2 of 6

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I	
Unit II : Applications of Differential calculus	

Unit Syllabus:

Curvature and Radius of Curvature - Centre of Curvature - Circle of Curvature - Evolutes - Envelopes - Evolute as envelope of normals.

Objective:

On completion of the unit, the students should be made to study differential calculus and its

Session **Teaching Aids** Topics to be covered Ref No * 2-Ch 4, pg 179-180, Introduction to Curvature and Radius of curvature 13 PPT/BB 3- Ch 2, pg 2.44-2.45 2- Ch 4, pg 180-184, Curvature and Radius of curvature of simple curves in Cartesian 14 PPT/BB co-ordinates 3- Ch 2, pg 2.44-2.47 **Tutorial Class** 1,2&3 PPT/BB 15 2- Ch 4, pg 185, Centre of curvature PPT/BB 16 3- Ch 2, pg 2.57-2.58 17 Circle of curvature 3- Ch 2, pg 2.58-2.60 PPT/BB 2- Ch 4, pg 186, 18 Evolutes - Introduction PPT/BB 3- Ch 2, pg 2.61 19 Evolute of standard curves PPT/BB 3- Ch 2, pg.62-2.64 Tutorial class 20 1,2 & 3 PPT/BB CAT-I 2- Ch 4, pg 187-188, 21 Envelope of a family of curves (single parameter) PPT/BB 3- Ch 2, pg 2.65-2.66 22 3- Ch 2, pg 2.672.68 PPT/BB Envelope of a family of curves (two parameter) 23 PPT/BB Evolute as envelope of normals 3- Ch 2, pg 2.73-2.74 24 Tutorial class 2 & 6 PPT/BB Content beyond syllabus covered (if any): Use of calculus in everyday life.

applications to relevant Engineering Problems.

COURSE DELIVERY PLAN – THEORY

Page 3 of 6

Sub. Code / Sub. Name: MA22151 / Applied Mathematics IUnit III: Differential Calculus for Several Variables

Unit Syllabus:

Limits and Continuity - Partial derivatives – Total derivatives – Differentiation of implicit functions – Jacobians and properties– Taylor's series for functions of two variables – Maxima and Minima of functions of two variables – Lagrange's method of undetermined multipliers.

OBJECTIVE:

On completion of the unit, the students should be made to compute derivatives using the chain rule or total differentials.

imits and Continuity artial derivatives otal derivatives utorial class	R1-Ch 5, pg 398, 2- Ch 5, pg 211-212 R1-Ch 5, pg 399-409, 2 - Ch 5, pg 213-217 R1- Ch 5, pg 419-426, 2 - Ch 5, pg 223-225 1, 2 & R1	PPT/BB PPT/BB PPT/BB
otal derivatives	2 - Ch 5, pg 213-217 R1- Ch 5, pg 419-426, 2 - Ch 5, pg 223-225	PPT/BB
	2 - Ch 5, pg 223-225	
utorial class	1,2&R1	
		PPT/BB
ifferentiation of implicit functions	2- Ch 5, pg 223-225	PPT/BB
acobians	R1- Ch 5, pg 428, 2- Ch 5, pg 229	PPT/BB
roperties of Jacobians	R1- Ch 5, pg 429-431, 2- Ch 5, pg 230-233	PPT/BB
aylor's series for functions of two variables	R1- Ch 5, pg 432-436, 2- Ch 5, pg 235-237	PPT/BB
utorial class	1, 2 & R1	PPT/BB
faxima and minima function of two variables	R1- Ch 5, pg 437-445, 2- Ch 5, pg 242-244	PPT/BB
agrange's method of undetermined multipliers	R1- Ch 5, pg 446-449, 2- Ch 5, pg 245-249	PPT/BB
utorial class	1, 2 & R1	PPT/BB
AT – II		
	operties of Jacobians ylor's series for functions of two variables torial class axima and minima function of two variables grange's method of undetermined multipliers torial class	2- Ch 5, pg 229 operties of Jacobians 2- Ch 5, pg 429-431, 2- Ch 5, pg 230-233 ylor's series for functions of two variables R1- Ch 5, pg 432-436, 2- Ch 5, pg 235-237 torial class axima and minima function of two variables R1- Ch 5, pg 437-445, 2- Ch 5, pg 242-244 grange's method of undetermined multipliers R1- Ch 5, pg 245-249 torial class 1, 2 & R1 AT – II

COURSE DELIVERY PLAN – THEORY

Page 4 of 6

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I

Unit IV : Applications of Definite Integrals

Unit Syllabus:

Integration by Parts – Bernoulli's formula for integration – Definite integrals and its Properties – Solids of Revolution – Disk Method – Washer Method – Rotation about both x and y axis – Shell Method.

OBJECTIVE:

On completion of the unit, the students should be made to understand the rotation of twodimensional geometry using definite integrals.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Integration by Parts, Bernoulli's Formula	3 - Ch 8, pg 452	PPT/BB
38	Definite Integrals	3 - Ch 5, pg 265-268	PPT/BB
39	Properties of Definite Integrals	3 - Ch 5, pg 265-268	PPT/BB
40	Tutorial Class	3 - Ch 5	PPT/BB
41	Solids of Revolution	3 - Ch 6, pg 316	PPT/BB
42	Disk Method	3 - Ch 6, pg 316	PPT/BB
43	Washer Method	3 - Ch 6, pg 319	PPT/BB
44	Tutorial Class	3 - Ch 6	PPT/BB
45	Rotation about x-axis	3 - Ch 6, pg 320	PPT/BB
46	Rotation about y-axis	3 - Ch 6, pg 321	PPT/BB
47	Shell Method	3 - Ch 6, pg 327	PPT/BB
48	Tutorial Class	3 - Ch 6	PPT/BB
Content b	eyond syllabus covered (if any):	1	1

COURSE DELIVERY PLAN – THEORY

Page 5 of 6

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I

Unit V : Multiple Integrals

Unit Syllabus:

Double integrals in Cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves - Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of solids.

Objective:

On completion of the unit, the students should be made to be acquainted with mathematical tools needed in evaluating multiple integrals and their usage.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Evaluation of Double integrals in Cartesian co-ordinates	R1- Ch 6, pg 470-475, 2- Ch 7, pg 295-296	PPT/BB
50	Evaluation of Double integrals in Polar co-ordinates	R1- Ch 6, pg 476-479, 2- Ch 7, pg 301-303	PPT/BB
51	Change of order of integration	R1- Ch 6, pg 479-482, 2- Ch 7, pg 297-300	PPT/BB
52	Tutorial class	R1 & 2	PPT/BB
53	Area enclosed by plane curves	2- Ch 7, pg 303-305	PPT/BB
54	Change of variables in double integrals	R1- Ch 6, pg 485-491	PPT/BB
55	Tutorial class	R1 & 2	PPT/BB
56	Area of a curved surface	2- Ch 7, pg 316-318	PPT/BB
57	Triple integration	R1- Ch 6, pg 499-500, 2- Ch 7, pg 305-307	PPT/BB
58	Volume as Triple integrals	R1- Ch 6, pg 499-500, 2- Ch 7, pg 305-307	PPT/BB
59	Volume of solids	R1- Ch 6, pg 501-502, 2- Ch 7, pg 307-310	PPT/BB
60	Tutorial class	R1 & 2	PPT/BB
	CAT-III		

Content beyond syllabus covered (if any): Applications of Multiple integrals: In Electromagnetism, Maxwell's equation can be written using Multiple integrals; In Mechanics, the Moment of inertia is calculated as the volume integral.

FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN – THEORY

Page 6 of 6

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I

TEXT BOOKS:

- 1. Erwin Kreyszing, Herbert Kreyszing, Edward Norminton, "Advanced Engineering Mathematics", 10th Edition, John Wiley, (2015)
- 2. Grewal .B.S, Grewal .J.S "Higher Engineering Mathematics",43rd Edition, Khanna Publications, Delhi, (2015).
- 3. Joel Hass, Christopher Heil, Maurice D. Weir, "Thomas' Calculus", 14th Edition, Pearson Education, (2018).

REFRENCE BOOKS:

- 1. Bali N.P and Manish Goyal, "A Text book of Engineering Mathematics", Nineth Edition, Laxmi Publications Pvt. Ltd.,(2014).
- Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, (2016).
- 3. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).

Web Link:

- 1. https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf
- 2. https://www.sydney.edu.au/content/dam/students/documents/mathematics-learning- entre/integrationdefinite-integral.pdf

Prepared by	Approved by
p. Au Alul	Approved by
Dr. D. Meiyappan, Dr. A. Suba	Dr. R. Muthucumaraswamy
Assistant Professor	Professor and Head
02/11/2022	02/11/2022
	Dr. D. Meiyappan, Dr. A. Suba Assistant Professor

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD