SRI VENKATESWARA COLLEGE OF ENGINEERING
COURSE DELIVERY PLAN - THEORY
Page 1 of 6

	Department of Applied Mathematics	LP: MA22151
Rev. No: 00		
B.E / B.Tech	: Common to all branches except Marine Engineering	Date: 02/11/2022
Regulation	$:$ 2022	
Sub. Code / Sub. Name	$:$ MA22151 / Applied Mathematics I	
Unit I	$:$ Matrices	

Unit Syllabus:

Eigen Values and Eigen Vectors of a real matrix - Characteristic Equation - Properties of Eigen values and Eigen Vectors - Statement and Applications of Cayley-Hamilton Theorem - Diagonalization of matrices- Reduction of a quadratic form to canonical form by orthogonal transformation-Nature of quadratic forms.

Objective:
On completion of the unit, the students should be made to compute eigen values and eigen vectors and use them in diagonalization and classification of real quadratic forms.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Eigen values and Eigen vectors of a real matrix, characteristic equation	R1-Ch 3,pg 227-228	PPT/BB
2	Problems on Eigen values and Eigen vectors	R1-Ch 3, pg 228-229	PPT /BB
3	Properties of Eigen values and Eigen vectors	2- Ch 2, pg 62-63	PPT /BB
4	Tutorial Class	2 \& R1	PPT /BB
5	Statement and Applications of Cayley - Hamilton Theorem	R1- Ch 3, pg 231-232	PPT /BB
6	Orthogonal Transformation, Diagonalization	3- Ch 14, pg 14.8	PPT /BB
7	Orthogonal Transformation of a symmetric matrix to Diagonal form -Distinct Eigen values	3- Ch 14, pg 14.8-14.9	PPT /BB
8	Orthogonal Transformation of a symmetric matrix to Diagonal form -Repeated Eigen values	3- Ch 14, pg 14.8-14.9	PPT /BB
9	Tutorial class	3- Ch 14, pg 14.8-14.9	PPT /BB
10	Nature of Quadratic forms	2- Ch 2, pg 70-72	PPT /BB
11	Reduction of quadratic form to canonical form by orthogonal transformation	2- Ch 2, pg 70-72	PPT /BB
12	Tutorial class	$1 \& 2$	PPT /BB

Content beyond syllabus covered (if any): Applications of Matrices in Physics and Computer Graphics. Their use in Page Rank Algorithm that ranks the pages in a Google page search.

[^0]Sub. Code / Sub. Name : MA22151 / Applied Mathematics I
Unit II : Applications of Differential calculus

Unit Syllabus:

Curvature and Radius of Curvature - Centre of Curvature - Circle of Curvature - Evolutes - Envelopes

- Evolute as envelope of normals.

Objective:

On completion of the unit, the students should be made to study differential calculus and its applications to relevant Engineering Problems.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Introduction to Curvature and Radius of curvature	$\begin{aligned} & \text { 2-Ch 4, pg 179-180, } \\ & \text { 3- Ch 2, pg 2.44-2.45 } \end{aligned}$	PPT/BB
14	Curvature and Radius of curvature of simple curves in Cartesian co-ordinates	$\begin{aligned} & \text { 2- Ch 4, pg 180-184, } \\ & \text { 3- Ch 2, pg 2.44-2.47 } \\ & \hline \end{aligned}$	PPT/BB
15	Tutorial Class	1,2\&3	PPT/BB
16	Centre of curvature	$\begin{array}{\|l\|} \hline \text { 2- Ch 4, pg 185, } \\ \text { 3- Ch 2, pg 2.57-2.58 } \\ \hline \end{array}$	PPT/BB
17	Circle of curvature	3-Ch 2, pg 2.58-2.60	PPT/BB
18	Evolutes - Introduction	$\begin{array}{\|l\|} \hline \text { 2- Ch } 4, \text { pg } 186, \\ 3-\mathrm{Ch} 2, \operatorname{pg} 2.61 \\ \hline \end{array}$	PPT/BB
19	Evolute of standard curves	3- Ch 2, pg.62-2.64	PPT/BB
20	Tutorial class	1,2 \& 3	PPT/BB
	CAT-I		
21	Envelope of a family of curves (single parameter)	$\begin{array}{\|l\|} \hline \text { 2- Ch 4, pg 187-188, } \\ \text { 3- Ch 2, pg 2.65-2.66 } \\ \hline \end{array}$	PPT/BB
22	Envelope of a family of curves (two parameter)	3-Ch 2, pg 2.672.68	PPT/BB
23	Evolute as envelope of normals	3- Ch 2, pg 2.73-2.74	PPT/BB
24	Tutorial class	2 \& 6	PPT/BB

Content beyond syllabus covered (if any): Use of calculus in everyday life.

* Session duration: 50 minutes

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I
Unit III : Differential Calculus for Several Variables

Unit Syllabus:

Limits and Continuity - Partial derivatives - Total derivatives - Differentiation of implicit functions Jacobians and properties- Taylor's series for functions of two variables - Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers.

OBJECTIVE:

On completion of the unit, the students should be made to compute derivatives using the chain rule or total differentials.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Limits and Continuity	$\begin{array}{\|l} \hline \text { R1-Ch 5, pg 398, } \\ \text { 2- Ch 5, pg 211-212 } \end{array}$	PPT/BB
26	Partial derivatives	$\begin{aligned} & \text { R1-Ch 5, pg 399-409, } \\ & 2 \text { - Ch 5, pg 213-217 } \end{aligned}$	PPT/BB
27	Total derivatives	$\begin{array}{\|l} \hline \text { R1- Ch 5, pg 419-426, } \\ 2-\text { Ch 5, pg 223-225 } \\ \hline \end{array}$	PPT/BB
28	Tutorial class	$1,2 \& \mathrm{R} 1$	PPT/BB
29	Differentiation of implicit functions	2- Ch 5, pg 223-225	PPT/BB
30	Jacobians	$\begin{array}{\|l} \hline \text { R1- Ch 5, pg 428, } \\ \text { 2- Ch 5, pg } 229 \\ \hline \end{array}$	PPT/BB
31	Properties of Jacobians	$\begin{aligned} & \text { R1- Ch 5, pg 429-431, } \\ & \text { 2- Ch 5, pg 230-233 } \end{aligned}$	PPT/BB
32	Taylor's series for functions of two variables	$\begin{aligned} & \text { R1- Ch 5, pg 432-436, } \\ & \text { 2- Ch 5, pg 235-237 } \end{aligned}$	PPT/BB
33	Tutorial class	1,2 \& R1	PPT/BB
34	Maxima and minima function of two variables	$\begin{aligned} & \text { R1- Ch 5, pg 437-445, } \\ & \text { 2- Ch 5, pg 242-244 } \\ & \hline \end{aligned}$	PPT/BB
35	Lagrange's method of undetermined multipliers	$\begin{array}{\|l\|} \hline \text { R1- Ch 5, pg 446-449, } \\ \text { 2- Ch 5, pg 245-249 } \\ \hline \end{array}$	PPT/BB
36	Tutorial class	1,2 \& R1	PPT/BB
	CAT - II		

Content beyond syllabus covered (if any):

* Session duration: 50 minutes

Sub. Code / Sub. Name : MA22151 / Applied Mathematics I

Unit IV : Applications of Definite Integrals

Unit Syllabus:

Integration by Parts - Bernoulli's formula for integration - Definite integrals and its Properties - Solids of Revolution - Disk Method - Washer Method - Rotation about both x and y axis - Shell Method.

OBJECTIVE:
On completion of the unit, the students should be made to understand the rotation of twodimensional geometry using definite integrals.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Integration by Parts, Bernoulli's Formula	3-Ch 8, pg 452	PPT/BB
38	Definite Integrals	3 - Ch 5, pg 265-268	PPT/BB
39	Properties of Definite Integrals	3 - Ch 5, pg 265-268	PPT/BB
40	Tutorial Class	3-Ch 5	PPT/BB
41	Solids of Revolution	3-Ch 6, pg 316	PPT/BB
42	Disk Method	3-Ch 6, pg 316	PPT/BB
43	Washer Method	$3-\mathrm{Ch} 6, \mathrm{pg} 319$	PPT/BB
44	Tutorial Class	3-Ch 6	PPT/BB
45	Rotation about X -axis	$3-\mathrm{Ch} 6, \mathrm{pg} 320$	PPT/BB
46	Rotation about y-axis	$3-\mathrm{Ch} 6, \mathrm{pg} 321$	PPT/BB
47	Shell Method	$3-\mathrm{Ch} 6, \mathrm{pg} 327$	PPT/BB
48	Tutorial Class	3-Ch 6	PPT/BB
Content beyond syllabus covered (if any):			

[^1]
Sub. Code / Sub. Name : MA22151 / Applied Mathematics I
 Unit V : Multiple Integrals

Unit Syllabus:

Double integrals in Cartesian and polar coordinates - Change of order of integration - Area enclosed by plane curves - Change of variables in double integrals - Area of a curved surface - Triple integrals Volume of solids.

Objective:

On completion of the unit, the students should be made to be acquainted with mathematical tools needed in evaluating multiple integrals and their usage.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Evaluation of Double integrals in Cartesian co-ordinates	$\begin{aligned} & \text { R1- Ch 6, pg 470-475, } \\ & \text { 2- Ch 7, pg 295-296 } \end{aligned}$	PPT/BB
50	Evaluation of Double integrals in Polar co-ordinates	$\begin{aligned} & \text { R1- Ch 6, pg 476-479, } \\ & \text { 2- Ch 7, pg 301-303 } \end{aligned}$	PPT/BB
51	Change of order of integration	$\begin{aligned} & \text { R1- Ch 6, pg 479-482, } \\ & \text { 2- Ch 7, pg 297-300 } \end{aligned}$	PPT/BB
52	Tutorial class	R1 \& 2	PPT/BB
53	Area enclosed by plane curves	2-Ch 7, pg 303-305	PPT/BB
54	Change of variables in double integrals	R1- Ch 6, pg 485-491	PPT/BB
55	Tutorial class	R1 \& 2	PPT/BB
56	Area of a curved surface	2- Ch 7, pg 316-318	PPT/BB
57	Triple integration	$\begin{aligned} & \text { R1- Ch 6, pg 499-500, } \\ & \text { 2- Ch 7, pg 305-307 } \end{aligned}$	PPT/BB
58	Volume as Triple integrals	$\begin{aligned} & \text { R1- Ch 6, pg 499-500, } \\ & \text { 2- Ch 7, pg 305-307 } \end{aligned}$	PPT/BB
59	Volume of solids	$\begin{aligned} & \text { R1- Ch 6, pg 501-502, } \\ & \text { 2- Ch 7, pg 307-310 } \\ & \hline \end{aligned}$	PPT/BB
60	Tutorial class	R1 \& 2	PPT/BB
	CAT-III		

Content beyond syllabus covered (if any): Applications of Multiple integrals: In Electromagnetism, Maxwell's equation can be written using Multiple integrals; In Mechanics, the Moment of inertia is calculated as the volume integral.

* Session duration: 50 minutes

TEXT BOOKS:

1. Erwin Kreyszing, Herbert Kreyszing, Edward Norminton, "Advanced Engineering Mathematics", $10^{\text {t1 }}$ Edition, John Wiley, (2015)
2. Grewal .B.S, Grewal .J.S "Higher Engineering Mathematics",43rd Edition, Khanna Publications, Delhi, (2015).
3. Joel Hass, Christopher Heil, Maurice D. Weir, "Thomas’ Calculus", $14^{\text {th }}$ Edition, Pearson Education, (2018).

REFRENCE BOOKS:

1. Bali N.P and Manish Goyal, "A Text book of Engineering Mathematics", Nineth Edition, Laxmi Publications Pvt. Ltd.,(2014).
2. Glyn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education,(2016).
3. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).

Web Link:

1. htps://home.iitk.ac.in/-peeyush/102A/Lecture-notes.pdf
2. https://www.sydney.edu.au/content/dam/students/documents/mathematics-learning- entre/integration-definite-integral.pdf

	Prepared by	
Signature	D. Ter. D. Meiyappan, Dr. A. Suba	Dr. R. Muthucumaraswamy
Name	Dre	
Designation	Assistant Professor	Professor and Head
Date	$02 / 11 / 2022$	$02 / 11 / 2022$
Remarks *:		
Remarks *:		
* If the same lesson plan is followed in the subsequent semester/year it should be		
mentioned and signed by the Faculty and the HOD		

[^0]: * Session duration: 50 minutes

[^1]: * Session duration: 50 minutes

