SRI VENKATESWARA COLLEGE OF ENGINEERING An Autonomous Institution, Affiliated to Anna University, Chennai

REGULATION 2018 B.E. ELECTRONICS AND COMMUNICATION ENGINEERING Choice Based Credit System Curriculum and Syllabi (I – VIII Semester)

SRI VENKATESWARA COLLEGE OF ENGINEERING (An Autonomous Institution, Affiliated to Anna University, Chennai) SRIPERUMBUDUR TK - 602 117 REGULATION – 2018 B.E. ELECTRONICS AND COMMUNICATION ENGINEERING Choice Based Credit System (CBCS) CURRICULUM & SYLLABI (I - VIII Semesters)

SEMESTER I

Sl. No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed / Movable
	THEORY	-								
1	HS18151	Communicative English (Common to all Branches)	HS	3	3	0	0	3	-	F
2	MA18151	Engineering Mathematics I (Common to all Branches Except MR)	BS	4	3	1	0	4	-	F
3	PH18151	Engineering Physics (Common to all Branches)	BS	3	3	0	0	3	-	F
4	CY18151	Engineering Chemistry (Common to all Branches Except MR)	BS	3	3	0	0	3	-	F
5	EE18152	Basic Electrical Engineering	ES	3	3	0	0	3	-	F
6	GE18151	Engineering Drawing (Common to all Branches)	ES	5	3	0	2	4	-	F
	PRACTICAL		1	1					1	
7	PC18161	Physics and Chemistry Laboratory (Common to all Branches)	BS	2	0	0	2	1	-	F
8	GE18161	Engineering Practices Laboratory (Common to all Branches)	ES	3	0	0	3	1.5		F
		TOTAL		26	18	1	7	22.5		

SEMESTER II

Sl. No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequi sites	Fixed / Movable
	THEORY		·							
1	HS18251	Technical English (Common to all Branches)	HS	3	3	0	0	3	-	F
2	MA18251	Engineering Mathematics II (Common to all Branches Except MR)	BS	4	3	1	0	4	-	F
3	IT18101	Programming for Problem Solving (Common to all Branches)	ES	3	3	0	0	3	-	F
4	GE18251	Environmental Science and Engineering (Common to all Branches)	BS	3	3	0	0	3	-	F
5	EC18201	Electron Devices	PC	3	3	0	0	3	-	F
6	PH18252	Physics of Materials (Common to BT, EE and EC)	BS	3	3	0	0	3	-	F
	PRACTICA		1	1				1	1	
7	IT18111	Programming for Problem Solving Laboratory (Common to all Branches Except MR)	ES	3	0	0	3	1.5	-	F
8	EC18211	Electron Devices and Electrical Machines Laboratory	ES	4	0	0	4	2	-	F
		TOTAL		26	18	1	7	22.5		

SEMESTER III

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	C	Prerequisites	Fixed / Movable
THE	ORY									
1.	MA18351	Engineering Mathematics III (Common to BT, CH, CE, EE, EC and ME)	BS	4	3	1	0	4	-	F
2.	EC18301	Object Oriented Programming and Data Structures	ES	4	3	1	0	4	-	F
3.	EC18302	Electromagnetic Fields and Waves	PC	4	3	1	0	4	-	F
4.	EC18303	Circuit Theory	PC	3	3	0	0	3	-	F
5.	EC18304	Digital System Design	PC	3	3	0	0	3	-	F
6.	EC18305	Electronic Circuits	PC	3	3	0	0	3	-	F
PRA	CTICAL									
7.	EC18311	Analog and Digital Circuits Laboratory	PC	3	0	0	3	1.5	-	F
8.	EC18312	Object Oriented Programming and Data Structures Laboratory	ES	3	0	0	3	1.5	-	F
			27	18	3	6	24	-	-	

SEMESTER IV

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed / Movable
THE	ORY									
1.	MA18454	Probability and Random Processes	BS	4	3	1	0	4	-	F
2.	EC18401	Analog Communication Systems	PC	3	3	0	0	3	-	F
3.	EC18402	Signals and Systems	PC	3	3	0	0	3	-	F
4.	EC18403	Analog Integrated Circuits and its Applications	PC	3	3	0	0	3	-	F
5.	EC18404	Linear Control Systems	PC	3	3	0	0	3	-	F
6.	EC18405	Microprocessor and Microcontroller Based System Design	РС	3	3	0	0	3	-	F
PRA	CTICAL									
7.	EC18411	Analog Integrated Circuits and Simulation Laboratory	РС	3	0	0	3	1.5		F
8.	EC18412	Microprocessor and Microcontroller Based System Design Laboratory	PC	3	0	0	3	1.5		F
			25	18	1	6	22	-	-	

SEMESTER V

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed / Movable
THE	ORY									
1.	EC18501	Digital Communication	PC	4	3	1	0	4	EC18401	F
2.	EC18502	Principles of Digital Signal Processing	PC	4	3	1	0	4	EC18402	F
3.	EC18503	Computer Organization and Design	РС	4	3	1	0	4	EC18304, EC18405	F
4.	EC18504	Transmission Lines and Waveguides	PC	4	3	1	0	4	EC18302	F
5.	GE18551	Principles of Management (Common to EC, AE, BT, EE and ME)	HS	3	3	0	0	3	-	М
6.	*****	Professional Elective I	PE	3	3	0	0	3	-	М
PRA	CTICAL				-	-	-	-		
7.	EC18511	Communication Systems Laboratory	РС	4	0	0	4	2	-	F
8.	EC18512	Digital Signal Processing Laboratory	PC	4	0	0	4	2	-	F
9.	HS18561	Interview and Career Skills Laboratory (Common to all Branches except BT and EE)	EEC	3	0	0	3	2	-	F
		TOTAL		33	18	4	11	28	-	-

			SEN	MESTER VI						
Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed / Movable
THE	ORY									
1.	EC18601	VLSI Design (Common to EC and EE)	PC	3	3	0	0	3	EC18304	F
2.	EC18602	Antenna Theory and Design	PC	4	3	1	0	4	EC18302, EC18504	F
3.	EC18603	Communication Networks	PC	3	3	0	0	3	EC18501	F
4.	EC18604	Wireless Communication	PC	4	3	1	0	4	EC18501	F
5.	*****	Professional Elective II	PE	3	3	0	0	3	-	М
6.	*****	Open Elective I	OE	3	3	0	0	3	-	М
PRA	CTICAL									
7.	EC18611	Communication Networks Laboratory	PC	4	0	0	4	2	-	F
8.	EC18612	VLSI Design Laboratory	PC	4	0	0	4	2	-	F
		TOTAL		28	18	2	8	24	-	-

SEMESTER VII

		1		LOIER VII						
SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed / Movable
TH	HEORY									
1.	EC18701	RF and Microwave Engineering	PC	4	3	1	0	4	EC18504	F
2.	EC18702	Optical Communication and Networks	PC	4	3	1	0	4	PH18252	F
3.	EC18703	Embedded and Real Time Systems	PC	4	3	1	0	4	EC18405	F
4.	******	Professional Elective III	PE	3	3	0	0	3	-	М
5.	******	Open Elective II	OE	3	3	0	0	3	-	М
PRA	CTICAL					-			-	-
6.	EC18711	Mini Project	EEC	6	0	0	6	3	-	F
7.	EC18712	Optical and Microwave Laboratory	PC	4	0	0	4	2	-	F
8.	EC18713	Embedded Systems Laboratory	PC	4	0	0	4	2	-	F
	TOTAL 32 15 3 14 25									

			SEN	AESTER VIII						
Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	Prerequisites	Fixed/ Movable
THE	THEORY									
1.	******	Professional Elective IV	PE	3	3	0	0	3	-	М
2.	*****	Professional Elective V	PE	3	3	0	0	3	-	М
PRA	CTICAL					-				
3.	EC18811	Project Work	EEC	24	0	0	24	12	-	F
		TOTAL		30	6	0	24	18	_	-

Total Credits: 186

INTERNSHIP / TRAINING[#]

No. of Weeks	Credit
2	1

[#]Students should complete Internship/Training before 6th semester and must earn at least 1 credit.

PROFESSIONAL ELECTIVES (PE) (OFFERED IN ODD SEMESTER)

Sl. No.	COURSE CODE	COURSE TITLE				
1.	EC18001	CAD for VLSI Circuits				
2.	CS18051	Fundamentals of Operating Systems				
3.	EC18003	High Speed Electronics				
4.	EC18005	Industrial Internet of Things				
5.	EC18007	Measurements and Instrumentation				
6.	EC18009	Medical Electronics				
7.	EC18011	CISC and RISC Architectures				
8.	EC18013	Robotics and Automation				
9.	EC18015	Satellite Communication				
10.	EC18017	Speech Processing				
11.	EC18019	Deep Learning and its applications				
12.	EC18021	Wireless Technologies				
13.	13.EC18099Professional Readiness for Innovation, Employability and Entrepreneurship					

PROFESSIONAL ELECTIVES (PE) (OFFERED IN EVEN SEMESTER)

Sl. No.	COURSE CODE	COURSE TITLE
1.	EC18002	Adhoc and Sensor Networks
2.	EC18004	Cognitive Radio Communication

3.	EC19006	Comments and Communication Network Committy
5.	EC18006	Cryptography and Communication Network Security
4.	EC18008	Digital Image Processing
5.	EC18010	Digital Switching and Transmission
6.	EC18012	Electromagnetic Interference and Compatibility
7.	EC18014	Information Theory
8.	GE18051	Intellectual Property Rights (Common to all Branches Except BT)
9.	EC18016	Machine Learning
10.	EE18024	Nanoelectronics (Common to EE and EC)
11.	EC18018	Next Generation Networks – 5G
12.	EC18020	Parallel Architecture
13.	GE18054	Professional Ethics (Common to CE, CS, IT, EE, EC and MR)
14.	EC18024	Soft Computing
15.	EC18026	Statistical Theory of Signal Processing
16.	EC18028	Testing of VLSI Circuits
17.	GE18052	Total Quality Management (Common to ME, AE, CS, EC and MR)
18.	EC18030	Wireless LANs and PANs

PROFESSIONAL ELECTIVES (Can be chosen whenever offered)

Sl. No.	COURSE CODE	COURSE TITLE
1.	SE18001	Mathematics for AI & ML (Common to All Branches Except MR)
2.	SE18002	Corporate Finance (Common to All Branches Except MR)
3.	SE18003	Financial Statement Analysis (Common to All Branches Except MR)
4.	SE18004	Managerial Economics (Common to All Branches Except MR)
5.	SE18005	Market Research (Common to All Branches Except MR)
6.	SE18006	Production Management (Common to All Branches Except MR)
7.	SE18007	Project Management (Common to All Branches Except MR)
8.	SE18008	Introduction to Securities Market (Common to All Branches Except MR)
9.	SE18009	Supply Chain Management (Common to All Branches Except MR)

MANDATORY COURSE (Course to be completed between 3rd and 6th semester)

Sl. No.	COURSE CODE	COURSE TITLE
1.	MC18001	Indian Constitution and Society (Common to all Branches Except MR)

~	COURSE	OPEN ELECTIVES OFFERED IN ODD SEMESTER*	OFFERING
Sl. No.	CODE	COURSE TITLE	DEPARTMENT
1.	OE18101	Fundamentals of Automobile Engineering	AUT
2.	OE18103	Fundamentals of Automotive Air Conditioning	AUT
3.	OE18201	Introduction to Biofuels and Bioenergy	BIO
4.	OE18203	Basics of Environmental Biotechnology	BIO
5.	OE18205	Introduction to Bioinformatics and Computational Biology	BIO
6.	OE18207	Basics of Nanobiotechnology	BIO
7.	OE18209	Introduction to Biomaterials	BIO
8.	OE18301	Waste to Energy	CHE
9.	OE18303	Industrial Safety	CHE
10.	OE18305	Composite Materials	CHE
11.	OE18307	Industrial Waste Water Treatment	CHE
12.	OE18309	Fuel Cell Technology	CHE
13.	OE18401	Basic Civil Engineering	CVE
14.	OE18403	Fundamentals of Remote Sensing and GIS	CVE
15.	OE18405	Electronic Waste Management	CVE
16.	OE18407	Basics and Principles of Green Building Design	CVE
17.	OE18409	Principles of Vastu in Interior Design	CVE
18.	OE18501	Basic Operating Systems	CSE
19.	OE18503	Basics on Cyber Security and Ethical Hacking	CSE
20.	OE18505	Introduction to Internet of Things	CSE
21.	OE18507	Multimedia and Animation Techniques	CSE
22.	OE18509	Python Programming	CSE
23.	OE18601	Electrical Machines and Applications	EEE
24.	OE18603	Control System Engineering	EEE
25.	OE18605	Micro and Smart Grid	EEE
26.	OE18607	Electric Vehicle Technology	EEE
27.	OE18609	Nanotechnology	EEE
28.	OE18701	Autotronics	ECE
29.	OE18703	Sensing Techniques	ECE
30.	OE18705	System Design using Microcontrollers	ECE
31.	OE18707	Fundamentals of Wireless Communication	ECE
32.	OE18801	IT Essentials for Engineers	INT
33.	OE18803	Internet of Everything	INT
34.	OE18805	Foundation on Mobile App Development	INT
35.	OE18901	Elements of Marine Engineering	MAR
36.	OE18903	Marine Propulsion	MAR
37.	OE18001	Basics of Mechanical Engineering	MEC
38.	OE18003	Elements of Mechanical Components	MEC
39.	OE18005	Industrial Engineering and Management	MEC

OPEN ELECTIVES OFFERED IN ODD SEMESTER*

40.	OE18007	Basics of Energy Resources	MEC
41.	OH18001	Content Writing	HSS
42.	OH18003	Critical Thinking	HSS
43.	OH18005	Urban / Rural Development and Constitutional Provisions	HSS
44.	OC18001	Nanochemistry	ACH
45.	OC18003	Polymer Chemistry	ACH
46.	OM18001	Statistical Methods for Engineers	APM
47.	OM18003	Linear Programming	APM

OPEN ELECTIVES OFFERED IN EVEN SEMESTER*

Sl. No.	COURSE CODE	COURSE TITLE	OFFERING DEPARTMENT
1.	OE18102	Automotive Fault Diagnostics	AUT
2.	OE18104	Fundamentals of Automotive Pollution and Control Methods	AUT
3.	OE18106	Fundamentals of Automotive Safety and Maintenance	AUT
4.	OE18202	Introduction to Food Manufacturing	BIO
5.	OE18204	Testing of Biological Materials	BIO
6.	OE18206	Introduction to Tissue Engineering	BIO
7.	OE18208	Introduction to Cancer Biology	BIO
8.	OE18210	Basic Bio-pharmaceutical Technology	BIO
9.	OE18302	Industrial Pollution Prevention	CHE
10.	OE18304	Solid Waste Management	CHE
11.	OE18306	Plant Utilities	CHE
12.	OE18308	Green Energy	CHE
13.	OE18310	Energy Management	CHE
14.	OE18402	Integrated Solid Waste Management	CVE
15.	OE18404	Life Cycle Assessment	CVE
16.	OE18406	Air Pollution and Control Engineering	CVE
17.	OE18408	Water Pollution and its Management	CVE
18.	OE18502	Artificial Intelligence Basics	CSE
19.	OE18504	Database Systems and Applications	CSE
20.	OE18506	Internet Programming	CSE
21.	OE18508	Introduction to Cloud and Big Data Analytics	CSE
22.	OE18510	Introduction to Data Structures	CSE
23.	OE18602	Industrial Automation	EEE
24.	OE18604	MEMS and Nano Devices	EEE
25.	OE18606	Renewable Energy Systems	EEE
26.	OE18608	Indian Power Grid	EEE
27.	OE18610	Power Converters	EEE
28.	OE18702	Consumer Electronics	ECE
29.	OE18704	Introduction to Communication Systems	ECE
30.	OE18706	Robotics Systems	ECE

		1	
31.	OE18802	Embedded and Real Time Systems	INT
32.	OE18804	Ethical Hacking and IT Security	INT
33.	OE18806	User Interface Design	INT
34.	OE18808	AI for Android	INT
35.	OE18902	Introduction to Marine Diesel Engines and Machineries	MAR
36.	OE18904	Marine Vehicles	MAR
37.	OE18002	Elements of Automation	MEC
38.	OE18004	Quality concepts and tools	MEC
39.	OE18006	Refrigeration and Air conditioning Systems	MEC
40.	OE18008	Thermal Management of Electronics Devices	MEC
41.	OP18002	Sensors and Transducers	APH
42.	OP18004	Essential Properties for Selection of Materials	APH
43.	OP18006	Opto Electronics and Applications	APH
44.	OP18008	Basics of Environmental Safety	APH
45.	OH18002	Environmental Law, Policy and International Conventions	HSS
46.	OH18004	Climate Change and Vulnerability Assessment	HSS
47.	OH18006	Gender Sensitization and Social Impact	HSS
48.	OC18002	Fuel Cell Chemistry	ACH
49.	OC18004	Industrial Catalysis	ACH
50.	OM18002	Linear Algebra for Engineers	APM
51.	OM18004	Transform Techniques for Boundary Value Problems	APM
* C +	anta aon ahaa	an open Electives offered only by other departments	

*Students can choose Open Electives offered only by other departments

VALUE-ADDED COURSES ** (Courses should be completed between 3rd and 6th semester)

Sl. No.	COURSE CODE	COURSE TITLE	No. of Hours	Credit
1.	VD18701	PCB Design using EDA tool	30	2
2.	VD18702	Signal Processing using Simulation tool	30	2
3.	VD18703	Hardware Modeling and Analysis using EDA tool	30	2
4.	VD18704	RF Circuit Design – Theory and Simulation using EM Simulation tools	30	2
5.	VD18705	Embedded Programming using PIC Microcontrollers	30	2
6.	VD18706	System Design for IoT applications	30	2
7.	VC18001	Communicative German (Common to all Branches)	30	2
8.	VC18002	Communicative Japanese (Common to all Branches)	30	2
9.	VC18003	Communicative Hindi (Common to all Branches)	30	2
10.	VC18004	Design Thinking and Prototyping Laboratory (Common to all Branches)	30	2
11.	VC18005	Basics of Entrepreneurship Development (Common to all Branches)	30	2
12.	VC18006	Advance in Entrepreneurship Development (Common to all Branches)	30	2

**Students must earn at least 2 credits.

Summary:

			Credit	as pei	· Sem	ester			Total	D (
Subject Area	Ι	II	III	IV	V	VI	VII	VIII	Credit	Percentage
Humanities and Social Sciences (HS), including Management	3	3			3				9	4.84%
Basic Sciences (BS) including Mathematics, Physics, Chemistry, Biology	11	10	4	4					29	15.59%
Professional Subjects - Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required)		3	14.5	18	20	18	16		89.5	48.11%
Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechani cal/Computer Engineering, Instrumentation	8.5	6.5	5.5						20.5	11.02%
Professional Subjects - Elective (PE) , relevant to the chosen specialization/ branch					3	3	3	6	15	8.06%
Open Subjects - Elective (OE), from other technical and/or emerging subject areas						3	3		6	3.22%
Employability Enhancement Courses (EEC) Project Work, Seminar and/or Internship in Industrial or Elsewhere Total Credits	22.5	22.5	24	22	2 28	24	3	12 18	17	9.14%

HS18151	SEMESTER I				
ПЭ19191	COMMUNICATIVE ENGLISH	L	Т	Р	С
	(Common to all Branches)				
		3	0	0	3
OBJECTIV					
	e learners to interact fluently on everyday social contexts.				
	e learners to engage in conversations in an academic/scholarly setting.				
	e learners to overcome public speaking barriers.				
	op learners' ability to take notes and in the process, improve their listeni	0			
	op learners' reading skill through reading text passages for comp	rehe	ensic	on a	Ind
contempla			_		
	e learners to write on topics of general interest and drafting corresponden	ces	for g	gene	ral
purposes.					
UNIT I			• ,	•	9
-	nort video clips - conversational scenes form movies, celebrities' speecl				
	everal ways of introducing oneself at several situations, introducing ot				
	viting people for several occasions, describing people and their places. H				
	on passages - making inferences, critical analysis. Writing - completing				
	eveloping hints from the given information. Grammar - Wh-Questions				
	arts of speech. Vocabulary development - prefixes - suffixes - article	s - (coun	itabl	e /
uncountable 1	iouns.				
					0
UNIT II	ustomer care voice files short perrotives identifying problems a	nd	dovo	lon	9
Listening - c	ustomer care voice files, short narratives - identifying problems a				ing
Listening - c telephone eti	quettes. Speaking - speaking over skype/whatsapp, making business	cal	ls, r	naki	ing
Listening - c telephone eti self-recorded	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co	cal once	ls, r pt/ac	naki ctivi	ing ing ty.
Listening - c telephone eti self-recorded Reading - rea	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co ading the headlines on news magazines - slogans and taglines from a	cal once dve	ls, r pt/ac rtise	naki ctivi mer	ing ing ty.
Listening - c telephone eti self-recorded Reading - rea Writing - free	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiration	cal once dve ons.	ls, r pt/ao rtise Grar	naki etivi mer nma	ing ing ty. nts. ar -
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions,	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning	cal once dve ons.	ls, r pt/ao rtise Grar	naki etivi mer nma	ing ing ty. nts. ar -
Listening - c telephone eti self-recorded Reading - rea Writing - free	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning	cal once dve ons.	ls, r pt/ao rtise Grar	naki etivi mer nma	ing ing ity. nts. ar -
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning	cal once dve ons.	ls, r pt/ao rtise Grar	naki etivi mer nma	ing ing ity. its. ar - s in
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ons. ngs	ls, r pt/ac rtise Grar of w	naki etivi mer nma ords	ing ing ity. nts. ar - s in 9
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ons. ngs , nc	ls, r pt/ac rtise Gran of w	naki etivi mer nma ords	ing ing ity. nts. ar - s in 9 ng.
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on,	ls, n pt/ac rtise Gran of w otes expi	naki mer mma ords takin	ing ing ity. nts. ar - s in 9 ng. ing
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ons. ngs ngs , no on, 1 in	ls, n pt/ac rtise Gran of w otes expr instr	naki etivi mer nma ords takin ressi ructi	ing ing ity. its. ar - s in 9 ng. ing
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, 1 in	ls, r pt/ac rtise Gran of w tes tes insti-	naki ctivi mer mma ords takin ressi ructi	ing ing ity. its. ar - s in 9 ng. ing ion
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, , nc on, d in lerst	ls, r pt/ac rtise Gran of w tes tes tes insti- tand: tand:	naki mer mma ords takin ressi ructi ing j	ing ity. its. inr - s in 9 ion ion the led
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te sentences. Gu	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, , nc on, d in lerst	ls, r pt/ac rtise Gran of w tes tes tes insti- tand: tand:	naki mer mma ords takin ressi ructi ing j	ing ing ity. its. ar - ing ng. ing ion the led
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te sentences. Gu	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, , nc on, d in lerst	ls, r pt/ac rtise Gran of w tes tes tes insti- tand: tand:	naki mer mma ords takin ressi ructi ing j	ing ing ity. nts. ar - s in 9 ng. ing ion the led
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te sentences. Gu	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, , nc on, d in lerst	ls, r pt/ac rtise Gran of w tes tes tes insti- tand: tand:	naki mer mma ords takin ressi ructi ing j	ing ing ity. its. ar - s in 9 ng. ing ion the led ns.
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te sentences. Gu Vocabulary d	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meanin- ent contexts.	cal once dve ns. ngs , nc on, d in lerst rect	ls, r. pt/ac rtise Gran of w tes instr tand: tand: que	naki mer mma ords takin ressi ructi ing stio	ing ing ity. ar - s in 9 ng. ion the led ns. 9
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of to sentences. Gr Vocabulary d UNIT IV Listening - Sp	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, 1 in lerst ng tl rect	ls, r pt/ac rtise Gran of w tes tes tes instr and instr and instr cand icand cial c	naki ctivi mer nma ords takin ressi ructi ing j stio	ing ing ity. ats. ar - s in 9 ng. ing ion the led ns. 9 es,
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of ta sentences. Gr Vocabulary d UNIT IV Listening - Sp for promotin	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meanin- ent contexts.	cal once dve ns. (ngs on, n lin lerst ng th rect r soo	ls, r pt/ac rtise Gran of w tes tes instr and instr and instr and cial c cict, r	naki ctivi mer nma ords takin ressi ing takin stio	ing ing ity. its. ar - s in 9 ng. ion the led ns. 9 es, vie,
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of te sentences. Gr Vocabulary d UNIT IV Listening - Sp for promotin movement or	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, 1 in lerst ng tl rect r soo	ls, r. pt/ac rtise Gran of w tes instri- tand: que	naki mer mma ords takin ressi ructi ing j stio	ing ing ity. its. ir 9 ng. ing ing ing ing ing ing ing ing ing ing
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of to sentences. Gr Vocabulary d UNIT IV Listening - Sp for promotin movement or Simple Past,	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meaning ent contexts.	cal once dve ns. ngs , nc on, 1 in lerst ng tl rect r soo	ls, r. pt/ac rtise Gran of w tes instri- tand: que	naki mer mma ords takin ressi ructi ing j stio	ing ing ity. its. ir 9 ng. ing ing ing ing ing ing ing ing ing ing
Listening - c telephone eti self-recorded Reading - rea Writing - free conjunctions, various differ UNIT III Listening - c Speaking - la opinions, read manuals of he structure of to sentences. Gr Vocabulary d UNIT IV Listening - Sp for promotin movement or Simple Past,	quettes. Speaking - speaking over skype/whatsapp, making business informative videos, inquiring about a concept/activity, describing a co- ading the headlines on news magazines - slogans and taglines from a e writing - writing - headlines, slogans and taglines individual inspiratio idioms, phrases, quotes. Vocabulary development - guessing the meanin- ent contexts.	cal once dve ns. ngs , nc on, 1 in lerst ng tl rect r soo	ls, r. pt/ac rtise Gran of w tes instri- tand: que	naki mer mma ords takin ressi ructi ing j stio	ing ing ity. its. ir 9 ng. ing ing ing ing ing ing ing ing ing ing

Listening - video lectures, video demonstration of a concept; Speaking - presenting papers/concepts, delivering short speeches, discourses on health, suggesting natural home remedies, cleanliness, civic sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course, learners will be able to

- Read articles and infer meanings from specific contexts from magazines and newspapers.
- Participate effectively in informal/casual conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English.
- Write short write-ups and personal letters and emails in English.

REFERENCES:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Black swan, Chennai. 2017
- 2. Downes, Colm, Cambridge English for Job-hunting, Cambridge University Press, New Delhi. 2008
- 3. Murphy, Raymond, Intermediate English Grammar with Answers, Cambridge University Press 2000
- 4. Thomson, A.J. Practical English Grammar 1& 2 Oxford 1986.

WEBSITES

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

SOFTWARE

- 1. Face 2 Face Advance Cambridge University Press, 2014
- 2. English Advance Vocabulary- Cambridge University Press
- 3. IELTS test preparation Cambridge University Press 2017
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition
- 5. CAMBRIDGE Preparation for the TOEFL TEST- Cambridge University Press, 2017

MA18151	ENGINEERING MATHEMATICS I	LT	P	C
	(Common to all Branches Except MR)	3 1	0	4
OBJECTIVI				
	derstand and apply matrix techniques for engineering applications.			
	ke the student knowledgeable in statistical methods of analyzing and in	terpret	the d	ata
	gineering problems.		а т 1	
	niliarize the student with basic calculus including functions of several v led in many branches of engineering.	ariabi	28. 11	115
	quaint the student with mathematical tools needed in evaluating multipl	e inteo	rales	and
their u	U U U	e integ	,iuis c	
UNIT I	MATRICES		9	9+3
	and Eigen vectors of a real matrix - Characteristic equation - Properties of			
	ctors - Statement and Applications of Cayley-Hamilton Theorem - Diag			
	luction of a quadratic form into canonical form by orthogonal transform	nation	- Nat	ure
of quadratic f	orms.			
UNIT II	STATISTICAL METHODS		•	9+3
		le com		
0	m - Karl Pearson coefficient of correlation for raw data - Spermann ran ines of regression - Regression equation X on Y and Y on X- Curve fitting			
	es - Fitting a straight line $y = ax + b$ and a parabola $y = ax^2 + bx + b$		mei	pic
of least squar				
UNIT III	APPLICATION OF DIFFERENTIAL CALCULUS		9	9+3
Curvature in 0	Cartesian co-ordinates - Centre and radius of curvature - Circle of curva	ture - I	Evolu	tes
- Envelopes.				
UNIT IV	DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES			9+3
	ontinuity - Partial derivatives - Total derivatives - Differentiation of imp			
	properties - Taylor's series for functions of two variables - Maxima ar wo variables - Lagrange's method of undetermined multipliers	nd Min	ima c	DÍ
	wo variables - Lagrange's method of undetermined multipliers			
UNIT V	MULTIPLE INTEGRALS		9	9+3
	als in Cartesian and polar coordinates - Change of order of integration -	Area		
0	es - Change of variables in double integrals - Triple integrals - Volume			
	TOTAL: (L: 45+ T: 15):			DS
OUTCOME	S: At the end of the course, learners will be able to			
	op the use of matrix algebra techniques which is needed for practical ap			
	the skill to solve statistical problems under correlation and regression a	and acc	luire	the
	edge for fitting the straight line and parabola.			
	re the skills to evaluate the functions of several variables.	1 /	1	
• Expre function	ss proficiency in handling the concept of improper integrals of gamma,	beta a	nd er	ror
	int the student with mathematical tools needed in evaluating multiple	a intag	rola a	nd
• Acqua their u		e mieg		uiu
TEXT BOO				
		(1000)	
	Treyszig, Advanced Engineering Mathematics, 8 th Edition, John Wiley, R and Manish Gaval, "A Tayt haak of Engineering Mathematics".			or
2. Bali N.	P and Manish Goyal, "A Text book of Engineering Mathematics", I	lignth	CU1[1	on,

	Laxmi Publications Pvt Ltd., (2011).
3	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi,
	(2011).
RE	FERENCES:
1.	S C Gupta and V K Kapoor, Fundamentals of Mathematical Statistics, S.Chand Private Ltd.,11 th
	Edition (2005).
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3 rd Edition, Pearson Education,
	(2012).
3.	Peter V.O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company
	New Delhi, (2008).
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I,
	Second Edition, Pearson Publishing (2011).

•

PH18151	ENGINEERING PHYSICS	L	Т	P	C
	(Common to all Branches)	3	0	0	3
OBJECTIVI	ES:				
• To enhan	ce the fundamental knowledge in Physics and its applications relev	ant	to	vario	ous
streams of En	gineering and Technology				
UNIT I	CRYSTAL PHYSICS				12
Unit cell - Br	avais Lattices - Miller indices - Distance between Inter planar distance '	'd' (deri	vati	on
- discussion	of various crystal structures: calculation of Atomic radius, Coordin	atio	n n	umt	er
effective num	ber of lattice points and Atomic Packing Factor for the SC, BCC, FCC, I	HCF	, Di	amo	onc
Cubic (deriv	ation) - discussion about the NaCl, Graphite structures. Crystal	def	ects	: Z	erc
	one dimensional, Two dimensional and Three dimensional defects.	Dif	frac	tion	0
X-rays by cry	stal planes - Bragg's spectrometer - Powder Diffraction method.				
UNIT II	THERMAL PHYSICS				(
Modes of he	at transfer: Newton's law of cooling - thermal conductivity - Lee'	s di	sc 1	netł	100
	nd expt) - Radial heat flow - Rubber tube method - conduction through	ıgh	con	npot	inc
media (series	and parallel).	1			
UNIT III	WAVE MECHANICS				9
Quantum prir	nciples: Black body radiation - Planck Hypothesis (qualitative), Compto	on's	effe	ct	
function and i (derivation)	e duality - De-Broglie matter waves - Heisenberg's uncertainty prin its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one dim	e in	depe	ende	nt
function and i (derivation)	its significance - Schrödinger's wave equation (time dependent and Tim	e in	depe	ende	nt
function and i (derivation)	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrodinger's wave equation - Particle in one dir	e in	depe	ende	nt 007
function and i (derivation) - (derivation) - UNIT IV	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrodinger's wave equation - Particle in one din - Degenerate and non-degenerate energy states.	e inen	depe sion	ende al t	nt) DOX
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl	 its significance - Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS 	e inomen	depension	ende al t	nt 002
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of	 its significance - Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation sound - Reverberation of sound - Reverberation sound - Schrödinger's sound energy by materials - Absorption coefficient - Sabine's Formula 	e ind men	depension), Pi	ende al t	nt) 002
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect	 its significance - Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. 	e ind men hbre on ti	depe sion), Pi ime riva	al t tch,	nt) -
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics :	 its significance - Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production 	e ind men nbre on ti (de	depe sion), Pi ime riva	ande al t tch, - tion	nt) - () -
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dir Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra 	e ind men nbre on ti (de	depe sion), Pi ime riva	ande al t tch, - tion	nt) - () -
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri	 its significance - Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production 	e ind men hbre on ti (de	depe sion), Pi ime riva	ande al t tch, - tion	nt) - () -
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production action method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram 	e ind men hbre on ti (de	depe sion), Pi ime riva	ande al t tch, - tion	nt) y y y y y y y y y y y y y
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dir Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS 	hbre on ti	depe sion), Pi ime riva Ultra c A	ende al t tch, - tion ason cous	nt) 907 9 9) -
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population 	e ind men hbre on ti (de soni	depersion	ende al t tch, - tion ason cous) - ics
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formulating the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production action method, Piezo electric method - detection of ultrasonics - Ultratications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L 	e ind men hbre on ti (de soni	depersion	ende al t tch, - tion ason cous) - ics
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dif Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production tiction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. 	e ind men hbre on ti (de of l soni	depe sion), Pi ime riva Ultra c A Ultra c A	ende al t itch, - tion ason cous on -) - ics
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics :	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dir Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ing the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance and 	e ind men nbre on ti (de of l soni	depe sion), Pi ime riva C A Ultra c A Vltra c A	ende al t tch, - tion ason cous on -) - ic: stic
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics: aperture-Type	 its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one dir - Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formulating the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultralications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance are es of optical fibers-Optical fiber communication system (block diagram 	e ind men nbre on ti (de of l soni	depe sion), Pi ime riva C A Ultra c A Vltra c A	ende al t tch, - tion ason cous on -) - icestic
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics :	 Application of Schrödinger's wave equation (time dependent and Tim Application of Schrödinger's wave equation - Particle in one dir Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ing the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance and es of optical fibers-Optical fiber communication system (block diagram ations. 	e ind men hbre on ti (de of l soni	(depersion), Pitine riva c A versi r) -	ende al t itch, - tion ason cous on - meri) - icestic
function and i (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics: aperture-Type	 its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one dir - Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formulating the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultralications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance are es of optical fibers-Optical fiber communication system (block diagram 	e ind men hbre on ti (de of l soni	(depersion), Pitine riva c A versi r) -	ende al t itch, - tion ason cous on - meri	nt) oox
function and i (derivation) - (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics : aperture-Type and its applic	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one dia Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation generate and non-degenerates. Introduction to ultrasonics - Absorption coefficient - Sabine's Formulating the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production is detection of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO2 Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance and es of optical fibers-Optical fiber communication system (block diagram ations.	e ind men hbre on ti (de of l soni	(depersion), Pitine riva c A versi r) -	ende al t itch, - tion ason cous on - meri) - icestic
function and i (derivation) - (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics : aperture-Type and its applic	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one din - Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO ₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance an es of optical fibers-Optical fiber communication system (block diagram ations. S: Students will be able to	e ind men hbre on ti (de of l soni	(depersion), Pitine riva c A versi r) -	ende al t itch, - tion ason cous on - meri) - ic: stic
function and i (derivation) - (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics : aperture-Type and its applic	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrodinger's wave equation - Particle in one dia - Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation of sound - Reverberation of sound energy by materials - Absorption coefficient - Sabine's Formulating the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production tection method, Piezo electric method - detection of ultrasonics - Ultralications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO ₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance and es of optical fibers-Optical fiber communication system (block diagram ations. S: Students will be able to ret the thermal properties of the materials	e ind men hbre on ti (de of U soni u inv Lasen agle- b) - A	depersion sion), Pi ime riva c A Ultra c A rersi r) -	ende al t itch, - tion ason cous on - meri anta RIO	nt)) - ics stic ges DS
function and i (derivation) - (derivation) - (derivation) - UNIT IV Acoustics: Cl Intensity of S absorption of Factors affect Ultrasonics : - Magnetostri grating - App UNIT V Lasers: Basic Types of Lase Applications Fibre optics : aperture-Type and its applic OUTCOME • Interp • Exhib	its significance - Schrödinger's wave equation (time dependent and Tim - Application of Schrödinger's wave equation - Particle in one din - Degenerate and non-degenerate energy states. ACOUSTICS AND ULTRASONICS assification of Sound - Characteristics of Musical Sound - Quality (Tin ound - Units of Sound - decibel - Reverberation of sound - Reverberation sound energy by materials - Absorption coefficient - Sabine's Formula ting the acoustics of buildings - Remedies. Introduction to ultrasonics - Properties of ultrasonic waves - Production iction method, Piezo electric method - detection of ultrasonics - Ultra lications of ultrasonic waves - SONAR, NDT, Sonogram OPTOELECTRONICS AND FIBER OPTICS c properties of Lasers - Einstein's coefficients (Derivation) - Population ers - Molecular Gas Lasers (CO ₂ Laser) - Solid state Laser (Nd: YAG L of Lasers in Engineering and Medicine. Introduction - Principle and structure of optical fibers - Acceptance an es of optical fibers-Optical fiber communication system (block diagram ations. S: Students will be able to	e ind men hbre on ti (de of U soni u inv Lasen agle- b) - A	depersion sion), Pi ime riva c A Ultra c A rersi r) -	ende al t itch, - tion ason cous on - meri anta RIO	nt poz j j ic: stic ge: DS

- Learn to solve the issues related to defects in the buildings due to acoustic design
- Develop an understanding about photonics and Fiber Optic communication system
- Classify and demonstrate the fundamentals of crystals and their defects.

TEXT BOOKS:

- 1. Gaur R.K. and Gupta S.L, "Engineering Physics", Dhanput Publications, 2015.
- 2. Shatendra Sharma and Jyotsna Sharma, "Engineering Physics", Pearson, 2006.
- 3. Rajendran V, "Engineering Physics", Tata McGraw Hill, 2009.
- 4. Arumugam M, "Materials Science", Anuradha Publications, 2015.

- David Halliday, Robert Resnick Jearl Walker, "Principles of Physics", 10th Edition, Wiley, 2015.
- 2. Peter Atkins and Julio De Paula, "Physical Chemistry", 10th Edition., Oxford University Press, 2014.
- 3. Arthur Beiser, Shobhit Mahajan and Rai Choudhury S, "Concepts of Modern Physics", 7th Edition, McGraw Hill Education, 2017.
- 4. Raghavan V, "Materials Science and Engineering", PHI Learning Pvt. Ltd., 2010.

CY18151	ENGINEERING CHEMISTRY	LT	P	C
0110101	(Common to all Branches Except MR)	$\frac{2}{3}$ 0	0	3
OBJECTIVE		<u> </u>		-
	the students conversant with boiler feed water requirements, related pro-	oblems	and	the
	tment techniques.			
	p an understanding the principle, types and mechanism of corrosion	and pr	otect	ive
coatings.		min pi		
0	nt the students with the basics of nanomaterials, their properties and ap	plicant	s.	
-	op an understanding of the laws of photochemistry and basic spectra	-		IR)
analysis.	p un understandung of the laws of photoenermouty and subte speedu	1 (0)	una	
•	the students to understand the types of fuels, its calorific values and t	he sign	ifica	nce
flue gas a	• •			
0				
UNIT I	WATER TECHNOLOGY			9
Sources, hard	& soft water, estimation of hardness by EDTA method, boiler fee	d wate	r, bo	iler
problems, cau	se and preventive measures, softening of water, zeolite process & demi	neraliz	ation	by
ion exchange	ers, internal treatment methods, specifications for drinking water,	BIS &	2 W]	ЮH
standards, trea	atment of water for domestic use, desalination - reverse osmosis & elec	ctrodial	ysis.	
UNIT II	CORROSION AND ITS CONTROL			9
Corrosion: Ba	asic concepts - mechanism of chemical, electrochemical corrosion - Pi	lling B	edwc	orth
	of Electrochemical corrosion - galvanic corrosion - differential aerat			
	ion - stress corrosion - factors influencing corrosion. Corrosion con			
	acrificial anodic method - corrosion inhibitors. Protective coatings: surf			
	coatings - electro plating (copper plating) and electroless plating (National Content of the second se	ickel p	lating	g) -
chemical con-	version coatings - anodizing, phosphating & chromate coating.			
UNIT III	NANOCHEMISTRY	<u> </u>		<u>9</u>
	ction between molecules, nanoparticles and bulk materials; size-dependence and bulk materials; size-depend	-	-	
	a nano cluster, nano rod, nanotube (CNT) and nanowire. Synthesis			
	hydrothermal, solvothermal, electrodeposition, chemical vapour de perties and applications of nanomaterials.	positio	n, la	ser
abiation, Prop	serves and applications of nationaterials.	<u> </u>		
UNIT IV	PHOTOCHEMISTRY AND SPECTROSCOPY	-		9
	ry: Laws of photochemistry - Grotthuss - Draper law, Stark-Einstein la	 word]	aml	-
	uantum efficiency - Photo processes - Internal Conversion, Inter-sy			
-	Phosphorescence and Photo-sensitization. Spectroscopy: Electromagn			-
	f radiation - Electronic, Vibrational and rotational transitions. UV-	-		
-	- principles, instrumentation (Block diagram only) and applications.	VISIOIC	unu	ш
specialoscopy	principies; instrumentation (Drock diagram only) and appreadons.			
UNIT V	FUELS AND COMBUSTION	†		9
	ction - classification of fuels - calorific value - higher and lower calorific	ic value	es - c	-
	al (proximate and ultimate) - carbonization - manufacture of metallurg			
•	ethod) - petroleum- refining - manufacture of synthetic petrol (Berg			
	ine number - diesel oil - cetane number - natural gas - compressed natur			
-	oleum gases (LPG) - producer gas - water gas. Combustion of fuels:	-		
	culation of calorific value - calculation of stoichiometry of fuel and air			
	RSAT Method.			
	TOTAL:	45 PE	RIO	DS
		4		

OUTCOMES:

On the successful completion of the course, students will be able to

- Estimate the hardness of water, asses the boiler feed water requirement and related problems also identification of suitable water treatment methods.
- Differentiate the mechanisms of different types of corrosion and suggest suitable corrosion control techniques to mitigate the problem of corrosion including protective coatings.
- Compare the nano and bulk materials, their synthesis and its applications in various fields.
- Interpret the photochemical reactions and spectroscopic techniques.
- Asses the types and quality of fuels, its calorific values and significance of flue gas analysis.

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010.
- 2. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 3. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.

- 1. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.
- 2. B.R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry" Vishal Publishing Company, 2008.

EE18152	BASIC ELECTRICAL ENGINEERING	L	Τ	P	C
		3	0	0	3
OBJECTIV					
	roduce basics of electrical circuits				
	part knowledge on solving circuits using theorems				
	idy the working principles of electrical machines and power converters				
• 10 III	roduce the components of low voltage electrical installations				
UNIT I	BASIC CIRCUITS ANALYSIS				9
Ohm's Law -	- Kirchoff's laws - DC and AC Circuits - Resistors in series and pa	ralle	l cir	cuit	s –
	and node voltage method of analysis for D.C and A.C. circuits - Pha	asor	Dia	gran	1 —
Power, Power	r Factor and Energy.	-			
					0
UNIT II	NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS				9
Network redu	action: Voltage and current division, Source transformation – Star de	elta c	conv	ersi	on.
Thevenin and	l Norton & Theorem – Superposition Theorem – Maximum power tr	ansf	er tł	neor	em
-Reciprocity	Theorem.	1			
UNIT III	DC MACHINES AND TRANSFORMER ideal and practical transformer, equivalent circuit, losses in transform				9
	ey. Auto-transformer. Construction, working, torque-speed character parately excited dc motor – Applications.	istic	and	spe	ea
UNIT IV	AC MACHINES				9
Overview of of a three-ph	AC MACHINES three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss c ngle-phase induction motor, Working of synchronous generators.				ng
Overview of of a three-pha efficiency, Si	three phase circuits, Generation of rotating magnetic fields, Construction as induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators.				ng ind
Overview of of a three-ph	three phase circuits, Generation of rotating magnetic fields, Construction as induction motor, Significance of torque-slip characteristic, Loss c				ng
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Typ hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters.	es of es. I rat	Wi Elen io c	res a nenta	ng ind 9 ind ary ol.
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Typ hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty	es of es. I rat	Wi Elen io c	res a nenta	ng ind 9 ind ary ol.
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Typ hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters. TOTAL	es of es. I rat	Wi Elen io c	res a nenta	ng ind 9 ind ary rol.
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations Introduction to OUTCOME At the end of • Apply • Apply and A	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Typ hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters. TOTAL S: the course, the students will be able to various circuit analysis technique to solve problems in DC and AC Circuits.	omp es of es. I 7 rat : 45	Wi Elen io c PEF	res and the second seco	9 and 9 and col. DS
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations Introduction to OUTCOME At the end of • Apply • Apply and A • Illustr Trans • Illustr	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss or ngle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Type hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters. TOTAL S: the course, the students will be able to various network reduction technique and network theorem to solve problems in DC and AC Circuits. rate the construction, working prinicple, characteristics and a former and Seperately excited DC Motor. Tate the construction, working prinicple, characteristics and application	omp es of es. 1 7 rat : 45 ircuit probl	Wir Elen io c PEF	in l	ng ind 9 ind ary rol. DS OC of
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations Introduction to OUTCOME At the end of • Apply and A • Illustr Transs • Illustr motor	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss congle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Type hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters. TOTAL S: the course, the students will be able to various network reduction technique to solve problems in DC and AC Circuits. ate the construction, working prinicple, characteristics and a former and Seperately excited DC Motor. ate the construction, working prinicple, characteristics and application and Synchronous Generator.	omp es of es. 1 7 rat : 45 ircuit probl	Witzelen io c PEH ems catic	in l	ng ind 9 ind ary rol. DS OC of
Overview of of a three-pha efficiency, Si UNIT V Components Cables, Eart calculations Introduction to OUTCOME At the end of • Apply and A • Illustr Transs • Illustr motor	three phase circuits, Generation of rotating magnetic fields, Construction ase induction motor, Significance of torque-slip characteristic, Loss or ngle-phase induction motor, Working of synchronous generators. ELECTRICAL INSTALLATIONS AND POWER CONVERTERS of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Type hing. Types of Batteries, Important Characteristics for Batteries for energy consumption. DC-DC buck and boost converters, duty to voltage source inverters. TOTAL S: the course, the students will be able to various network reduction technique and network theorem to solve problems in DC and AC Circuits. rate the construction, working prinicple, characteristics and a former and Seperately excited DC Motor. Tate the construction, working prinicple, characteristics and application	omp es of es. 1 7 rat : 45 ircuit probl	Witzelen io c PEH ems catic	in l	ng ind 9 ind ary rol. DS OC of

- 1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 3rd edition 2010.
- 2. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2009.
- 3. E. Hughes, "Electrical and Electronics Technology", 10th Edition, Pearson, 2010.

- 1. Vincent Deltoro, "Electrical Engineering Fundamentals", Second Edition, Prentice Hall India, 1989.
- 2. S.K.Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson India, 2011.
- 3. William Hayt and Jack E. Kemmerly, "Engineering circuit analysis", Mc Graw Hill Company, 6th edition, 2016.
- 4. Newnes Electrical Power Engineers handbook, II edition, Elsevier publications, 2005.

GE18151	ENGINEERING DRAWING (Common to all Branches)	L	T	Р	С
		3	0	2	4
	ill introduce students to Engineering Drawing and build their ability to the position and form of simple geometry, culminating into understand				
UNIT 0	ENGINEERING DRAWING FUNDAMENTALS (Not for Examination)				5
constructions	ndard: BIS, Lettering, Dimensioning, Type of lines, Conventions Dividing a straight line into equal parts, Bisecting a given angle, C angle, Square, Pentagon and Hexagon using drawing tools.				
UNIT I	CURVES AND PROJECTION OF POINTS AND LINES				15
Eccentricity r Projection: 1	of Engineering Curves: Conic Sections - Ellipse, Parabola, Hy nethod, Cycloid, Involute of Circle and Pentagon. Principal Planes, Projection of Points using Four Angles of Projection, 1 s - Lines parallel or inclined to one or both planes using Rotating Line N ection.	Proj	ectio	on o	f
UNIT II	PROJECTION OF PLANES AND SOLIDS				15
0	Plane Figures - Inclined to any one Principal Plane, Projection of Solid s, Pyramids, Cone and Cylinder) axis inclined to any one Principal Plan		Simp	ole	
UNIT III	SECTION OR SOLIDS & DEVELOPMENT OF SURFACES				15
Principal Plan	lids - Sectional views of simple vertical solids cut by section plane incline. of Surfaces - Development of lateral surfaces of truncated and frustum			-	one
UNIT IV	PICTORIAL PROJECTION				15
Introduction t Scales, Isome Free Hand D	o Pictorial Projection, Isometric Projection - Principle, Isometric Plane tric Projection of simple solids and their combination. rawing - Orthographic Projection - Orthographic views of simple blo w, Isometric view of simple blocks from their Orthographic views.				15 eir
UNIT V	PERSPECTIVE PROJECTION				10
	rojection of full solids in simple positions with respect to projection pla	ines	by	visu	
ray and vanis	hing point method.	75	DET		
OUTCOME	TOTAL:	15	PEF		D2
	on of the course, the student will be able to				
	ruct conic sections and curves and sketch the orthographic views on standards.			-	pei
	n orthographic projections of plane surfaces and simple solids in variou	5 11)S1t1(JUS.	
ObtainDrawDraw	n orthographic projections of plane surfaces and simple solids in variou projections of sectioned solids and develop the lateral surfaces of simple isometric projections of simple solids and their combinations. Also per ing of orthographic views of given objects.	le so	olids		nc

TEXT BOOKS:

1. Bhatt N.D, Panchal Pramod V.M and Ingle R, "Engineering Drawing", Charotar Publishing House, 2014.

- 1. Venugopal K and Prabhu Raja V, "Engineering Graphics", New Age International (P) Limited, 2009.
- 2. Shah M.B and Rana B.C, "Engineering Drawing", Pearson Education, 2009.
- 3. Gopalakrishna K.R, "Engineering Drawing" (Vol. I & II), Subhas Publications, 2010.
- 4. Natrajan K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 5. Gowri S and Jeyapoovan T, "Engineering Graphics", Vikas Publishing House Pvt. Ltd., 2011.

PC18	8161	PHYSICS AND CHEMISTRY LABORATORY	L	Τ	P	С
		(Common to all Branches)	0	0	2	1
		Physics Laboratory				
		¥		<u>. </u>		
Obje	ective		•			
•	To r	nake the student to acquire practical skills in the determination of va	iriou	ls pl	nysi	cal
	prop	erties of materials.			•	
LIST	r of e	XPERIMENTS:				
1	Deterr	nination of compressibility of the liquid - Ultrasonic interferometer.				
2	Deterr	nination of thickness of the given object by Air wedge method.				
3	Deterr	nination of dispersive power of a prism by Spectrometer.				
4	Deterr	nination of Young's modulus of wooden scale by Non-Uniform bending	•			
5	Deterr	nination of wavelength, particle size and numerical aperture of fibre usin	ig La	asers	5.	
6	Lee's	Disc – Thermal conductivity of the poor conductor.				
7	Torsio	nal Pendulum – Determination of Rigidity modulus and moment of inert	ia.			
OUT	COM	ES:				
The s	student	will be able to				
•	Anal	lyze the physical principle involved in the various instruments, also related	e the	pri	ncip	le
	to ne	ew application.				
•		prehend the Experiments in the areas of optics, mechanics and thermal pure the concepts in all branches of Engineering.	hysi	ics t	0	
•	App	ly the basic concepts of Physical Science to think innovatively and also i tive skills that are essential for engineering.	mpr	ove	the	

LIST OF EQUIPMENTS FOR THE BATCH OF 30 STUDENTS:

Spectrometer, Mercury Vapour lamp, Lee's disc exptl setup, Travelling microscope, ultrasonic interferometer, Sodium vapour lamp, diode laser, optical fiber kit.

		Chemistry Laboratory	
Obje	ective		
•	То 1	make the student to acquire practical skills in the determination of wa	ater quality
	para	ameters through volumetric and instrumental analysis.	
•	То а	acquaint the students with the determination of molecular weight of a p	polymer by
	visco	cometery.	
LIST		EXPERIMENTS:	
1		rmination of total, temporary & permanent hardness of water by EDTA meth	od.
2	Estim	nation of copper by EDTA.	
3	Condu	luctometric titration of a strong acid with a strong base	
4	Estim	nation of iron content of the given solution using potentiometer.	
5	Estim	nation of iron content of the water sample using spectrophotometer.	
6		rmination of molecular weight of polymer using viscometer.	
7	Deterr	rmination of Alkalinity in water.	
OUT	ГСОМ	1ES	
•	The	e students will be equipped with hands - on knowledge in the quantitative che	emical
	anal	lysis of water quality related parameters.	
		TOTAL: 30	PERIODS
REF	'EREN	NCES	
		an V, "Engineering Physics", Tata McGraw Hill, 2009.	
		3.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogels Textbook of Pra	actical
		hemistry", 8 th Edition, LBS Singapore, 2014	
		EQUIPMENT FOR A BATCH OF 30 STUDENTS:	
		nductivity meter – 10 Nos	
		ectrophotometer – 10 Nos	
		twald Viscometer – 10 Nos	
		entiometer - 10 Nos	
-		ectronic Balance - 2 Nos	
		Apparatus: Pipette, Burette, conical flask, iodine flask, porcelain tile, dropper	r (each 30
Nos.)		

GE18	8161	ENGINEERING PRACTICES LABORATORY	L	Τ	P	С
		(Common to all Branches)	0	0	3	1.5
OBJI	ECTIVE	CS:				
		posure to the students with hands on experience on various basic eng	ginee	ering	g pra	ctices
		nanical, Electrical and Electronics Engineering		Ċ	1	
		PERIMENTS				
GRO	UP A (CIVIL & MECHANICAL)				
Ι		ENGINEERING PRACTICE				
1.	Buildi	ngs:				
	Study of	of plumbing and carpentry components of residential and industrial b	uildi	ings	. Saf	ety
	aspects			-		-
2.	Plumb	ing Works:				
	(a) Stu	dy of pipeline joints, its location and functions: valves, taps, coupling	gs, u	nio	ns,	
	red	ucers, elbows in household fittings.				
		dy of pipe connections requirements for pumps and turbines.				
		paration of plumbing line sketches for water supply and sewage work				
		nds-on-exercise: Basic pipe connections – Mixed pipe material conne	ectio	n –	Pipe	
		nections with different joining components.				
2		nonstration of plumbing requirements of high-rise buildings.				
3.		ntry using Power Tools only:				
		dy of the joints in roofs, doors, windows and furniture.				
	(b) Hai	nds-on-exercise:Wood work, joints by sawing, planing and cutting.				
Π	MECH	IANICAL ENGINEERING PRACTICE				
1	Weldi	J.G.				
1		paration of arc welding of butt joints, lap joints and tee joints.				
		s welding practice				
2		Machining:				
2		ple Turning and Taper turning				
		lling Practice				
3	× /	Metal Work:				
_		ming & Bending:				
		del making – Trays, funnels, etc.				
		ferent type of joints.				
4		ne assembly practice:				
	(a) Stu	dy of centrifugal pump				
	(b) Stu	dy of air conditioner				
5	Demor	nstration on:				
	. ,	thy operations, upsetting, swaging, setting down and bending. Exam	ple -	-Ex	ercis	e –
		tion of hexagonal headed bolt.				
		undry operations like mould preparation for gear and step cone pulley				
	(c) Fitt	ing – Exercises – Preparation of square fitting and vee – fitting mode	ls			

GROUP B (ELECTRICAL & ELECTRONICS) III ELECTRICAL ENGINEERING PRACTICE 1.Residential house wiring using switches, fuse, indicator, lamp and energy meter. 2. Fluorescent lamp wiring. 3. Stair case wiring 4. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. 5. Measurement and comparison of energy for resistive and LED load using single phase energy meter. 6. Measurement of resistance to earth of an electrical equipment. IV ELECTRONICS ENGINEERING PRACTICE 1. Identification of circuit components

A) Resistor, capacitor, diode (PN & Zener), transistors.

B) Soldering practice – Circuits – Using general purpose PCB.

2.Evaluating the parameters for DC power supply and AC power supply (peak-peak, rms, average, period, frequency) using function generator and CRO.

3.Study and implementation of logic functions using NAND, NOR, and NOT gates.

4.VI Characteristics of PN Junction diode.

5.VI Characteristics of Solar photovoltaic panel.

6.Design a 5V/12V Regulated Power Supply: using FWR rectifier and IC7805/IC7812.

COURSE OUTCOMES

On Completion of the course the student will be able to

- Fabricate carpentry components and to lay pipe connections including plumbing works.
- Use welding equipments to join the structures.
- Wiring of basic electrical system and measurement of electrical parameters.
- Study and implementation of basic electronic components, circuits and solar photovoltaic panel.
- Design a basic regulated power supply.

EREICEB
Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices
Laboratory", Anuradha Publications, 2007.
Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual",
Vikas Publishing House Pvt.Ltd, 2006.
Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
Rajendra Prasad A. and Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, 2002.
Kannaiah P. & Narayana K.L., "Manual on Workshop Practice", Scitech Publications, 1999.
Mittle V.N, Arvind Mittal, "Basic Electrical Engineering", Tata McGraw Hill (India), Second
Edition,2013.
Sedha R.S., "A Text Book of Applied Electronics", S. Chand & Co., 2014.
TOTAL: 45 PERIODS

S. No.	Description of Equipment	Qty
	CIVIL	
1.	Assorted components for plumbing consisting of metallic	
	pipes, plastic pipes, flexible pipes, couplings, unions,	15 Sets.
	elbows, plugs and other fittings.	
2.	Carpentry vice (fitted to work bench)	15 Nos.
3.	Standard woodworking tools	15 Sets.
4.	Models of industrial trusses, door joints, furniture joints	5 each
5.	Power Tools:	
	(a) Rotary Hammer	
	(b) Demolition Hammer	
	(c) Circular Saw	2 Nos
	(d) Planer	
	(e) Hand Drilling Machine	
	(f) Jigsaw	
	MECHANICAL	
1.	Arc welding transformer with cables and holders	5 Nos.
2.	Welding booth with exhaust facility	5 Nos.
3.	Welding accessories like welding shield, chipping	5 Sets.
	hammer, wire brush, etc.	5 5005.
4.	Oxygen and acetylene gas cylinders, blow pipe and other	2 Nos.
	welding outfit.	2 1105.
5.	Centre lathe	2 Nos.
6.	Hearth furnace, anvil and smithy tools	2 Sets.
7.	Moulding table, foundry tools	2 Sets.
8.	Power Tool: Angle Grinder	2 Nos
9.	Study-purpose items: centrifugal pump, air-conditioner	1 each
	ELECTRICAL	
1.	Assorted electrical components for house wiring	15 Sets
2.	Electrical measuring instruments	10 Sets
2	Study purpose items: Iron box, fan and regulator,	1 1
3.	emergency lamp	1 each
4.	Megger (250V/500V)	1 No.
-	Power Tools: (a) Range Finder 2 Nos (b) Digital Live-wire	2 N
5.	detector	2 Nos.
6.	LED lamp 8 W & 16 W	2 Nos. each
	ELECTRONICS	
1.	Soldering guns	10 Nos.
2.	Assorted electronic components for making circuits	50 Nos.
3.	Small PCBs	10 Nos.
4.	Multimeters	10 Nos.
5.	Study purpose ICs: IC7805/IC7812	1 each
6.	Photovoltaic panel: 5 W/10 W	2 Nos.
7.	Light Source for PV panel	1 No.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SEMESTER II

HS18251	TECHNICAL ENGLISH	Ĺ	Т	Р	C
	(Common to all Branches)	_	0		
		3	0	0	3
OBJECTIVE					
	learners to define and understand technical communication and scientific			-	
-	e learners to nuances of seminar presentation, group discussion, and publi	c s	pea	king	3
• To expose	e learners to writing for scientific purposes				
• To expose	e learners to drafting correspondences for business purposes				
• To expose	e learners to writing for documenting purposes				
• To enable	students to have a holistic understanding of job interviews and recruiting	g pi	:006	ess.	
UNIT I					9
Speaking - sy related to sc interpretation,	V files pertaining to manufacturing processes of products, scientific do yllable division and word stress, intonation, sharing opinions; Reading - ience and technology; Writing - definitions, instruction, recomment, resume; Grammar - tenses and their aspects, sentence connectors iential words, active and passive voice, subject-verb agreement	nev Ida	vs a tior	artic 1, d	les ata
UNIT II					9
	\mathbf{V} vertaining to marketing strategies, peer reading and pronunciation; \mathbf{Sp}	. 1	•		-
communication descriptive de	g opinions; conducting and attending a meeting, understanding the nuanc on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application nodal verbs, clauses - types and uses, conditional clauses, articles.	es I d	of s	mer	ten ts,
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Teo	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	es l d n, c spe rna Poir	of socution of socution of socution of socution of social content	mer cklis ing bape Goog	ten nts, sts; 9 for ers;
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Teo	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	es l d n, c spe rna Poir	of socution of socution of socution of socution of social content	mer cklis ing bape Goog	ten nts, sts; 9 for ers;
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Teo forms, user m	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	es l d n, c spe rna Poir	of socution of socution of socution of socution of social content	mer cklis ing bape Goog	sts; 9 for gle
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Tea forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, execution	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	es l dd n, c sperna Poir affi ing gs, ng on	of socu check eak ls, 1 at, (xes gab Re - n ind	ing ing joape Goog	the 9 9 9 1 9 1 1 1 1 1 1 1 1
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Tee forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, executi comparative, f	AV related to how to use components, scientific description. Speaking - analytical ocuments; Writing - fliers, brochures, resume - letter of application nodal verbs, clauses - types and uses, conditional clauses, articles. AV related to how to use components, scientific description. Speaking - and initiation, speaking at a seminar presentation; Reading - scientific jour chnical descriptions - process description, purpose and function, PowerP anuals; Grammar - phrasal verbs, prepositions, technical and scientific and scientific debates, crisis management; Speaking - handling conflicts, speak its, progress or decline of business, identifying the connotative meaning evidences of uses and functions of a product, review of a product, Writi ters, reports - proposal, project, progress reports, sales reports, reports ive summary. Grammar - reported speech and tag questions, sentence	es l dd n, c sperna Poir affi ing gs, ng on	of socu check eak ls, 1 at, (xes gab Re - n ind	ing ing joape Goog	ents, sts; 9 for ers; gle 9 the 1g - os, tial e -
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Tea forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, execution comparative, i	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	ess l de n, c sperna Poir affi ing gs, ng on ess	of socu check eak ls, p nt, C xes gab Re stru	ing jape Goog 	e - 9
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Tea forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, execution comparative, for UNIT V Listening - A	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	ess l de n, c spe rna Poir affi ing gs, ng on ess c re	of socu occu check eak ls, p at, C xess g ab Re structure structure ccru	ing ing joape Goog a. out t adir nem lustr ctur	ent for g for ers; gle g g g g g g g g g g g g g
communication descriptive de Grammar - r UNIT III Listening - A motivation an Writing - Tea forms, user m UNIT IV Listening - Sc loss of benefit documented e follow-up lett visits, execution comparative, i UNIT V Listening - A purposes; Spe	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application nodal verbs, clauses - types and uses, conditional clauses, articles.	ses l du n, c sport rna coirr affi ing ss, ng on se s re wer	of socu check eak ls, p t, C xes gab Re stru- cru ind stru-	ing pape Goog adir nem lustr ctur	ent 9 9 1 1 1 1 1 1 1 1
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Tea forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, executi comparative, f UNIT V Listening - A purposes; Spa interviews; R letter of comp	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application modal verbs, clauses - types and uses, conditional clauses, articles.	ses l du n, c sporta rna coin affi ing gs, ng on e s · re wer ging	of socu check eak ls, j tht, C xess g ab g ab Re structure cru ing g, e	out transformer at the second	ten tts, sts; 9 for ers; gle 9 the 1g - os, rial e - 9 ent the ils,
communication descriptive de Grammar - m UNIT III Listening - A motivation an Writing - Teo forms, user m UNIT IV Listening - sc loss of benefit documented e follow-up lett visits, execution comparative, for UNIT V Listening - A purposes; Spo interviews; R letter of comp	on among internal audience and external audience; Reading - analytical ocuments; Writing - fliers, brochures, resume - letter of application nodal verbs, clauses - types and uses, conditional clauses, articles.	ses l da n, c sporta coirra ffi oirra ffi gs, ng on e s ver ging atto	of socu check eak ls, p t, C xess ab g ab Re stru- ind stru- ing g, e cru	ing pape Goog adir nem lustr ctur itmo at 1 -ma	ent 9 9 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1

understanding team work.

OUTCOMES:

At the end of the course, learners will be able to:

- Understand the nuances of technical communication and scientific writing
- Present papers and give seminars
- Discuss in groups and brainstorm
- Draft business correspondences and write for documenting purposes
- Face job interviews with confidence

REFERENCES:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Downes, Colm, Cambridge English for Job-hunting, Cambridge University Press, New Delhi. 2008
- 3. Murphy, Raymond, Intermediate English Grammar with Answers, Cambridge University Press 2000
- 4. Thomson, A.J. Practical English Grammar 1& 2 Oxford 1986.
- 5. Herbert A J, The Structure of Technical English Longman, 1965

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

Software

- 1. Face2Face Advance Cambridge University Press,2014
- 2. English Advance Vocabulary- Cambridge University Press
- 3. IELTS test preparation Cambridge University Press 2017
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition
- 5. CAMBRIDGE Preparation for the TOEFL TEST- Cambridge University Press, 2017

MA18251	ENGINEERING MATHEMATICS II (Common to all Branches Except MR)	Ι	Г	P	C
	(Common to an Dranches Except WIK)	3	1	0	4
OBJECTIVI	ES:		<u> </u>	U	
• To acqua engineerin	int the student with the concepts of vector calculus needed for p ng disciplines.				
	the student acquire sound knowledge of techniques in solving ordin that model engineering problems.	ary	dif	ferer	tial
• To develop enable the	op an understanding of the standard techniques of complex variable to student to apply them with confidence in application areas such as he fluid dynamics and flow of electric current.		•		
• To make t	to handle the problem that is being investigated.	om	ain i	in wł	nich
		_			
UNIT I	VECTOR CALCULUS ergence and curl - Directional derivative - Irrotational and solenoidal		4		<u>9+3</u>
Vector integr	ation - Green's theorem in a plane, Gauss divergence theorem and S oofs) - Simple applications involving cubes and rectangular parallelopi	tok	ces'		
UNIT II	ORDINARY DIFFERENTIAL EQUATIONS				9+3
Higher order	linear differential equations with constant coefficients - Method Cauchy's and Legendre's linear equations - Simultaneous first order li			atior	of
UNIT III	LAPLACE TRANSFORM				9+3
properties - 7 transforms - functions. Inv	form - Sufficient condition for existence - Transform of elementary fu Transforms of derivatives and integrals of functions - Derivatives a Transforms of unit step function and impulse functions - Transfor verse Laplace transforms -Statement of Convolution theorem - Initial colution of linear ODE of second order with constant coefficients n techniques.	nd rm ano	inte of d fin	grals perio al va	of odic alue
		_			
equations and analytic funct	ANALYTIC FUNCTION a complex variable - Analytic functions: Necessary conditions - Ca d sufficient conditions (excluding proofs) - Harmonic and orthogona tion - Harmonic conjugate - Construction of analytic functions - Confe rotation and inversion (w = z+c, cz, $1/z$, z^2) - Bilinear transformation.	ul p	orop	Riem erties	s of
					.
UNIT V	COMPLEX INTEGRATION		1.0		9+3
integral form	egration - Statement and applications of Cauchy's integral theorem ula - Taylor's and Laurent's series expansions - Singular points - Resid em - Evaluation of real definite integrals as contour integrals around	lue	s - C	Cauch	iy's
semi-circle (e	xcluding poles on the real axis).				
	TOTAL: (L:45 + T: 15):	6) PE	RIC	DS
OUTCOME					
• Interpret	n of the course the students will be able to the fundamentals of vector calculus and be fluent in the use of Stoke vergence theorem.	es 1	theo	rem	and

- Express proficiency in handling higher order differential equations.
- Determine the methods to solve differential equations using Laplace transforms and Inverse Laplace transforms.
- Explain Analytic functions and Categorize transformations.
- Solve complex integrals using Cauchy integral theorem and Cauchy's residue theorem.

TE	T BOOKS:
1	Erwin Kreyszig, Advanced engineering mathematics,8 th Edition, John Wiley, 1999.
2	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth edition,
	Laxmi Publications Pvt Ltd., (2011).
3	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi
	(2011).
RE	ERENCES:
1.	Dass, H.K., and Er.Rajnish Verma, "Higher Engineering Mathematics", S.Chand Private
	Ltd.,(2011).
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education
	(2012).
3.	Peter V.O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company
	New Delhi, (2008).

5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

PROGRAMMING FOR PROBLEM SOLVING	L	Τ	P	C
(Common to all Branches)	3	0	0	3
S:				
should be made to:				
the organization of a digital computer.				
	ms.			
INTRODUCTION TO PROBLEM SOLVING				9
	tion	to		
			low	n
		1		
C PROGRAMMING BASICS				9
'C' programming - structure of a 'C' program - compilation and link	ing	oroc	esse	es.
simple algorithm to program.		-		
iables - Data Types - Expressions using operators in 'C' - Managing Ir	put	and	Out	put
ecision Making and Branching - Looping statements - solving simple	scie	ntifi	c an	d
lems.	1			
				9
	- Str	ing	- Str	ing
rays of strings.				
				9
	by :	refe	renc	e -
umerators - Structures - Unions.				
				9
	netic	;	Dou	ble
				<u> </u>
TOTAL	: 45	PE		DS
	n the	e foi	m o	f
			~	
iven problems, design solutions and write C programs using the const	truct	s of	C	
advanced constructs and string manipulation feature available in C nr	ogra	mm	ıng	
	\mathcal{O}		U	
o solve problems.	-		-	
	-		-	
	(Common to all Branches) S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for proble posed to the syntax of C. niliar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduce works and Internet, Problem Solving Techniques - Bottom up design a ations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS 'C' programming - structure of a 'C' program - compilation and link simple algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Ir recision Making and Branching - Looping statements - solving simple lems. ARRAYS AND STRINGS ization - Declaration - One dimensional and Two dimensional arrays rrays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass umerators - Structures - Unions. POINTERS AND FILES age classes - Pointers - Definition - Initialization - Pointers arithr file operations - Example problems. TOTAL: c)	(Common to all Branches) 3 S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for problems. posed to the syntax of C. miliar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduction works and Internet, Problem Solving Techniques - Bottom up design and tations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS of 'C' program - compilation and linking paintle algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Input action Making and Branching - Looping statements - solving simple scientlems. ARRAYS AND STRINGS ization - Declaration - One dimensional and Two dimensional arrays - Str trays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass by aumerators - Structures - Unions. POINTERS AND FILES age classes - Pointers - Definition - Initialization - Pointers arithmetic file operations - Example problems. it course, the student should be able to: ous problem solving techniques and represent solutions to problems in the and flow charts. iven problems, design solutions and write C programs using the construct <td>(Common to all Branches) 3 0 S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for problems. posed to the syntax of C. miliar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduction to works and Internet, Problem Solving Techniques - Bottom up design and top of ations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS 'C' programming - structure of a 'C' program - compilation and linking processimple algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Input and acision Making and Branching - Looping statements - solving simple scientifilems. ARRAYS AND STRINGS ization - One dimensional and Two dimensional arrays - String-trays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass by refe umerators - Structures - Unions. POINTERS AND FILES </td> <td>(Common to all Branches) 3 0 0 S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for problems. posed to the syntax of C. nillar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduction to works and Internet, Problem Solving Techniques - Bottom up design and top dow ations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS 'C' programming - structure of a 'C' program - compilation and linking processe simple algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Input and Out ecision Making and Branching - Looping statements - solving simple scientific an lems. ARRAYS AND STRINGS ization - Declaration - One dimensional and Two dimensional arrays - String-Str rays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass by reference umerators - Structures - Unions. POINTERS AND FILES age classes - Pointers - Definition - Initialization - Pointers arithmetic - Dou tifle operations - Example problems. It is on the solving techniques and represent solutions to problems in the form o ous problem solving techniques and represent solutions to problems in the form o</td>	(Common to all Branches) 3 0 S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for problems. posed to the syntax of C. miliar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduction to works and Internet, Problem Solving Techniques - Bottom up design and top of ations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS 'C' programming - structure of a 'C' program - compilation and linking processimple algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Input and acision Making and Branching - Looping statements - solving simple scientifilems. ARRAYS AND STRINGS ization - One dimensional and Two dimensional arrays - String-trays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass by refe umerators - Structures - Unions. POINTERS AND FILES	(Common to all Branches) 3 0 0 S: should be made to: the organization of a digital computer. to think logically and write algorithms or draw flow charts for problems. posed to the syntax of C. nillar with programming in C. to use arrays, strings, functions, pointers, structures and unions in C. INTRODUCTION TO PROBLEM SOLVING of a Computer - Hardware - Software - Data Representation, Introduction to works and Internet, Problem Solving Techniques - Bottom up design and top dow ations, Introduction to Algorithms and Flow Chart. C PROGRAMMING BASICS 'C' programming - structure of a 'C' program - compilation and linking processe simple algorithm to program. iables - Data Types - Expressions using operators in 'C' - Managing Input and Out ecision Making and Branching - Looping statements - solving simple scientific an lems. ARRAYS AND STRINGS ization - Declaration - One dimensional and Two dimensional arrays - String-Str rays of strings. FUNCTIONS AND USER DEFINED DATA TYPES inition of function - Declaration of function - Pass by value - Pass by reference umerators - Structures - Unions. POINTERS AND FILES age classes - Pointers - Definition - Initialization - Pointers arithmetic - Dou tifle operations - Example problems. It is on the solving techniques and represent solutions to problems in the form o ous problem solving techniques and represent solutions to problems in the form o

• Illustrate the dynamics of memory by the use of files and pointers.

TEXT BOOKS:	
1	Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First
	Edition, Oxford University Press, 2009.
2	Byron S Gottfried, "Programming with C", Schaum's Outlines, Third Edition, Tata
	McGraw-Hill, 2010.
REFERENCES:	
1.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson
	Education, 2015.
2.	Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.
3.	Paul J Deitel, Dr. Harvey M. Deitel, "C How to Program", Seventh Edition, Pearson Education,
	2016.

GE18251	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Т	Р	С
	(Common to all Branches)	3	0	0	3
OBJECTIVE	ES:				
• To stu	dy the nature and facts about environment.				
• To stu	dy the interrelationship between living organism and environment.				
• To im	plement scientific, technological, economic and political solutions to en	nviro	onm	enta	1
proble					
-	dy the integrated themes and biodiversity, natural resources, pollution of	cont	rol a	nd	
	management.				
UNIT I	ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY				12
	cope and importance of environment - need for public awareness -	con	cent	of	
	structure and function of an ecosystem - energy flow in the ecosystem		-		
	food chains, food webs and ecological pyramids - Introduction, types,				
	cture and function of the forest ecosystem, grassland ecosystem, des				
	stems, Introduction to biodiversity definition: genetic, species and ecosy			-	
	nical classification of India - value of biodiversity - Biodiversity at globa				
0 0 1	India as a mega-diversity nation - hot-spots of biodiversity - threats to				
	conflicts - endangered and endemic species of India - conservation o				
	-situ conservation of biodiversity.	1 01	o ur v	0101	cy.
In site and the					
UNIT II	NATURAL RESOURCES AND DISASTER MANAGEMENT				10
dams and their surface and g Mineral resou	NATURAL RESOURCES AND DISASTER MANAGEMENT ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a	- uti nd p usir	liza prob ng n	tion lem nine	of s - ral
Forest resource dams and their surface and g Mineral resources, case overgrazing, of case studies sources, use of an individual	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and	- uti nd J usir agric ggin ewal	liza prob ng n cultu g, sa ple o ce -	tion lem nine are a alini ener role	ng, of s - ral nd ty, gy of
Forest resource dams and their surface and g Mineral resources, case overgrazing, case studies sources, use c	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res	- uti nd J usir agric ggin ewal	liza prob ng n cultu g, sa ple o ce -	tion lem nine are a alini ener role	ng, of s - ral ind ty, gy of
Forest resource dams and their surface and g Mineral resources, case overgrazing, of case studies sources, use of an individual lifestyles.	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f	- uti nd J usir agric ggin ewal	liza prob ng n cultu g, sa ple o ce -	tion lem nine are a alini ener role	ng, of s - ral nd ty, of ble
Forest resource dams and their surface and g Mineral resources, case overgrazing, of case studies sources, use of an individual	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f	- uti nd J usir agric ggin ewal	liza prob ng n cultu g, sa ple o ce -	tion lem nine are a alini ener role	ng, of s - ral ind ty, gy of
Forest resource dams and their surface and g Mineral resources, cas overgrazing, of case studies sources, use of an individual lifestyles.	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT	- uti nd j usir agric ggin ewal courc	liza prob ng n cultu g, sa ole ce - susta	tion lem nine are a alini ener role ninal	ng, of s - ral nd ty, of ble 10
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an individual	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, tion, Noise pollution, Thermal pollution, Nuclear hazards - solid waste and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide	- uti nd µ usir agric ggin ewal cource cor s cor s cor s cor s cor s cor s cor s cor s cor s cor s	liza prob ng n cultu g, sa pole o ce - susta pol nag e-V nag	tion lem nine ure a alini ener role inal lutione eme Vast	ng, of s - ral nd ty, of ble 10 10 on, nt: e - nt:
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollutt causes, effect role of an ino floods, earthq and desertifica	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, to iton, Noise pollution, Thermal pollution, Nuclear hazards - solid waster and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation.	- uti nd µ usir agric ggin ewal cource cor s cor s cor s cor s cor s cor s cor s cor s cor s cor s	liza prob ng n cultu g, sa oble o ce - susta pol nag e-V nag	tion lem nine ure a alini ener role inal lutione eme Vast	ng, of s - ral and ty, gy of ble 10 on, nt: e - nt: on
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollut causes, effect role of an ino floods, earthq and desertifica	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, tion, Noise pollution, Thermal pollution, Nuclear hazards - solid waste and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation.	- uti nd j usir agric ggin ewal courc for s Soil e ma d to ma es, s	liza prob ng n cultu g, sa ole - ce - susta pol nag e-V nag oil e	tion lem nine are a alini ener role inal lutio eme Vast eme erosi	ng, of s - ral ind ty, gy of ble 10 on, nt: e - nt: on 7
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertifica UNIT IV From unsusta	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, fi tion, Noise pollution, Thermal pollution, Nuclear hazards - solid waster and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en	- uti nd µ usir agric ggin ewal cource for s for s Soil e ma d to maes, se merg	liza prob ng n cultu g, sa oble o ce - susta pol nag e-V nag oil e	tion lem nine ure a alini ener role inal lutio eme Vast eme erosi wa	$\frac{\text{ng, of s - ral}}{\text{ral ty, rgy of ble}}$
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertification UNIT IV From unsusta conservation,	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, tion, Noise pollution, Thermal pollution, Nuclear hazards - solid wasters and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en- rain water harvesting, watershed management - resettlement and re	- uti nd I usir agric ggin ewal cource for s for s Soil e ma d to · ma es, s merg habi	liza prob ng n cultu g, sa ble - ce - susta pol nag oil e y - llitat	tion lem nine alini ener role iinal lutio eme Vast eme erosi wa iion	$\frac{\text{ng, of s - ral}}{\text{ral, nd}}$
Forest resource dams and their surface and g Mineral resources, cas overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertificat UNIT IV From unsustat conservation, people; its p	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, tion, Noise pollution, Thermal pollution, Nuclear hazards - solid waste is and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en- rain water harvesting, watershed management - resettlement and re problems and concerns, case studies - role of non-governmental	- uti nd J usir agric ggin ewal cource for s Soil e ma d to ma es, se nerg habi org	liza prob ng n cultu g, sa ble - susta pol nag e-V nag oil e 	tion lem nine alini ener role inal lutio eme Vast eme erosi wa ion zatio	$\frac{ng}{s} - \frac{ng}{ral}$
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertific: UNIT IV From unsusta conservation, people; its p environmenta	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, to ition, Noise pollution, Thermal pollution, Nuclear hazards - solid waster s and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en- rain water harvesting, watershed management - resettlement and re problems and concerns, case studies - role of non-governmental d ethics: Issues and possible solutions - Principles of green chemistry, c	- uti nd µ usir agric ggin ewal cource for s for s Soil e ma d to mass, se merg habi	liza prob ng n cultu g, sa ble - ce - susta pol nag e-V nag oil e y - llitat ganiz	tion lem nine alini ener role inal lution vast eme vast eme vast ion zatio	$\frac{ng}{s} - \frac{ng}{ral}$
Forest resource dams and their surface and g Mineral resources, cass overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertificat UNIT IV From unsustat conservation, people; its p environmentat global warmine	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, tion, Noise pollution, Thermal pollution, Nuclear hazards - solid waste as and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en- rain water harvesting, watershed management - resettlement and re problems and concerns, case studies - role of non-governmental al ethics: Issues and possible solutions - Principles of green chemistry, c ng, acid rain, ozone layer depletion, nuclear accidents and holocaust,	- uti nd I usir agric ggin ewal cource for s for s Soil e ma d to ma es, s habi org lima cas	liza prob ng n cultu g, sa ble - ce - susta pol nag oil e - y - llitat ganiz tte c e str	tion lem nine alini ener role iinal lutio eme Vast eme erosi wa ion zatio han udie	ral and ty, and the second se
Forest resource dams and their surface and g Mineral resources, cas overgrazing, of case studies sources, use of an individual lifestyles. UNIT III Definition - of Marine pollute causes, effect role of an ino floods, earthq and desertificat UNIT IV From unsustat conservation, people; its p environmentat global warmin wasteland recomposite	ces: Use and over-exploitation, deforestation, case studies- timber extra ir effects on forests and tribal people - Water resources: Use and over ground water, floods, drought, conflicts over water, dams - benefits a urces: Use and exploitation, environmental effects of extracting and se studies - Food resources: World food problems, changes caused by a effects of modern agriculture, fertilizer - pesticide problems, water log - Energy resources: Growing energy needs, renewable and non rene of alternate energy sources. case studies - Land resources: Land as a res in conservation of natural resources - Equitable use of resources f ENVIRONMENTAL POLLUTION AND DISASTER MANAGEMENT causes, effects and control measures Air pollution, Water pollution, to ition, Noise pollution, Thermal pollution, Nuclear hazards - solid waster s and control measures of municipal solid wastes, e-Waste, risk relate dividual in prevention of pollution - pollution case studies - disaster puake, cyclone and landslides, land degradation, man induced landslide ation. SOCIAL ISSUES AND THE ENVIRONMENT ainable to sustainable development - urban problems related to en- rain water harvesting, watershed management - resettlement and re problems and concerns, case studies - role of non-governmental d ethics: Issues and possible solutions - Principles of green chemistry, c	- uti nd J usir agric ggin ewal cource for s Soil e ma d to ma es, se marg habi org lima cas tion	liza prob ng n cultu g, sa ole - ce - susta pol nag oil e - V nag oil e - litat ganiz ate c e stu	tion lem nine alini ener role inal lutio eme Vast eme trosi wa ion zatio han udie	ng, of s - ral and ty, gy of ble 10 on, nt: e - nt: on 7 ter of on- ge, s - Air

protection act - Forest conservation act - central and state pollution control boards - Public awareness.

UN	IT V	HUMAN POPULATION AND THE ENVIRONMENT	6
Pop	oulation gr	owth, variation among nations - population explosion - family welfare p	orogramme -
env	vironment	and human health - human rights - value education - HIV / AIDS, Swir	ne flu, Dengue
fev	er - wome	n and child welfare - role of information technology in environment and	human health
ma	nagement	- case studies	
		TOTAL:	45 PERIODS
OU	JTCOME	S:	
On	completio	n of the course, the student will be able to	
•	Describe	the importance of ecosystems, biodiversity and its protection.	
•	-	nt the knowledge which requires optimum use of various natural reso	ources for the
		tion of natural resources.	
•	•	the different types of pollution, their effects and control measures. Also	apply
		ledge gained for disaster management.	
•		the sustainable development, social issues, role of NGO's and various	
		lable in the country for environmental protection.	
•		te the importance of women and child welfare, prevention of HIV/AIDS	S and usage of
	technolog	gy for environmental management.	
	XT BOO		
1	2012.	oseph, Environmental Science and Engineering', Tata McGraw-Hill, N	
2		M.Masters, Introduction to Environmental Engineering and Science', 2r	nd edition,
	Pearson	Education, 2010.	
	FERENC		
1.		dra S. Sengar, Environmental law ', Prentice Hall of India PVT LTD, N	lew Delhi,
	2012.		
2.		arucha, —Textbook of Environmental Studies, Universities Press(I) PV	T, LTD,
	Hydraba		_
3.		lan, R, Environmental Studies-From Crisis to Cure, Oxford University	
4.	•	ller. G and Scott E. Spoolman, —Environmental Science, Cengage Lear	rning India
	PVT, LT	D, Delhi, 2013.	

EC18201	ELECTRON DEVICES	L		С
OBJECTIVI	29.	3 (0	3
	n knowledge about the construction, theory and operation of basic elec	tronic		
UNIT I	SEMICONDUCTOR DIODE			0
PN junction d	iode, Current equations, Diffusion and drift current densities, forward a s, Switching Characteristics.	nd rev	erse l	9 Dias
UNIT II	BIPOLAR JUNCTION TRANSISTOR			9
NPN - PNP -	Junctions - Early effect - Current equations – Input and Output charac brid - π model - h-parameter model, Ebers Moll Model- Gummel Poor			CE,
UNIT III	FIELD EFFECT TRANSISTORS			9
significance -	in and Transfer characteristics - Current equations - Pinch off v - MOSFET - Characteristics - Threshold voltage - Channel lengt E-MOSFET- Current equation - Equivalent circuit model and its param MOSFET.	h mo	dulati	on,
UNIT IV	SPECIAL SEMICONDUCTOR DEVICES			9
Metal-Semico	onductor Junction- MESFET, Schottky barrier diode - Zener diode - Gallium Arsenide device, LASER diode, LDR.	Varact	or di	ode
UNIT V	POWER DEVICES AND DISPLAY DEVICES			9
UJT, SCR, D LCD, CCD.	iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coup	oler, S	olar c	ell,
202,002.	TOTAL:	45 PI	ERIO	DS
OUTCOME				
 Depic of PN Explo BJT (I 	the course, the student should be able to: ted the construction, working principle and $V - I$ (Voltage and Current) Junction diode. re and analyze the construction, working principle, Input and Output ch Bipolar Junction Transistor).	aracte	ristic	s of
and cu	e construction, working principle, drain and transfer characteristics of I atting edge technology of FINFET, Dual Gate MOSFET.	FET, N	10SF	ΈT
• Illustr	ss Incredible performance of the special semiconductor devices. ate the construction, working prinicple, characteristics and application y device.	s of po	ower	and
TEXT BOO	XS:			
Inc., 201 2. Adel S. S Edition, 3. Robert B	A Neaman, "Semiconductor Physics and Devices", Fourth Edition, Tata 2. edre and Kenneth C. Smith, "Microelectronic Circuits: Theory and App Oxford University Press, 2013 oylestad and Louis Nashelsky, "Electron Devices and Circuit Theory", ce Hall, 11 th edition, 2013.	olicatio	ons",	

4. Dr. Sanjay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, 2012. **REFERENCES:**

- 1. Jacob Millman & Christos C. Halkias, "Electronic Devices & Circuits", Fourth Edition, McGraw Hill 2015.
- 2. Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Third Edition, Tata McGraw Hill, 2012.

PH18252	(Common to BT, EE and EC) 3 0 /ES: derstand the physical properties of materials. nmarize the importance of free electrons in determining the properties of materials. nmarize the importance of free electrons in determining the properties of materials. inconductors, and superconductors and understand the concept of Fermi energy. scribe the basic magnetic, superconducting and dielectric properties of materials. ility to understand different types of modern engineering materials Ity to understand different types of modern engineering materials Image: CONDUCTING MATERIALS I - Classification of materials based on the electrical resistivity - Classical Free electron theory - Drawbacks of Classical Free electron theory - Quantum Free electron the bution function - Effect of temperature of Fermi function - Density of energy - Carrier concentration in metals - Emission of electrons from metals - Thern Photoelectric emission - Field emission. SEMICONDUCTING MATERIALS Image: Conductors - Carrier concentration in int tor (derivation) - Effect of temperature on Fermi level - Compound semiconductor - Intrinsic and extrinsic semiconductors with temperature - Bandon of intrinsic semiconductor (derivation and Expt) - Hall effect (derivation - Conformaterials - Dielectric constant - Polarization of dielectric materials - in to dielectric materials - Dielectric constant - Polarization of dielectric materials - on (Polarisability) - Equation of internal fields in solid (One- Dimensional) (Deriv Mosotti Relation for elemental dielectric materials - Dielectric Breakdown - Frequ of dielectric constant, Dielectric Losses - Important applications of dielectric materia	Р	С		
1110202				0	3
OBJECTIV		U	v	v	U
 Und Sum sem Deservations 	erstand the physical properties of materials. marize the importance of free electrons in determining the propertion iconductors, and superconductors and understand the concept of Fermi cribe the basic magnetic, superconducting and dielectric properties of m	ene	rgy.		ıls,
UNIT I	CONDUCTING MATERIALS				9
theory - Elec Lorentz num Fermi distrib (derivation)	ctrical and thermal conductivity of metal (derivation) - Wiedemann ber - Drawbacks of Classical Free electron theory - Quantum Free electron function - Effect of temperature of Fermi function - Density of - Carrier concentration in metals - Emission of electrons from metals	- F ectro f en	ranz on tl ergy	z lav neor v sta	v - y - tes
UNIT II		onducting and dielectric properties of materials. of modern engineering materials of modern engineering materials S ed on the electrical resistivity - Classical Free electron theory - Quantum Free electron theory erature of Fermi function - Density of energy sets - Emission of electrons from metals - Thermission. ERIALS pased on band theory (metals, semiconductors niconductors - Carrier concentration in intreature on Fermi level - Compound semiconduct insic semiconductors with temperature - Band derivation and Expt) - Hall effect (derivation SOF MATERIALS c constant - Polarization of dielectric materials - Thermal fields in solid (One- Dimensional) (Deriva ielectric materials - Dielectric Breakdown - Frequ Losses - Important applications of dielectric materials			
Introduction insulators) semiconducte Variation of	- Classification of materials based on band theory (metals, semic Intrinsic and extrinsic semiconductors - Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sen electrical conductivity in intrinsic semiconductors with temperature	n ir nico e -	n ir ondu Bai	ntrin Ictor nd g	sic 's - gap
UNIT III					
of Polarizatio - Claussius - dependence of	on (Polarisability) - Equation of internal fields in solid (One- Dimensiona Mosotti Relation for elemental dielectric materials - Dielectric Breakdow of dielectric constant, Dielectric Losses - Important applications of diele	ıl) (I vn -	Deri [*] Free	vatio quer	on) ncy
		acting and dielectric properties of materials. nodern engineering materials 9 n the electrical resistivity - Classical Free electron relectron theory - Quantum Free electron theory - electron theory - Quantum Free electron theory - ure of Fermi function - Density of energy states Emission of electrons from metals - Thermionic n. ALS 9 d on band theory (metals, semiconductors and nductors - Carrier concentration in intrinsic ure on Fermi level - Compound semiconductors - e semiconductors with temperature - Band gap vation and Expt) - Hall effect (derivation and F MATERIALS 9 nstant - Polarization of dielectric materials - Types nal fields in solid (One- Dimensional) (Derivation) ctric materials - Dielectric Breakdown - Frequency ses - Important applications of dielectric material - CRATURE AND MAGNETIC 9 nducting materials - Meissner effect - Properties of huctors - BCS theory (Qualitative) - Low Tc and			
UNIT IV	MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES				9
superconduct High Tc (allo YBaCuO, Bi Applications Dia, para and	dependence of resistivity in superconducting materials - Meissner effect fors - Type I and Type II superconductors - BCS theory (Qualitative) by) superconductors - Ceramic superconductors (oxide superconductor SrCaCuO - Josephson's effect (AC and DC) - SQUIDS - CRYOTRON of Superconductors. Ferro magnetic material - Domain theory for Ferro magnetic materials - ad its applications - Ferrites and its structures.	of energy s s - Therm conductors n in intr miconduct re - Band (derivation (derivation (derivation aterials - T al) (Deriva wn - Freque ectric mate t - Properti) - Low To rs) - LaBau (- MAG L	Tc a aCu LE	und 10, V -	
UNIT V	PHYSICS AT NANO SCALE AND SMART MATERIALS	-			9
Introduction	to Nanomaterials- Basic principle of Nano science and technology, crea structure, properties and of Carbon nanotubes, Applications of nano				of
industrial pol Shape memo	lution control. ry alloys - types of SMA - Properties of SMA - Pseudo elasticity - S				
industrial pol Shape memo	lution control.	Shap	e M	Iem	ory

OUTCOMES:

At the end of the course, the student should be able to:

- Demonstrate an understanding of various properties of materials and their internal structure.
- Comprehend the behaviour of electrons in solids.
- Develop an understanding the applications of nano materials and new engineering materials in various fields.

TEXT BOOKS:

- 1. Arumugam M, "Materials Science", Anuradha Publications, 2015.
- 2. Rajendran V, "Engineering Physics", Tata McGraw Hill, 2015.
- 3. Suresh R and Jayakumar V, "Materials Science", Lakshmi Publications 2003.
- 4. Palanisamy P.K, "Materials Science", SciTech publications, 2015.

- 1. Gaur R.K and Gupta S.L, "Engineering Physics", Dhanpat Publications, 2015.
- 2. Avadhnaulu M.N and Kshirsagar P.G, "A Textbook of Engineering Physics", S. Chand & Co., 2006.
- 3. Kittlel C, "Introduction to Solid State Physics", 7th Edition, Wiley Eastern Ltd, 2004.
- 4. Azaroff L.V. and Brophy J.J., "Electronic Processes In Materials", McGraw Hill., 1963

IT181	11	PR	ROGRA		NG FC LABO				SOL	VING		L	Т	Р	С
				(Con	nmon t	to al	l Bra	nches)			0	0	3	1.5
									/						
Object	ive														
Ŭ	ident shou	ld be m	ade to:												
•	Be expo	sed to the	he synt	ax of C											
•	Be famil	liar with	h progra	amming	g in C.										
•	Learn to	use arr	ays, str	rings, fu	unction	ns, po	ointer	s, stru	ctures	and uni	ons in	C.			
LIST (OF EXPE	RIME	NTS:												
1 U	Jsage of B	asic Lir	nux con	nmands	S										
2 0	C Program	ming us	sing Sin	nple sta	atemen	nts ar	nd exp	ressic	ons						
	cientific p									g					
	imple pro										S				
	olving pro									2					
	Program														
	C Program	<u> </u>	<u> </u>		ned fund	ction	ns (Pa	ss by	value a	and Pass	by re	feren	ce)		
	C Program														
	C Program					nion									
	C Program														
	C Program							5							
	C Program							<u>-</u>							
		8									TOT	AL:	45 P	ERI	IODS
OUTC	OMES:											-	-		
	end of the	course.	the stu	ident sł	hould b	be ab	le to:								
	ply variou	,						oresen	nt solut	tions to	proble	ems i	n th	e fo	rm of
	orithms ar				1-]				r				
-	amine giv				solutio	ons a	and v	rite C	C prog	rams us	ing th	e co	nstr	ucts	of C
	guage.	I I	,	0					1.6		0				
	ply the ac	lvanced	l constr	ructs ar	nd strir	ng m	nanipi	ilatior	n featu	re avail	able i	n C	prog	ram	ming
	guage to s					0	r						rc		0
	monstrate	-			ructure	es an	d uni	ons to	creat	e modul	arized	app	licat	ions	in C
	guage.			,								r r			
	istrate the	dynami	ics of m	nemorv	y by the	e use	of fil	es and	1 point	ers.					
		<i></i>		j	oj ulio		01 111		" Point	••••					
REFI	ERENCES	S:													
	Pradip D Press, 20	Dey and	l Manas	s Ghos	sh, "Pro	ograr	nmin	g in C	2", Firs	st Editio	n, Ox	ford	Uni	vers	ity
2	Byron S		ied "P	Program	nming	with	ь С"	Schar	1m'c (Jutlines	Thir	1 F4	ition	Т	ata
۷.	McGraw		-	rogram	ming	vv 1 t 1 1	· C ,	Senat	ann 9 (, aunico,	11110	лĽЧ	111011	, IG	uu
LIST	OF EQUI	-		RTHE	E RAT	СН	OF 3		IDEN	TS·					
		No	1010		escrint					_		tv	٦		

S. No.	Description of Equipment	Qty
HARDW	VARE:	
1.	Computer	30
SOFTW	ARE:	
2.	Open Source Linux OS	30
3.	C compiler	30

ELECTRON DEVICES AND ELECTRICAL MACHINES LABORATORY

Objective

The student should be made to:

- Be exposed to the characteristics of basic electronic devices.
- Be exposed to study the behavior of various passive and active electronic components
- Be familiar with the working of diodes, transistors and their applications.

LIST OF EXPERIMENTS:

ELECTRON DEVICES

- 1 Zener diode characteristics and regulator using zener diode
- 2 Common Emitter input-output Characteristics.
- 3 Common Base input-output Characteristics.
- 4 FET Characteristics.
- 5 SCR Characteristics
- 6 Characteristics of UJT
- 7 Characteristics of Photo-diode and Photo transistor.

ELECTRICAL MACHINES

- 1 Load test on single-phase transformer
- 2 Load test on DC shunt motor
- 3 Speed Control of DC shunt motor
- 4 Load test on three-phase Induction motor
- 5 Load test on single phase Induction motor

TOTAL:60 PERIODS

Note:Plotting of drawings must be made for each exercise and attached to the records written by students.

OUTCOMES:

At the end of the course, the student should be able to:

- Explore the Characteristics of Zener Diode and Bipolar Junction Transistor.
- Examine the Characterstics of FET,UJT,SCR and Photo Transistor.
- Construct and Observe the Load Test on single-phase transformer.
- Construct and Observe the Load test and speed control of DC Shunt Motor.
- Examine the Load test of Single Phase and Three Phase Induction Motor.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRON DEVICES)

- 1. BC107, BC148, 2N2646, BFW10 25 each
- 2. 1N4007, Zener diodes 25 each
- 3. Resistors, Capacitors, Inductors Sufficient quantities
- 4. Bread Boards 15 Nos.
- 5. CRO (30MHz) 10 Nos.
- 6. Function Generators (3MHz) 10 Nos.
- 7. Multimeter 10 Nos
- 8. Dual Regulated Power Supplies (0 30V) 10 Nos.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRICAL MACHINES)

- 1. DC Shunt Motor with Loading Arrangement --2 (3HP,220V,14A,750RPM,0.6A(Shunt field))
- 2. DC Shunt Motor kW: 5.2 / volts: 220 / Amps: 27.5/ Speed: 1500 RPM/ Field current: 0.9A

- 3. Single Phase Transformer; 2 KVA, 230/110-166 V --1
- 4. Three Phase Induction Motor with Loading Arrangement --1 (3.7KW,415v,7.5A,1430 RPM)
- 5. Single Phase Induction Motor with Loading Arrangement --1 (230V, 5HP, 17A)
- 6. DC Shunt Motor Coupled with DC Compound Generator --1
- 7. Tachometer Digital/Analog --8
- 8. Single Phase Auto Transformer (0-270)V --2
- 9. Three Phase Auto Transformer (0-270)V --1
- 10. MC Voltmeter-(0-300/600)V-- 5
- 11. MC Ammeter (0-10/20)A --5
- 12. MC Ammeter (0-2/1)A --4
- 13. MI Voltmeter (0-300/600)V --5
- 14. MI Ammeter (0-10/20)A --6
- 15. MI Ammeter (0-1/2)A --4
- 16. UPF Wattmeter (300/600V,10/20A) --4
- 17. LPF Wattmeter (300/600V,10/20A) --4
- 18. Single Phase Resistive Loading Bank(10KW) --2
- 19. Three Phase Resistive Loading Bank(10KW) --2
- 20. SPST switch --2
- 21. Fuse various ranges as per the requirement
- 22. Wires As per the requirement
- 23. Rheostats (100Ω,1A;250Ω,1.5A;75Ω,16A,1000Ω,1A) Each --2

SEMESTER III

MA18351	ENGINEERING MATHEMATICS III	3 1 engineering its applicati urtial difference m technique lard types of ogeneous p range sine s imensional	Р	C	
	(Common to BT, CH, CE, EE, EC and ME)	3 1 0 engineering application its application artial different m techniques f 9 + lard types of fi ogeneous part 9 + range sine series 9 + ard types of fi 9 + range sine series 9 + artial sine series	4		
OBJECTIVE	ES:	3 1 0 engineering ap d its application partial different partial different			
from i • To un Engin • To in equati	roduce Fourier series analysis this is central to many applications in eng ts uses in solving boundary value problems. derstand the basic concepts of the Fourier transform techniques and its eering. troduce the effective mathematical tools for the solutions of parts ons that model several physical processes and to develop Z transform te time systems.	app ial (plica diffe	tion	n in tial
		<u> </u>			
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS	<u> </u>			
order partial	partial differential equations – Singular integrals - Solutions of standar differential equations - Lagrange's linear equation – Linear homoguations of second and higher order with constant coefficients.				
UNIT II	FOURIER SERIES			9.	+ 3
	nditions – General Fourier series – Odd and even functions – Half ra	nge	sine		
	osine series –Parseval's identity – Harmonic analysis		5110	. 501	105
UNIT III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS			9	+ 3
equation – Or	of PDE – Method of separation of variables - Solution of one dim the dimensional equation of heat conduction – Steady state solution of two eat conduction (excluding insulated edges).				
UNIT IV	FOURIER TRANSFORMS			0	+ 3
	Fourier integral theorem – Fourier transform pair – Fourier sine and cos	L	tuon		
	Transforms of simple functions – Convolution theorem – Parseval's ic			5101	<u> </u>
UNIT V	Z - TRANSFORMS AND DIFFERENCE EQUATIONS			9	+ 3
	- Elementary properties – Inverse Z - transform (using partial fraction		na d		
	residue technique) – Convolution theorem - Formation of difference		-		
	fference equations using Z - transform.		quu	1011	,
Solution of u	TOTAL: (L: 45 + T: 15):	60	PEF	210	DS
	101AL. (L. 45 + 1. 15).				00
ExpresAcqui	the course, the student will be able to : ss proficiency in handling higher order Partial differential equations. re the skill in examining a signal in another domain rather in the origina	al d	oma	in b	у
handli	ng Full and Half Range Fourier Series.				

- Develop skills in classification, formulation, solution, and interpretation of PDE models.
- Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms.
- Apply the systematic method for finding the impulse response of LTI systems described by difference equations: partial fraction expansion.

TEXT BOOKS:
1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India, 2011.
2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi,
2012.
3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for
Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd. 1998.
REFERENCES:
1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7 th Edition, Laxma
Publications Pvt Ltd, 2007.
2. Glyn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education
2011.
3. Veerarajan. T., "Transforms and Partial Differential Equation", Tata McGraw Hill
Publishing Company Limited, New Delhi, 2012
4. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill
Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
5. Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India pvt. Ltd. 7 th
Edition, New Delhi, 2012.

EC18301	OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES	L	Т	Р	С
	STRUCTURES	3	1	0	4
OBJECTIV	ES:	-			
• To co	mprehend the fundamentals of object oriented programming, particular	ly iı	n C+	-+.	
	e object oriented programming to implement data structures.				
	roduce linear, non-linear data structures and their applications.				
	to implement sorting and searching algorithms.				
UNIT I	DATA ABSTRACTION & OVERLOADING			9.	+ 3
Overview of	C++ – Structures – Class Scope and Accessing Class Members – Refere	nce	Var	iable	s –
	- Constructors - Destructors - Member Functions and Classes - Fri				
Dynamic Me	mory Allocation - Static Class Members - Proxy Classes - Overloa	ding	g: F	unct	ion
	and Operator Overloading.				
UNIT II	INHERITANCE & POLYMORPHISM	Dverloading: F	9	+ 3	
Base Classes	and Derived Classes - Protected Members - Casting Class pointer	s an	d N	[lem]	ber
Functions – C	Dverriding – Public, Protected and Private Inheritance – Constructors a	nd l	Dest	ruct	ors
	asses – Implicit Derived – Composition Vs. Inheritance – Virtual fu				
Pointer – Abs	stract Base Classes and Concrete Classes – Virtual Destructors – Dynar	nic	Bind	ding	
UNIT III	LINEAR DATA STRUCTURES			9.	+ 3
Abstract Data	Types (ADTs) – List ADT – array-based implementation – linked list	mpl	eme	entat	ion
— singly link	ted lists –Polynomial Manipulation - Stack ADT – Evaluating arithmet	ic e	xpre	essio	ns-
Queue ADT -	- Circular Queue implementation.				
UNIT IV	NON-LINEAR DATA STRUCTURES				+ 3
	ry Trees – Binary tree representation and traversals - The Search Tree				
	- Application of trees – Graph and its representations – Graph				
-	on of Graphs – Breadth-first search – Depth-first search- Dijkstra'	s sh	orte	st p	ath
algorithm.					
UNIT V	SORTING and SEARCHING				+ 3
	ithms: Insertion sort - Quick sort - Merge sort - Searching: Linear	sear	ch -	-B1n	ary
Search		(0	DEI		
	TOTAL: (L: 45 + T: 15):	<u>60</u>	PE	KIO.	D2
OUTCOME	g.				
OUTCOME					
	the course, the student should be able to :				
1	in the concepts of Object Oriented Programming.				
-	ment abstract data types for linear data structures				
-	ment abstract data types for non-linear data structures.				
	v linear data structures to solve various problems.				
• Discu	ss the different methods of organizing large amounts of data.	1			
TEXT BOO					
1. Deitel	and Deitel, "C++, How To Program", Tenth Edition, Pearson Education	on, 2	2017	/.	

1. Deitel and Deitel, "C++, How To Program", Tenth Edition, Pearson Education, 2017.

2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edition, Pearson

Education, 2017.

- 1. BhushanTrivedi, "Programming with ANSI C++, A Step-By-Step approach", Oxford University Press, 2012.
- 2. Goodrich, Michael T., Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", Second Edition, Wiley. 2011.
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2009.
- 4. BjarneStroustrup, "The C++ Programming Language", 4th Edition, Pearson Education, 2018.
- 5. Ellis Horowitz, SartajSahni and Dinesh Mehta, "Fundamentals of Data Structures in C++", Galgotia Publications, Second Edition,2008

EC18302	ELECTROMAGNETIC FIELDS AND WAVES	L	Т	Р	С
		3	1	0	4
OBJECTIVI					
	roduce students with different coordinate systems and to understand ple and their related problems over Static Electric Fields.	the '	Theo	orem	, Laws,
	arn the basic laws in Static Magnetic Field and able to find various d problems.	para	met	ers v	with the
• To kn	ow how the Electric Field is applied in Dielectrics with various equation understand how the Magnetic Field works with Ferromagnetic Mater			appli	ications
• To an deriva	alyze how the Time is Varying in both Electric and Magnetic Lition.	Field	ds v	vith	various
	derstand and analyze the Electromagnetic Field distribution which ced subjects related to Electromagnetic Field.	forr	ns t	he b	asis for
UNIT I	STATIC ELECTRIC FIELD				9+3
-	to Co-ordinate System-Rectangular-Cylindrical and Sphe luction to line, Surface and Volume Integrals-Definition of Cur aning of Strokes theorem and Divergence theorem.				ordinate ce and
	Law in Vector Form – Definition of Electric field Internet Float field due to discrete charges Electric field due to		-		-
	n-Electric field due to discrete charges-Electric field due to Electric field due to charges distributed uniformly on an infinite and				-
	xis of a uniformly charged circular disc-Electric Field due to an infinit				
sheet.	xis of a uniformity charged circular disc-Electric Freid due to an infinit	e un	non	iniy (margeu
	ar Potential-Relationship between potential and electric field-Poter	ntial	due	o to	infinite
	arged line-Potential due to electrical dipole-Electric Flux Density-C				
Gauss Law-A		Jaus	S L	1 ** -1	1001 01
Ouuss Luw 11					
UNIT II	STATIC MAGNETIC FIELD				9+3
	art Law in vector form-Magnetic Field intensity due to a finite and inf	inite	e wii	e ca	
current I-Mag	netic field intensity on the axis of a circular and rectangular loop carr				
	cuital law and simple applications.				-
	re carrying a current I placed in a magnetic field – Torque on a loop c ment-Magnetic Vector Potential.	arry	ing	a cur	rent I –
UNIT III	ELECTRIC AND MAGNETIC FIELDS IN MATERIALS				9 + 3
various geon conditions for	d Laplace's equation-Electric Polarization-Definition of Capacitane netries using Laplace's equation-Electrostatic energy and energy relectric fields-Point form of ohm's law-Continuity equation for curre	v de ent.	ensit	y-Bo	oundary
	Inductance-Inductance of loops and solenoids-Definition of mutua				-
examples. En conditions.	nergy density in magnetic fields-magnetization and permeability-	Mag	gneti	c bo	oundary
UNIT IV	TIME VARYING ELECTRIC AND MAGNETIC FIELDS				9+3
Faraday's law in point form	v – Maxwell's Second Equation in integral form from Faraday's Law –	Equ	iatic	on ex	pressed
-	current – Ampere's circuital law in integral form – Modified form o	f Ar	nper	e's c	rcuital
-	ell's first equation in integral form – Equation expressed in point for		-		
	ntegral form and different form.				

9+	ELECTROMAGNETIC WAVES	UNIT V
aneous Average an	ctor and the flow of power – Power flow in a co-axial cable – Instanta	Poynting Vec
axwell's equation i	ynting Vector. Derivation of Wave Equation-Uniform plane waves-Ma	Complex Poy
in a homogenou	-Wave equation in Phasor form-Plane waves in free space and	Phasor form-
Propagation in goo	ve equation for a conducting medium-Plane waves in lossy dielectric-H	
		conductors-Sl
15): 60 PERIOD	TOTAL: (L: 45 + T:	
		DUTCOME
	f the course, students will be able to:	
lifferent concepts in	y different coordinate systems and vector calculus for understanding d comagnetic Engineering	
	ate the physical quantities of electromagnetic fields in different media	• Evaluation
stem and material	gn storage devices like capacitor, inductor used in electrical sys	• Design
	red to assemble energy storage devices.	requir
gy in the form of	y concepts of electromagnetic waves means of transporting energy	 Justify
<i>o,</i> - -o o		,
	waves, TV signals, Radar beams	radio
current elements	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles,	radio • Deterr
current elements	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio	radioDeterrworking
current elements	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles,	radioDeternworking
current elements	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio	radioDeternworking
current elements	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force.	 Tadio v Detern working on this
current elements on devices are base	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force.	radio Detern workin on this TEXT BOO
current elements on devices are based Delhi, 2004.	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc,	radio Detern workin on this FEXT BOOI 1. David K
current elements on devices are based Delhi, 2004.	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M	radio • Detern working on this FEXT BOOI 1. David K 2. John D
current elements on devices are based Delhi, 2004. IcGraw Hill Book	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5.	 radio Detern workin on this TEXT BOOI David K John D Co,2005
current elements on devices are based Delhi, 2004. IcGraw Hill Book	 waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill 	radio Detern workin on this TEXT BOOI 1. David K 2. John D Co,2005 3. W H.Ha
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007.	waves, TV signals, Radar beams rmine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES:	radio • Detern workin on this TEXT BOOI 1. David K 2. John D I Co,2005 3. W H.Ha REFERENC
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007.	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. EXS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System	radio Detern workin on this TEXT BOOI 1. David K 2. John D Co,2005 3. W H.Ha REFERENC 1. E.C. Jo
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007.	 waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversion is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2nd edition 2003. 	radio v Detern workin on this TEXT BOOI 1. David K 2. John D 1 Co,2005 3. W H.Ha REFERENC 1. E.C. Jo India 2
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007.	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2 nd edition 2003. D. Sadiku: "Elements of Engineering Electromagnetics" Oxford University	radio • Detern workin on this TEXT BOOI 1. David K 2. John D I Co,2005 3. W H.Ha REFERENC 1. E.C. Jo India 2 2. M.N.O
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007. Is." Prentice Hall o rersity Press, Fourt	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. EXS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2 nd edition 2003. D. Sadiku: "Elements of Engineering Electromagnetics" Oxford Univer- n, 2007.	radio Detern workin on this TEXT BOOI 1. David K 2. John D Co,2005 3. W H.Ha REFERENC 1. E.C. Jon India 2 2. M.N.O edition
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007. Is." Prentice Hall o rersity Press, Fourt	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. KS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2 nd edition 2003. D. Sadiku: "Elements of Engineering Electromagnetics" Oxford University	radio • Detern workin on this TEXT BOOI 1. David K 2. John D Co,2005 3. W H.Ha REFERENC 1. E.C. Jon India 2 2. M.N.O edition
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007. Is." Prentice Hall of rersity Press, Fourth of India, New Delhi	 waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversions force. VKS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2nd edition 2003. D. Sadiku: "Elements of Engineering Electromagnetics" Oxford University, 2007. ana Rao. N: "Engineering Electromagnetics" 4th edition, Prentice Hall of the sector of the sec	radio Detern workin on this TEXT BOOI 1. David K 2. John D I Co,2005 3. W H.Ha REFERENC 1. E.C. Jo India 2 2. M.N.O edition 3. Naraya 2006.
current elements on devices are based Delhi, 2004. IcGraw Hill Book I, 7 th Edition 2007. Is." Prentice Hall of rersity Press, Fourth of India, New Delhi	waves, TV signals, Radar beams mine the electromagnetic force exerted on charged particles, ing principle of various electric and electromagnetic energy conversio is force. EXS: K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Kraus and Daniel A Fleisch, "Electromagnetics with Applications", M 5. ayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill CES: ordan &K.G.Balmain "Electromagnetic Waves and Radiating System 2 nd edition 2003. D. Sadiku: "Elements of Engineering Electromagnetics" Oxford Univer- n, 2007.	radio Detern workin on this TEXT BOOI 1. David K 2. John D Co,2005 3. W H.Ha REFERENC 1. E.C. Jon India 2 2. M.N.O edition 3. Naraya 2006. 4. Ramo,

EC18303	CIRCUIT THEORY	L	Τ	Р	С
		3	0	0	3
OBJECTIV					
	alyze any linear time invariant electrical network.				
	alyze the transient response of DC circuits.				
	derstand the concept of resonance and coupled circuit				
• To un	derstand the concept two port networks.				
• To int	roduce the network topology				
UNIT I	DC CIRCUIT ANALYSIS				9
-	onents of electric Circuits, Charge, current, Voltage and Power, Voltage				
	iew of Ohms Law, Kirchhoff 's Current Law, and Kirchhoff 's voltage				-
	Circuit, series and Parallel Connected, voltage and current division, I	Noda	al ar	aly	sis,
Mesh analysi	S.	r			
UNIT II	SINUSOIDAL STEADY STATE ANALYSIS				9
	eady state analysis, Characteristics of Sinusoids, The Complex For				
	or relationship for R, L, and C, impedance and Admittance, Nodal and I				
	rams, AC Circuit Power Analysis, Instantaneous Power, Average Po	owei	r, ap	par	ent
Power and Po	ower Factor, Complex Power.				
	DEGONANCE AND COUDLED CIDCUITS				
UNIT III	RESONANCE AND COUPLED CIRCUITS	-141-	0		<u>9</u>
	arallel resonance – frequency response – Quality factor and Bandwi				
	f and Mutual inductance – Coefficient of coupling – Linear Transf - Tuned circuits – Single tuned circuits.	onn		- 10	tai
Transformer					
UNIT IV	TRANSIENT ANALYSIS AND TWO PORT NETWORKS				9
	ponse of RL, RC and RLC Circuits using Laplace transform for DC a	nd A	AC i	nnu	
	ion of two port networks in terms of Z, Y, ABCD and h parameters.	.110 1	IC I	mpu	L
Characterizat					
UNIT V	NETWORK TOPOLOGY				9
<u> </u>	Trees and Co-Tree, Twigs and Links, Incidence Matrix (A), Propertie	es of	f Inc	ider	ice
	hk Currents: Tie-set Matrix, Cut-set and Tree Branch Voltages, Mesh A				
Analysis.		-	, ,		
-	TOTAL:	45	PEF	RIO	DS
OUTCOME	S:				
At the end of	the course, the students will be able to				
• Deter	mine the characteristics of electrical circuits by applying circuit laws.				
Comp	are the phasor diagram of R, L and C and analyze the AC circuit power	r.			
-	the phenomenon of series and parallel resonance in electrical circuits an		nder	stan	d
	fect of magnetic coupling between windings.				
	are the characteristics of RC, RL and RLC circuits for AC and DC inpu	ts ar	nd ev	valu	ate
-	o port network parameters.				
	h the various network topologies.				

TEXT BOOKS:

 A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Education

2. Sudhakar, A., Shyammohan, S. P.; "Circuits and Networks"; Tata McGraw-Hill New Delhi, 2015.

- 1. Kuo, Network Analysis & Synthesis, Wiley (2006),
- 2. Van, Valkenburg.; "Network analysis"; Prentice Hall of India, 2000.
- 3. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum s series, Tata McGraw-Hill, New Delhi, 2001.

EC18304	DIGITAL SYSTEM DESIGN	L	T	P	<u>C</u>
	ES.	3	0	0	3
• To in	ES: ntroduce basic postulates of Boolean algebra and shows the correl	atio	n be	etwe	en
Bool	ean expressions				
	troduce the methods for simplifying Boolean expressions				
	utline the formal procedures for the analysis and design of combination ential circuits	al c	ircu	its a	nc
-	troduce the electronic circuits involved in the making of logic gates				
	troduce the concept of memories and programmable logic devices				
	lustrate the concept of synchronous and asynchronous sequential circuit	S			
UNIT I	MINIMIZATION TECHNIQUES AND LOGIC GATES				9
Codes, Binar De-Morgan's expressions – Map Minimiz	ems: Binary, Signed Binary, Octal, Hexadecimal, 8421 Codes, 2421 C	ntes on c S) – izati	and of B Ka	law oole rnau	s – ear .gł
^					
UNIT II	COMBINATIONAL CIRCUITS				9
	dure – Half adder – Full Adder – Half subtractor – Full subtractor – H	3ina	ry F		1e
BCD adder	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator	Ahe			r –
BCD adder 7-segment de	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look . – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encodecoder – Parity checker – Parity generator - Magnitude Comparator	Ahe			r – tc
BCD adder 7-segment de UNIT III Latches - Fli Realization o counters, Rin	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look . – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encod	Ahe der and ers, Univ	– B equa Mo ersa	CD atio	r – to 9 n - 0-n 11
BCD adder 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Count g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence	Ahe der and ers, Univ	– B equa Mo ersa	CD atio	r – to 9 n – 0–r nift or
BCD adder 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – F decoding -	ry Parallel subtractor - Binary Parallel Adder/Subtractor - Carry Look - Binary Multiplier - Multiplexer/ Demultiplexer - Decoder /Encode coder - Parity checker - Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF - Characteristic table a of one flip flop using other flip flops - Ripple (Asynchronous) Count ag Counter, Johnson Counter, Synchronous Counters, - Shift registers, U	Ahe der and ers, Univ ence assi Cell rray	equ. Mo rersa e De fica -M (P	CD atio duld dul Sh etect tion [emo LA)	r – to 9 n - 0-n 0 ift or 9 of ory
BCD adder 7-segment de VNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – H decoding - Programmabl PLA, PAL	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Count g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic Ai le Array Logic (PAL) – Implementation of Combinational logic circuit	Ahe der and ers, Univ ence assi Cell rray	equ. Mo rersa e De fica -M (P	CD atio duld dul Sh etect tion [emo LA)	r – to 9 n - 0-n 1ift or 9 of pry - M,
BCD adder 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – H decoding - Programmabl PLA, PAL UNIT V	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Count g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic At le Array Logic (PAL) – Implementation of Combinational logic circuit	Ahe der and ers, Univ ence assi Cell rray ts us	- B equi Mo ersa e De fica -M (P ing	CD atio duld duld l Sh etect LA) RO	r - tc $r - tc$ r
BCD adder 7-segment de 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – H decoding - Programmable PLA, PAL UNIT V Asynchronou State Machin Reduction, R Introduction	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encodecoder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Counter g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic A le Array Logic (PAL) – Implementation of Combinational logic circuit ASYNCHRONOUS SEQUENTIAL CIRCUITS as Sequential Circuits: Design of fundamental mode circuits – Incomple nes – Problems encountered in Asynchronous Circuits: Cycles and acce free assignments, Hazards, Essential Hazards - Design of Hazard to HDL, Design of simple Combinational and Sequential circuits scription Language.	Ahe der and ers, Univ enco assi cell rray ts us etely l Ra free usir	- B equi Mo eersa e De fica -M (P (P ing V sp cces, e cirv ag V	CD atio: duld dl Sl etect tion [ema [ema [ecif , St cuit /eri]	r – tc g n - p-n iff or g of or y of or y M, _ g g ied ate s – og
BCD adder 7-segment de 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – H decoding - Programmable PLA, PAL UNIT V Asynchronou State Machin Reduction, R Introduction Hardware De	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Counte g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic A le Array Logic (PAL) – Implementation of Combinational logic circuit ASYNCHRONOUS SEQUENTIAL CIRCUITS as Sequential Circuits: Design of fundamental mode circuits – Incompl nes – Problems encountered in Asynchronous Circuits: Cycles and acce free assignments, Hazards, Essential Hazards - Design of Hazard to HDL, Design of simple Combinational and Sequential circuits scription Language. TOTAL:	Ahe der and ers, Univ enco assi cell rray ts us etely l Ra free usir	- B equi Mo eersa e De fica -M (P (P ing V sp cces, e cirv ag V	CD atio: duld dl Sl etect tion [ema [ema [ecif , St cuit /eri]	r – to g n - p-r nift or g of or y of or y of or y of or y of or y of or y of or y of or y of or y of or y of or y of o y of o y of o y of o y of o y o y
BCD adder 7-segment de 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familia memories – H decoding - Programmabl PLA, PAL UNIT V Asynchronou State Machin Reduction, R Introduction Hardware De OUTCOME	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encodecoder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Counter g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic A le Array Logic (PAL) – Implementation of Combinational logic circuit ASYNCHRONOUS SEQUENTIAL CIRCUITS as Sequential Circuits: Design of fundamental mode circuits – Incompl nes – Problems encountered in Asynchronous Circuits: Cycles and ace free assignments, Hazards, Essential Hazards - Design of Hazard to HDL, Design of simple Combinational and Sequential circuits scription Language. TOTAL: S:	Ahe der and ers, Univ enco assi cell rray ts us etely l Ra free usir	- B equi Mo eersa e De fica -M (P (P ing V sp cces, e cirv ag V	CD atio: duld dl Sl etect tion [ema [ema [ecif , St cuit /eri]	r – to or or or or M
BCD adder 7-segment de 7-segment de UNIT III Latches - Fli Realization of counters, Rin Register - Mo UNIT IV Logic familie memories – H decoding - Programmabl PLA, PAL UNIT V Asynchronou State Machin Reduction, R Introduction Hardware De OUTCOME At the end of	ry Parallel subtractor - Binary Parallel Adder/Subtractor – Carry Look – Binary Multiplier – Multiplexer/ Demultiplexer – Decoder /Encode coder – Parity checker – Parity generator - Magnitude Comparator SEQUENTIAL CIRCUITS p-flops - SR, JK, D, T, and Master-Slave FF – Characteristic table a of one flip flop using other flip flops – Ripple (Asynchronous) Counte g Counter, Johnson Counter, Synchronous Counters, - Shift registers, U pore / Mealy models - Design of Synchronous Sequential Circuits, Sequence LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES es: TTL, CMOS – Comparison of Logic families - Tristate gates - Cl ROM: PROM, EPROM, EEPROM – RAM: Static and Dynamic RAM Programmable Logic Devices (PLD) – Programmable Logic A le Array Logic (PAL) – Implementation of Combinational logic circuit ASYNCHRONOUS SEQUENTIAL CIRCUITS as Sequential Circuits: Design of fundamental mode circuits – Incompl nes – Problems encountered in Asynchronous Circuits: Cycles and acce free assignments, Hazards, Essential Hazards - Design of Hazard to HDL, Design of simple Combinational and Sequential circuits scription Language. TOTAL:	Ahe der and ers, Univ enco assi cell rray ts us etely l Ra free usir	- B equi Mo eersa e De fica -M (P (P ing V sp cces, e cirv ag V	CD atio: duld dl Sl etect tion [ema [ema [ecif , St cuit /eri]	r - to to n - if or ory M

- Design various Combinational circuits using logic gates
- Investigate and design synchronous and asynchronous sequential circuits
- Design a RAM, ROM, PAL and PLA devices
- Develop and program simple HDL codes for digital circuits.

TEXT BOOKS:

- 1. M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
- 2. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.

- 1. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 2. Donald D.Givone, "Digital Principles and Design", TMH, 2003.
- 3. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 4. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011

	ELECTRONIC CIRCUITS		Т	P	C
		3	0	0	3
OBJECTIVI					
	derstand the operation, design and Analysis of low and high frequency a	ampl	1f1e	rs.	
	alyze feedback amplifiers.				
	alyze and design the frequency of oscillators.				
	plain the operation of power amplifiers.				
• To un	derstand the analysis of tuned circuits and its stability.				
UNIT I	BIASING AND SMALL SIGNAL ANALYSIS OF AMPLIFIERS			D	9
Compensation	, Operating point, Various Biasing Methods for BJT-Design and Stabilit n, Thermal Stability, Small signal Analysis of Common Emitter amplifi ode Amplifier.	•			
UNIT II	HIGH FREQUENCY ANALYSIS AND POWER AMPLIFIERS	•	-		9
frequency -f	High frequency Analysis of CE Amplifier. Short Circuit Current B, fT Determination of Bandwidth of Single Stage and Multistage Amp fiers- Class A, Class B, Class AB, Class C.	-			
UNIT III	FEEDBACK AMPLIFIERS				9
	edback Amplifiers, General characteristics of negative feedback amplif	ierc	Ff	fect	-
	Amplifier characteristics, Voltage series, voltage shunt, Current serie				
	ck configurations.	o un		Jull	0110
UNIT IV	OSCILLATORS				9
			1	าลโบ	cic
	r oscillations, Frequency and Amplitude Stability of Oscillators, Genera tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla			lary	515
of LC Oscilla	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla				
of LC Oscilla	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS:	tors.			9
of LC Oscilla UNIT V Small signal t	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio	tors. - dou	ıble	e tur	9 ned
of LC Oscilla UNIT V Small signal t amplifier – S	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method	utors. - dou n –	ıble Ha	e tur zelt	9 ned
of LC Oscilla UNIT V Small signal t amplifier – S	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL:	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL:	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S:	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: S: the course, the students will be able to	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply • Analy	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers.	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply • Analy • Desig	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance.	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply • Analy • Desig • Under	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: 4 S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance. stand the operation of oscillator circuit.	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply • Analy • Desig • Under	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance.	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of • Apply • Analy • Desig • Under	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance. stand the operation of oscillator circuit. ze the application of tuned amplifiers.	utors. - dou n –	ıble Ha	e tur zelt	9 nec
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of Apply Analy Desig Under Analy TEXT BOO 1. David 2. Rober	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance. stand the operation of oscillator circuit. ze the application of tuned amplifiers.	utors. - dou on – 45 P	ıble Ha:	e tur zelt	9 inec DS
of LC Oscilla UNIT V Small signal t amplifier – S neutralization OUTCOME At the end of Apply Analy Desig Under Analy TEXT BOO 1. David 2. Rober Tenth	tors, Quartz, Hartley, Colpitt's, RC–phase shift and Wein Bridge oscilla TUNED AMPLIFIERS: uned amplifiers – Analysis of capacitor coupled single tuned amplifier – tagger tuned amplifiers – Stability of tuned amplifiers – Neutralizatio method TOTAL: • S: the course, the students will be able to the knowledge of BJT to design practical amplifier circuits. ze high frequency effect on CE amplifier and design power amplifiers. n a feedback amplifier to improve amplifier performance. stand the operation of oscillator circuit. ze the application of tuned amplifiers. KS: A. Bell, Solid state Pulse Circuits, PHI, 4th Edition 2007. t L Boylestead and Louis Nashelsky, "Electronic Devices and circuit the	- dou on – 45 P	ible Ha: ER	e tur zelt: RIO	

- 1. Millman and Halkias. C., Integrated Electronics, TMH, 2007.
- 2. S.Salivahanan, N. Suresh Kumar and A. Vallava Raj, "Electronic Devices and circuits", TMH, 2nd Edition 2008.
- 3. Spencer R. R. and M. S. Ghausi, Introduction to Electronic Circuit Design, Pearson, 2003,
- 4. Schilling and Belove, Electronic Circuits, 3rd Edition, TMH, 2002.

EC18311	ANALOG AND DIGITAL CIRCUITS LABORATORY	L	T	P	<u>C</u>
ODIECTIV		0	0	3	1.5
OBJECTIV	ES:				
To leTo d	udy the characteristic of CE, CB and CC Amplifier arn the fundamental principles of amplifier circuits fferentiate feedback amplifiers and oscillators. erform SPICE simulation of Electronic Circuits				
	understand the functionality of combinational and sequential circuits				
	arn hardware implementation and functional verification of digital c	ircui	s		
ANALOG (
1. Freq	ency Response of CE amplifier				
	s and Shunt feedback amplifiers-Frequency response.				
	e Tuned Amplifiers				
4. RC F	hase Shift Oscillator				
-	itts Oscillator				
	A Power amplifier				
7. SPIC	E Simulation of Common Emitter Amplifier.	1			
DIGITAL (
	ementation of Boolean expression using universal gates				
2. Imple	ementation of				
	h. Full adder / Full subtractor using two half adder / half subtracto	rs.			
	b. Implementation of BCD adder using IC 7483				
-	ementation of Decoder and 2-bit Magnitude comparator using logic g	ates			
-	ementation of				
	Multiplexer using logic gates				
	b. Boolean expression using MUX		.1	гт	-
	table verification of JK, T, and D Flip Flops and Conversion of one				
-	ementation of BCD counter (Synchronous and Asynchronous) with s	even	segi	nent	
displ 7 Data tra					
/.Data tra	nsfer using shift registers.		J		44
by students	ng of drawings must be made for each exercise and attached to th	le re	cora	s wri	itten
by students		ΔΙ. •	45 1	PERI	
OUTCOMI					
	f the course, the student will be able to:				
	yze the limitation in bandwidth of various amplifiers				
	yze various types of feedback amplifiers.				
	gn oscillators and tuned amplifiers				
	late feedback amplifiers, oscillators, tuned amplifier using SPICE				
	gn, implement and verify the functionality any Combinational and Se	יפווחי	ntial	Digit	al
	circuits for handling real life projects.	Yuu	mai	JIGI	ui
logic					
LIST OF F	QUIPMENTS FOR A BATCH OF 30 STUDENTS:	I			
	s for Analog Lab				
CRO (Min 3			15	Nos	
	rator /Function Generators (2 MHz)			Nos	
Signal Oule			1,	1103	

Dual Regulated Power Supplies $(0 - 30V)$	15 Nos
Digital Multimeter	15 Nos
Digital LCR Meter	2 Nos
Standalone desktops PC	15 Nos
Transistor/FET (BJT-NPN-PNP and NMOS/PMOS)	50 Nos
SPICE Circuit Simulation Software	15
Equipments for Digital Lab	
IC Trainer Kit	15 Nos
Bread Boards	15 Nos
Multimeter	15 Nos
CRO (30MHz)	3 Nos
ICs 7400/ 7402 / 7404 / 7486 / 7408 / 7432 / 7483 / 74150 /74151 / 74147 / 7445	Each 25 Nos
/ 7476/7491/ 555 / 7494 / 7447 / 74180 / 7485 / 7473 / 74138 / 7411 / 7474	

EC18312	OBJECT ORIENTED PROGRAMMING AND DATA	L	Τ	P	С
	STRUCTURES LABORATORY	0	0	3	1.5
OBJECTIV		U	U	3	1.5
	familiar with C++ programming language.				
	rn to implement linear and non linear data structures.				
	implement various applications using different data structures.				
• Lea	rn to implement sorting and searching algorithms.				
	PERIMENTS:				
	asic Programs for C++ Concepts				
i) Prime Number Generation				
	i) Leap Year Checking				
i	ii) Factorial with and without Recursion				
i	v) Swapping of two numbers using pointers.				
·) Find length of the string without using library function.				
V) Bank Account using structures.				
V	i) Function overloading				
V	ii) Static data member and member Function.				
ix) Friend Functions.				
X	Area and perimeter of a circle using class.				
2. A	ray implementation of List Abstract Data Type (ADT)				
3. L	nked list implementation of List ADT				
4. C	arsor implementation of List ADT				
5. St	ack ADT - Array and linked list implementations				
6. T	he next two exercises are to be done by implementing the following	sourc	e file	es	
i	Program source files for Stack Application 1				
i	. Array implementation of Stack ADT				
iii	Linked list implementation of Stack ADT				
iv	Program source files for Stack Application 2				
v	. An appropriate header file for the Stack ADT should be included in	1 (i) a	nd (i	iv)	
7. In	plement any Stack Application using array implementation of Stack	AD'	Г (by	7	
in	plementing files (i) and (ii) given above) and then using linked list		-		
8. In	plementation of Stack ADT (by using files (i) and implementing file	e (iii))		
9. In	plement another Stack Application using array and linked list imple	ment	atior	ns of	f
St	ack ADT (by implementing files (iv) and using file (ii), and then by u	sing	files	(iv)	an
(i:	i))	•			
10. Q	ueue ADT – Array and linked list implementations				
11. Se	arch Tree ADT - Binary Search Tree				
12. In	plement an interesting application as separate source files and using	g any	of th	e	
se	archable ADT files developed earlier. Replace the ADT file alone w	ith ot	her		
ar	propriate ADT files. Compare the performance.				
-	plementation of Linear Search and Binary Search.				
	lick Sort				
	ТОТА	L: 4	5 PE	RI	DD
OUTCOME	S:	1			
	the course, the student should be able to:				
	n and implement C++ programs for implementing linked lists.				

- Design and implement C++ programs for implementing stacks, and queues.
- Apply good programming design methods for program development.
- Apply different data structures for solving real world problems.
- Develop sorting and searching programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos. (or)

Server with C++ compiler supporting 30 terminals or more.

SEMESTER IV

MA18454	PROBABILITY AND RANDOM PROCESSES	L	T	P	C
	g	3	1	0	4
probab	ovide the required Mathematical support in real life problems ilistic models. This can be used in several areas of science and engine	erin	g.		_
functio	uire skills in handling situations involving more than one randor ns of random variables. Iderstand and characterize phenomena which evolve with respe				
Probab	ilistic manner. erstand the relationship within and between random processes.		.0 1	me	111
	lyze the response of random inputs to linear time invariant systems.				
UNIT I	RANDOM VARIABLES			9	+ 3
Discrete and co	ontinuous random variables – Moments – Moment generating function netric, Uniform, Exponential, Gamma and Normal distributions.	ns –	Bir		
UNIT II	TWO - DIMENSIONAL RANDOM VARIABLES			0	+ 3
Joint distributi	ons – Marginal and conditional distributions – Covariance – Correlatentral limit theorem- Transformation of random variables.	tion	and		
UNIT III	RANDOM PROCESSES			0	+ 3
Classification process	– Stationary process – Poisson process – Gaussian process-Ran	dom	n te	legra	aph
UNIT IV	CORRELATIONAND SPECTRAL DENSITIES			9	+ 3
Auto correlations spectral density	on functions-Cross correlation functions – Properties –Power spectral y	den	sity	'- Cr	OSS
UNIT V	LINEAR SYSTEM WITH RANDOM INPUTS			9	+ 3
Linear time in	variant system-System transfer function-Linear systems with randout cross correlation functions of input and output	n in	put		
	TOTAL: (L:45 + T:15):	60	PE	RIO	DS
 Reprodidentify Acquir Study t 	of the course, the students will be able to luce and explain the basic concepts such as probability and random vary the distribution e skills in handling situations involving more than one random variable he characterize phenomena with respect to time in probabilistic mann	le	le a	nd	
	the relationship within and between random processes the response of random inputs to linear time invariant systems.				
Indian	S: C., "Fundamentals of Applied Probability and Random Processes' Reprint, 2007. s Jr. P.Z., "Probability Random Variables and Random Signal Pr				
	w-Hill Publishers, Fourth Edition, New Delhi, 2002.		103	, I	aid

- 1. Robertazzi, "Computer Networks and Systems: Queueing Theory and performance evaluation", Springer, 3rd Edition, 2006.
- 2. Taha. H.A., "Operations Research", Pearson Education, Asia, 8th Edition, 2007.
- 3. Trivedi.K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley and Sons, 2nd Edition, 2002.43
- 4. H.Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 5. Yates. R.D. and Goodman. D. J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd.
- 6. Veerarajan T., Probability, Statistics and Random processes, Tata McGraw-Hill Education Private Limited, Fifth Edition, New Delhi,2008

EC18401	ANALOG COMMUNICATION SYSTEMS	L	Т	P	С
		3	0	0	3
OBJECTIVI					
dem polic • To ir • To ir • To u	introduce the relevance of this course to the existing technological studies, simulations, contributions of scientist, national cies with a futuristic vision along with socio-economic impact and issues atroduce the concepts of various modulations and their spectral characteristics and significance inderstand the impact of noise on different modulations and communicate to the essential baseband signal processing techniques.	al/in es. eristi	tern cs.	atio	nal
UNIT I	AMPLITUDE MODULATION				9
	urier and Hilbert Transforms-Amplitude Modulation – AM, DSBSC,	CCB	SC	VS	-
	lysis of modulated signals-Demodulation - Square law, envel				
UNIT II	ANGLE MODULATION				9
	ation – PM and FM – Narrow band, Wideband FM - Spectral analysis Aodulators and FM Demodulators – Discriminator, PLL	s of	moc	lula	ted
UNIT III	RANDOM PROCESS				9
	iables, Central limit Theorem, Random Process, Stationary Pro	cess	25	Me	-
	Covariance functions, Power Spectral Density, Ergodic Processes, Ga				
	of a Random Process Through a LTI filter.				,
UNIT IV	NOISE PERFORMANCE				9
Noise sources	and types – Noise figure and noise temperature – Noise in cascaded sys	tem	s – 1	Varr	ow
	PSD of in-phase and quadrature noise – Noise performance in AM sy				
	n FM systems – Pre-emphasis and de-emphasis – Capture effect, thresh				
UNIT V	BASEBAND TECHNIQUES				9
speech signal	 Uniform and non-uniform quantization – Quantization noise – Comp s – PCM, DPCM, ADPCM, DM, ADM (Block Diagram Approach) iplexing– TDM, FDM 		<u> </u>		
	TOTAL:	45]	PEF	RIO	DS
 Comp conter Acqui Invest Explo techni 	S: the course, the students will be able to: rehend and appreciate the significance and role of this course in the pre- nporary world. re the knowledge on different modulation techniques. igate the effect of noise and its performance in different communication re and appreciate the significance of the different baseband signal proce- ques in communication systems. stand the role of random process in communication systems.	n sys	sten	15.	
TEXT BOOI	KS: Idy, J.Coolen, "Electronic Communications", 4 th edition PHI 2006.				

2. S.Haykin, "Communication Systems" 4th edition, John Wiley 2007.

- 1. B.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd Edition, Oxford University Press, 2007.
- 2. B.Sklar, "Digital Communications Fundamentals and Applications" 2nd Edition Pearson Education 2007.
- 3. Couch.L., "Modern Communication Systems", Pearson, 2001. J.G.Proakis, M.Salehi, "Fundamentals of Communication Systems", Pearson Education 2006.
- 4. H P Hsu, Schaum Outline Series, "Analog and Digital Communications", TMH 2006.

EC18402	SIGNALS AND SYSTEMS	L	Т	Р	С
		3	0	0	3
OBJECTIVE	ES:	-	Ţ	Ţ	-
classif • To lea • To kno	iderstand the basic properties of signal & systems and the variou fication rn Laplace Transform & Fourier transform and their properties by Z transform & DTFT and their properties	is r	neth	ods	of
	derstand the causality and stability of LTI-CT system.				
• To stu	dy the causality and stability of LTI-DT system.				
UNIT I	CLASSIFICATION OF SIGNALS AND SYSTEMS				9
	Continuous time signals (CT signals)-Discrete time signals (DT signal	$ a\rangle$	Flon	aant	
signals-Step, signals-Classi Random signa Introduction:		pera eter ems	atior min – S	ns istic tatic	on & &
Unstable.	icai & Nommear, Thire-variant & Thire-invariant, Causar & Non Ca	usa	1, 51	aute	æ
UNIT II	ANALYSIS OF CONTINUOUS TIME SIGNALS n of CT aperiodic signals by Continuous Time Fourier Transfor				9
shifting, Time	n CT Signal Analysis –Properties of Laplace transform: Linearity, Sy e scaling, Initial and final value theorem, convolution in time doma for Laplace Transform - Inverse Laplace Transform-Unilateral and Bi	in	-Reg	gion	of
UNIT III	LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS				9
function and	Equation-Block diagram representation-impulse response- rier and Laplace transforms in analysis of CT systems -relation be differential equation-Stability and causality analysis - Frequency re- putation of impulse response and transfer function using Fourier	twe spoi	en t nse	of I	fer .TI
UNIT IV	ANALYSIS OF DISCRETE TIME SIGNALS				9
Baseband Sar samples - Effe of DTFT: Li	npling: Representation of CT signal by samples – Reconstruction of C ect of under sampling – Aliasing. Fourier transform of D.T signals (DT nearity, Periodicity, Symmetry, Time shifting, Frequency shifting, n time domain, Z-Transform – Properties of z-transform: Linearity, sy	FT) Tir mr	-Pro ne s netry	opert scali v, Ti	om ies ng, me

function-Ana	lysis of Recursive & Non-Recursive systems.	
	TOTAL:	45 PERIODS

OUTCOMES:

At the end of the course, learners will be able to

- Classify signals and systems based on their properties.
- Infer the spectral characteristics of continuous time signals by applying Fourier and Laplace transform.
- Use the principles of Fourier transform and Z transform to analyze the characteristics of discrete time signals
- Determine the response of continuous and discrete time LTI systems
- Illustrate the process of sampling and the effects of under and over sampling

TEXT BOOKS:

- 1. Alan V Oppenheim, Alan S Wilsky, and S Hamid Nawab, "Signals and Systems", PHI Learning Private Limited, New Delhi, 2010.
- 2. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

- 1. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007
- 2. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2012.
- 3. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2014.

EC18403	ANALOG INTEGRATED CIRCUITS AND ITS APPLICATIONS	L	Т	Р	C
		3	0	0	3
OBJECTIV	ES:				
	roduce the basic building blocks of linear integrated circuits				
	rn the linear and non-linear applications of operational amplifiers				
	roduce the theory and applications of analog multipliers and PLL				
	derstand the concepts of waveform generation.				
• To stu	dy various special function ICs				
UNIT I	BASICS OF OPERATIONAL AMPLIFIERS				9
General oper –methods to in 741-Ideal Op	ational amplifier stages -BJT Differential amplifier analysis-Conc mprove CMRR-Current mirror and Current sources, Current sources as erational Amplifier - DC and AC performance characteristics, slew onfigurations of Op-amp-Inverting, Non inverting and Differential amp	activ rate,	ve lo Op	ads- en <i>a</i>	-IC and
UNIT II	ADDI ICATIONS OF ODED ATIONAL AMDI HEEDS				9
	APPLICATIONS OF OPERATIONAL AMPLIFIERS Nonlinear Circuits using operational amplifiers and their analysis,	Ţ			-
function gene	ANALOG TO DIGITAL AND DIGITAL TO ANALOG				9
	CONVEDTEDS				
High speed s	CONVERTERS ample and hold circuit and IC's. Types of D/A converter-Weighted	Res	isto	r R_	2R
Current drive	CONVERTERS ample and hold circuit and IC's, Types of D/A converter-Weighted on DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters				
Current drive Successive ap	ample and hold circuit and IC's, Types of D/A converter-Weighted en DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters				pe,
Current drive Successive ap UNIT IV	ample and hold circuit and IC's, Types of D/A converter-Weighted on DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters ANALOG MULTIPLIER AND PLL	e, D	Jual	slo	ре, 9
Current drive Successive ap UNIT IV Analog Mult transconducta Oscillator, Op	ample and hold circuit and IC's, Types of D/A converter-Weighted en DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters	e, D cell age	Dual	slo aria trol	pe, 9 ble led
Current drive Successive ap UNIT IV Analog Mult transconducta Oscillator, Op Applications	ample and hold circuit and IC's, Types of D/A converter-Weighted en DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters ANALOG MULTIPLIER AND PLL iplier using Emitter Coupled Transistor Pair - Gilbert Multiplier of nce technique, analog multiplier ICs and their applications, Volta- peration of the basic PLL, Closed loop analysis of PLL, Monolithic of PLL-Frequency synthesizing.	e, D cell age	Dual	slo aria trol	pe, 9 ble led 65,
Current drive Successive ap UNIT IV Analog Mult transconducta Oscillator, Op Applications of UNIT V 555 Timer, V features of T Isolation Amp	 ample and hold circuit and IC's, Types of D/A converter-Weighted on DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters ANALOG MULTIPLIER AND PLL aplier using Emitter Coupled Transistor Pair - Gilbert Multiplier of the basic PLL, Closed loop analysis of PLL, Monolithic of PLL-Frequency synthesizing. SPECIAL FUNCTION ICS oltage regulators - linear and switched mode types, Switched capacitor PS40200, TPS40210 buck and boost converters, Frequency to Voltablifiers, Video amplifiers, Fiber optics ICs and Opto couplers, Sources 	e, D cell age c PL or filt age	Dual - V Con L I ter, S	slo aria trol C 50	pe, 9 ble led 65, 9 PS, ers,
Current drive Successive ap UNIT IV Analog Mult transconducta Oscillator, Op Applications of UNIT V 555 Timer, V features of T Isolation Amp	 ample and hold circuit and IC's, Types of D/A converter-Weighted on DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters ANALOG MULTIPLIER AND PLL applier using Emitter Coupled Transistor Pair - Gilbert Multiplier of the basic PLL, Closed loop analysis of PLL, Monolithic of PLL-Frequency synthesizing. SPECIAL FUNCTION ICS oltage regulators - linear and switched mode types, Switched capacitor PS40200, TPS40210 buck and boost converters, Frequency to Voltage 	e, D cell age c PL or filt age o for l	- V Con L I ter, S	slo aria trol C 50 SMI verte ses, (pe, 9 ble 65, 9 S, ers, Op
Current drive Successive ap UNIT IV Analog Mult transconducta Oscillator, Op Applications of UNIT V 555 Timer, V features of T Isolation Amp	 ample and hold circuit and IC's, Types of D/A converter-Weighted on DAC, Switches for DAC, A/D converter - Flash, Single slop proximation, Voltage to Time and Voltage to Frequency converters ANALOG MULTIPLIER AND PLL aplier using Emitter Coupled Transistor Pair - Gilbert Multiplier of the basic PLL, Closed loop analysis of PLL, Monolithic of PLL-Frequency synthesizing. SPECIAL FUNCTION ICS oltage regulators - linear and switched mode types, Switched capacitor PS40200, TPS40210 buck and boost converters, Frequency to Voltablifiers, Video amplifiers, Fiber optics ICs and Opto couplers, Sources alysis and Low noise OP- Amps. 	e, D cell age c PL or filt age o for l	- V Con L I ter, S	slo aria trol C 50 SMI verte ses, (pe, 9 ble 65, 9 S, ers, Op

Elucidate and design the linear and non-linear applications of an opamp and special application Ics.

- Classify and comprehend the working principle of data converters.
- Illustrate the function of application specific ICs such as Analog multiplier,PLL and its application in communication.
- Explain the working of multivibrators using IC 555,the special function ICs such as Voltage regulators,

TEXT BOOKS:

- 1. D.Roy Choudhry, Shail Jain, —Linear Integrated Circuits, New Age International Pvt. Ltd., 2018, Fifth Edition.
- 2. Sergio Franco, —Design with Operational Amplifiers and Analog Integrated Circuits^I, 4th Edition, Tata McGraw-Hill, 2016.

- 1. B.S.Sonde, —System design using Integrated Circuits, 2nd Edition, New Age Pub, 2001.
- 2. Robert F.Coughlin, Frederick F.Driscoll, —Operational Amplifiers and Linear Integrated Circuits, Sixth Edition, PHI, 2001.
- 3. Gray and Meyer, —Analysis and Design of Analog Integrated Circuits^{II}, Wiley International, 5th Edition,2009.
- 4. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.
- 5. Ramakant A. Gayakwad, —OP-AMP and Linear ICsl, 4th Edition, Prentice Hall / Pearson Education, 2015.
- 6. William D.Stanley, —Operational Amplifiers with Linear Integrated Circuits^{II}, Pearson Education, 4th Edition, 2001.

EC18404		L	Т	Р	C
<u> </u>		3	0	0	3
OBJECTIV					
	troduce the elements of control system and various representations.				
-	ovide knowledge on the time response and stability of systems				
	troduce the various frequency response plots and analyze the stability of	-			
	troduce state variable representation of physical systems and study the ef	ttec	t of	stat	e
feedba					
• 10 de	sign various types of compensators.				
UNIT I	CONTROL SYSTEM MODELING & SYSTEM REPRESENTATION				9
Basic Elemen	nts of Control System – Open loop and Closed loop systems - Differe	ntia	l ec	uat	on
	ction, Modeling of Electric systems, Translational and Rotational mecha				
	nction - AC & DC Servomotor and Synchros -Block diagram reduction				
UNIT II	TIME RESPONSE AND STABILITY ANALYSIS				9
	e analysis - First Order Systems - Impulse and Step Response analysis of				
•	Steady state errors- Concepts of Stability-Routh-Hurwitz Criterion	I-Ro	oot	Lo	cus
Technique- A	Application of Root Locus Diagram- Relative Stability.				
UNIT III	FREQUENCY RESPONSE AND STABILITY ANALYSIS	100		lom	-
Frequency re	FREQUENCY RESPONSE AND STABILITY ANALYSIS sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyo				
Frequency re and time don criterion.	esponse – Frequency domain specifications - Correlation between frequencies – Stability analysis - Bode plot – Polar plot - Nyo				ain
Frequency re and time don criterion.	esponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyconstant STATE VARIABLE ANALYSIS	quis	st St	abil	ain ity 9
Frequency re and time don criterion. UNIT IV State space re	esponse – Frequency domain specifications - Correlation between frequencies – Stability analysis - Bode plot – Polar plot - Nyo	quis fun	st St	n fr	ain ity 9
Frequency re and time don criterion. UNIT IV State space re	 Sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyor STATE VARIABLE ANALYSIS STATE VARIABLE ANALYSIS Spresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Continuous 	quis fun	st St	n fr	ain ity 9
Frequency re and time don criterion. UNIT IV State space re State Variabl Observability	sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyo STATE VARIABLE ANALYSIS epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Contra-	quis fun	st St	n fr	ain ity 9 om
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V	Seponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyor STATE VARIABLE ANALYSIS Expresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control. COMPENSATOR DESIGN	quis fun rolla	ctio	n fre	ain ity 9 om nd 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator	 Sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyor STATE VARIABLE ANALYSIS STATE VARIABLE ANALYSIS Spresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control COMPENSATOR DESIGN rs - Effect of adding poles and zeros - Lag, lead and lag-lead compensator 	quis fun rolla	ctio	n fre	ain ity 9 om nd 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator	 Sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyor State VARIABLE ANALYSIS STATE VARIABLE ANALYSIS Epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control. COMPENSATOR DESIGN S - Effect of adding poles and zeros - Lag, lead and lag-lead compensator Design of State feedback controller - P, PI, PD and PID Controller. 	fun rolla s de	ctio abili	n fraity a	ain ity 9 om nd 9 ing
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator	 Sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyor STATE VARIABLE ANALYSIS STATE VARIABLE ANALYSIS Spresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control COMPENSATOR DESIGN rs - Effect of adding poles and zeros - Lag, lead and lag-lead compensator 	fun rolla s de	ctio abili	n fraity a	ain ity 9 om nd 9 ing
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator	sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyon STATE VARIABLE ANALYSIS epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control 7.	fun rolla s de	ctio abili	n fraity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – E	sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyon STATE VARIABLE ANALYSIS epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control 7.	fun rolla s de	ctio abili	n fraity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – I OUTCOME At the end of	sponse – Frequency domain specifications - Correlation between frequencies of the specifications – Stability analysis - Bode plot – Polar plot - Nyon STATE VARIABLE ANALYSIS epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control. COMPENSATOR DESIGN rs - Effect of adding poles and zeros - Lag, lead and lag-lead compensator Design of State feedback controller - P, PI, PD and PID Controller. S:	fun rolla s de	ctio abili	n fraity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – I OUTCOME At the end of • Repre	sponse – Frequency domain specifications - Correlation between frequencies and specifications – Stability analysis - Bode plot – Polar plot - Nyon STATE VARIABLE ANALYSIS epresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control COMPENSATOR DESIGN rs - Effect of adding poles and zeros - Lag, lead and lag-lead compensator Design of State feedback controller - P, PI, PD and PID Controller. S: the course, learners will be able to	fun fun rolli s de	ctio abili	n fra ity <i>i</i>	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – I OUTCOME At the end of • Repre • Detern • Detern	sponse – Frequency domain specifications - Correlation between frequencies of the state of the state equations – Transfer e Representation – Solutions of the state equations - Transfer e Representation – Solutions of the state equations - Concepts of Control. COMPENSATOR DESIGN s - Effect of adding poles and zeros - Lag, lead and lag-lead compensator Design of State feedback controller - P, PI, PD and PID Controller. S: the course, learners will be able to esent the mathematical model of control systems. mine the time domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine termine the frequency domain characteristics of control systems using various termine termi	fun rolla s de 45 l	ctio abili esign PER	n freity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – E OUTCOME At the end of • Repre • Detern • Sketcl	sponse – Frequency domain specifications - Correlation between frequencing nain specifications – Stability analysis - Bode plot – Polar plot - Nyon State specifications – Stability analysis - Bode plot – Polar plot - Nyon State VARIABLE ANALYSIS expresentation of Continuous Time systems – State equations – Transfer e Representation – Solutions of the state equations - Concepts of Control - Solutions of the state equations - Concepts of Control - Solutions of the state equations - Concepts of Control - Solutions of the state equations - Concepts of Control - Solutions of the state equations - Concepts of Control - Solutions of State feedback controller - P, PI, PD and PID Controller TOTAL: - Solutions - Solutions of control systems State equations - Solutions expression of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics of control systems using various termine the representation of control systems in state space and their characteristics is control systems using various termine the representation of control systems in state space and their characteristics is control systems using various termine the representation of control systems in state space and their characteristics is control systems using	fun rolla s de 45 l	ctio abili esign PER	n freity a	air ity on nc
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – E OUTCOME At the end of • Repre • Detern • Sketcl	sponse – Frequency domain specifications - Correlation between frequencies of the state of the state equations – Transfer e Representation – Solutions of the state equations - Transfer e Representation – Solutions of the state equations - Concepts of Control. COMPENSATOR DESIGN s - Effect of adding poles and zeros - Lag, lead and lag-lead compensator Design of State feedback controller - P, PI, PD and PID Controller. S: the course, learners will be able to esent the mathematical model of control systems. mine the time domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine the frequency domain characteristics of control systems using various termine termine the frequency domain characteristics of control systems using various termine termi	fun rolla s de 45 l	ctio abili esign PER	n freity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – I OUTCOME At the end of • Repre • Detern • Detern • Sketcl • Desig	Signations – Frequency domain specifications - Correlation between frequencing and specifications – Stability analysis - Bode plot – Polar plot - Nydes State State State State Analysis - Bode plot – Polar plot - Nydes State Stat	fun rolla s de 45 l	ctio abili esign PER	n freity a	air ity 9 on inc 9
Frequency re and time dom criterion. UNIT IV State space re State Variabl Observability UNIT V Compensator Bode plot – I OUTCOME At the end of • Repre • Detern • Detern • Sketcl • Desig	Signations – Frequency domain specifications - Correlation between frequencing and specifications – Stability analysis - Bode plot – Polar plot - Nydes State State State State Analysis - Bode plot – Polar plot - Nydes State Stat	fun roll s de 45 l	ique ique plot	n fro ity a n us: RIO	ity g on inc DS

- 2. Norman S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015
- 3. Benjamin C. Kuo, "Automatic Control systems", Wiley, 2014

- 1. M. Gopal, "Control Systems, Principles and Design", 4th Edition, Tata McGraw Hill, New Delhi, 2012.
- 2. S.K.Bhattacharya, "Control System Engineering", 3rd Edition, Pearson, 2013.
- 3. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Prentice Hall, 2012.
- 4. K. Ogata, "Modern Control Engineering", 5th edition, PHI, 2012.
- 5. NPTEL Online Courses on "Control Engineering" and "Digital Control Systems".

	MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEM DESIGN	L	Т	Р	C
		3	0	0	3
OBJECTIVI	ES:	-	Ţ	÷	-
• To stu	dy the Architecture, assembly language programming of 8085, 8086 m	icro	proc	cesso	ors
	urn the system bus structure of 8086 microprocessors.		L		
	In the design aspects of peripherals and its interfacing.				
	dy the architecture and assembly language programming of 8051 micro	con	trol	ler	
	sign and implement interfacing units with 8051 microcontroller based s				
UNIT I	THE 8086 MICROPROCESSOR				(
					_
	 8085 Microprocessor Architecture - Introduction to 8086 Mic Addressing modes - Instruction set and assembler directives – Asser 	-			
	- Stacks - Procedures – Macros – Interrupts and interrupt service routin				
String Manip		105	- D y		.11
UNIT II	8086 SYSTEM BUS STRUCTURE		0.0.1		
-	- Basic configurations - System bus timing -System design usin	-			
	– Introduction to Multiprogramming – System Bus Structure – N	Vlul	ipro	oces	SC
configuration	s – Coprocessor - Closely coupled and loosely Coupled configurations				
UNIT III	PERIPHERALS AND INTERFACING				
Programmabl	e Peripheral Interface (8255), Keyboard display controller (8279), A	DC	and	I DA	4(
	grammable Timer Controller (8254), Programmable interrupt controller			, Ser	
Interface, Pro				, Sei	
Interface, Pro Communicati	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251).			, Sei	ia
Interface, Pro Communicati UNIT IV	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER	(82	.59),		ia
Interface, Pro Communicati UNIT IV 8051 – Arch	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251).	essii	.59), ng 1	nod	ia es
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c	essii	.59), ng 1	nod	ria es
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN	essin	59), ng 1 nun	nod icati	es o
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c	essinomr code	59), ng 1 nun er, S	mod icati	es o
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en	code	59), ng 1 num er, S otoc	mod icati	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL:	code	59), ng 1 num er, S otoc	mod icati	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en totor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S:	code	59), ng 1 num er, S otoc	mod icati	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to	(82 esssin omr codd <u>C pr 45</u>]	59), ng 1 nun er, S otoc	mod icati Stepp col	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en totor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S:	(82 esssin omr codd <u>C pr 45</u>]	59), ng 1 nun er, S otoc	mod icati Stepp col	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel and in	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to op programs in 8086 microprocessor by understanding its architecture,	(82 esssin omr codd <u>C pr 45</u>]	59), ng 1 nun er, S otoc	mod icati Stepp col	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel and in • Sketcl	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to op programs in 8086 microprocessor by understanding its architecture, terrupt process.	(82 esssin omr codd <u>C pr 45</u>]	59), ng 1 nun er, S otoc	mod icati Stepp col	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel and in • Sketcl • Desig	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to op programs in 8086 microprocessor by understanding its architecture, terrupt process. h the system bus structure of 8086 and multiprocessor configurations.	(82 essiin codd <u>C pr</u> 45]	59), ng 1 nun er, S otoc PER	mod icati	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel and in • Sketcl • Desig • Devel set.	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en- lotor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to op programs in 8086 microprocessor by understanding its architecture, terrupt process. h the system bus structure of 8086 and multiprocessor configurations. n I/O and Memory interfacing units. op programs in 8051 microcontroller by understanding its architecture a	(82 essiin codd <u>C pr</u> 45]	59), ng 1 nun er, S otoc PER	mod icati	
Interface, Pro Communicati UNIT IV 8051 – Arch Assembly lan UNIT V Interfacing m Motor, DC M OUTCOME At the end of • Devel and in • Sketcl • Desig • Devel set.	grammable Timer Controller (8254), Programmable interrupt controller on Interface (8251). MICROCONTROLLER nitecture, Special Function Registers (SFRs), Instruction set, Addre guage programming, I/O Ports, Timers / counters, Interrupts and serial c MICROCONTROLLER BASED SYSTEM DESIGN atrix display, (16x2) LCD, High power devices, Optical motor shaft en totor speed Control using PWM, RTC and EEPROM interface using I20 TOTAL: S: the course, learners will be able to op programs in 8086 microprocessor by understanding its architecture, terrupt process. h the system bus structure of 8086 and multiprocessor configurations. n I/O and Memory interfacing units.	(82 essiin codd <u>C pr</u> 45]	59), ng 1 nun er, S otoc PER	mod icati stepp col RIO	

- 1. A.K. Ray, K.M. Bhurchandi, Advanced Microprocessor and Peripherals, Second edition, Tata McGraw-Hill, 2010.
- 2. Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Designl, Second Edition, Prentice Hall of India, 2007.
- Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D. McKinley, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Education 2008. Fifth impression 2011

- 1. Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085". Sixth edition, Penram International Publishing 2012.
- 2. Douglas V. Hall, "Microprocessor and Interfacing, Programming and Hardware". Revised second Edition 2006, eleventh reprint 2010. Tata McGraw Hill.
- 3. Krishna Kant, "Microprocessor and Microcontroller Architecture, programming and system design using 8085, 8086, 8051 and 8096, PHI, 2007, Seventh Reprint, 2011.
- 4. Kenneth J. Ayala., "The 8051 Microcontroller, 3rd Edition, Thompson Delmar Learning, 2012.
- 5. Barry B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", Pearson Education, 2007. Second impression 2010.

EC18411	ANALOG INTEGRATED CIRCUITS AND SIMULATION LABORATORY	L	Т	Р	С
OBJECTIV	FS.	0	0	3	1.5
	pose the students to linear and integrated circuits				
	derstand the basics of linear integrated circuits and available ICs				
	derstand characteristics of operational amplifier.				
• To ap	ply operational amplifiers in linear and nonlinear applications.				
• To ac	quire the basic knowledge of special function IC.				
	e SPICE software for circuit design				
	XPERIMENTS:				
-	n of inverting and non-inverting amplifier using Op-amp.				
	n of integrator and differentiator using Op-amp.				
-	n of Differential amplifier using Op-amp. n of instrumentation amplifier using Op-amp.				
	n of active low-pass, high-pass and band-pass filters using Op-amp.				
0	n of Astable and Monostable multivibrators using Op-amp.				
U	n of Schmitt Trigger using Op-amp.				
U	n of RC phase shift and Wien Bridge Oscillator Using Op-amp.				
9. Appli	cations of NE555 Timer.				
	characteristics and its use as Frequency Multiplier.				
	ower supply design using LM317 and LM723.				
	ation of experiments 3,4,5,6,7,8 using PSPICE.	1			•
Note: Plottin by students.	ng of drawings must be made for each exercise and attached to the	ne re	corc	ls wr	itten
by students.	ТОТ		45 1	PER	IODS
OUTCOME					
	the course, learners will be able to				
• Devel	op a various linear and non linear applications using Operational Ar	nplif	ier.		
Const	ruct Astable and Monostable Multivibrator using NE555 Timer.				
• Exam	ine the Characteristics and applications of PLL.				
U	n DC Power supply using LM317 and LM723.				
• Simul	ate and Validate the results of various operational amplifier applicat	ions	usin	g PS	PICE
LIST OF EC	UIPMENTS FOR A BATCH OF 30 STUDENTS:				
	(Min 30MHz)		15	Nos	•
2. Signa	l Generator /Function Generators (2 MHz)		15	Nos	•
3. Dual	Regulated Power Supplies ($0 - 30V$)		15	Nos	•
4. Digita	al Multimeter		15	Nos	•
5. IC tes	ter		5	Nos.	
	alone desktops PC			Nos	•
softw				15	
-	onents and Accessories: Op-Amps, Resistors, Capacitors, diodes, diodes, Bread Boards, Transformers, wires, Power transistors,				
	tiometer, LEDs.				

EC18412	MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEM DESIGN LABORATORY	L	Т	Р	С
		0	0	3	1.5
OBJECTIVE					
• To w	rite Assembly Language Program for arithmetic and logical ope	ration	s in 8	085 ai	nd
8086					
• To w	rite Assembly Language Program for arithmetic and logical operation	ration	s in 8	051.	
• To ur	derstand string manipulation instruction using 8086.				
• To ur	derstand various peripheral interfacing techniques using 8086.				
• To be	e familiar with MASM				
LIST OF EX	ERCISES USING 8085 Kits				
	Arithmetic, Logical operations and move a data block without or	verlap).		
LIST OF EX	ERCISES USING 8086 kits and MASM				
2. Decim	al Arithmetic, Code conversion, and Matrix operations.				
3. String	manipulations, Sorting and Searching				
4. Counte	ers and Time Delay				
	nd Interfacing Experiments				
	light control				
	r motor control				
7. Digita					
•	pard and Display				
	interface and Parallel interface				
10. A/D at	nd D/A interface and Waveform Generation				
LICT OF FY	ERCISES USING 8051 kits and MASM				
	Arithmetic, Logical operations, Square and Cube program s complement of a number				
	rsion of unpacked BCD to ASCII				
13. Conve		тат	· 45 I	PERIC	
		TAL	. 43 1		JDC
OUTCOMES	· · · · · · · · · · · · · · · · · · ·				
	he course, learners will be able to				
	op programs using 8086 microprocessor.				
	ne the performance of I/O devices interfacing with 8086 process	or			
	assembly language programming problems using MASM.	501.			
	op programs using 8085 microprocessor.				
	pp programs using 8051 microcontroller.				
	UIPMENTS FOR A BATCH OF 30 STUDENTS:		14	5 Nos.	
	: 8086 Microprocessor development kits				
	: 8051Microcontroller development kits			5 Nos.	
	: Interfacing Units		Eac	h 3 No	JS.
	Intel Desktop Systems with MASM 8086 Assembler			10	
SOFTWARE:	8051 Cross Assembler			10	

SEMESTER V

EC18501	DIGITAL COMMUNICATION	L	Т	Р	С
		3	1	0	4
OBJECTIV	ES:				
 To kn 	ow the principles of sampling & quantization				
• To stu	dy the various waveform coding schemes				
• To lea	rn the various baseband transmission schemes				
• To un	derstand the various Band pass signaling schemes				
	ow the fundamentals of channel coding				
UNIT I	BASEBAND TRANSMISSION TECHNIQUES: CODING			9 -	+ 3
	& Entropy - Discrete Memoryless Channel - Mutual Information & i				
Channel Cap	acity Theorem - Hartley-Shannon Law - Source Coding Theorem	- H	uffr	nan	&
Shannon-Fan	o Codes				
UNIT II	BASEBAND TRANSMISSION TECHNIQUES:			9.	+ 3
	FORMATTING				
	mpling - Aliasing - Signal Reconstruction - Quantization - Types of				
,	Non-uniform) WAVEFORM & MODEL-BASED ENCODING PCM -				
	Differential PCM - Adaptive Delta Modulation - Spectral Wavefor	m E	Enco	odin	g -
Subband Cod	ing - Model-based Encoding				
UNIT III	BASEBAND PULSE TRANSMISSION				+ 3
	Line codes- Power Spectral Density of Unipolar / Polar RZ & NRZ -				
	ISI – Nyquist criterion for distortion less transmission – Pulse shaping	g — (Corr	elat	lve
coding - Mar	y schemes – Eye pattern – Equalization				
UNIT IV	PASSBAND DIGITAL TRANSMISSION			9.	+ 3
	presentation of signals - Generation, detection, PSD & BER of Coherent	RP	<u>ck</u>		
	arrier Synchronization - structure of Non-coherent Receivers - Princip				
	ciple of M-ary Modulation – Direct Sequence and Frequency Hop Spi				
Techniques		cuu	SP		
UNIT V	ERROR CONTROL CODING			9.	+ 3
	ng theorem - Linear Block codes - Hamming codes - Cyclic codes -	Cor	vol	utio	nal
codes - Viterl					
	TOTAL: (L: 45 + T: 15):	60 1	PER	RIO	DS
OUTCOME	S:				
At the end of	the course, learners will be able to				
 Devel 	op source coding schemes for real time applications.				
• Devel	op PCM systems.				
• Distin	guish the base band transmission schemes and band pass signaling sche	mes	s for	any	,
	nunication system.			-	
• Deter	mine and manipulate the spectral characteristics of band pass signaling s	sche	mes	s and	1
	noise performance of a communication system.				
 David 	op error control coding schemes for real time applications.				
• Devel	op entor country county schemes for rear time applications.				

2. Ar	OOKS: imon Haykin, "Communication Systems", 4 th edition, Wiley Publications, 2013. mitabha Bhattacharya, "Digital Communication", TMH, Ninth Reprint 2017.
2. Ar	
	mitabha Bhattacharya, "Digital Communication", TMH, Ninth Reprint 2017.
REFERE	ENCES:
1. B.	. Sklar, "Digital Communication Fundamentals and Applications", 2 nd Edition, Pearson
Ed	ducation, 2009
2. B.	.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd Edition, Oxford
Ur	niversity Press 2007.
3. H	P Hsu, "Schaum Outline Series - Analog and Digital Communications", TMH 2006.
4. J.C	G Proakis, "Digital Communication", 4 th Edition, Tata Mc Graw Hill Company, 2001.

EC18502	PRINCIPLES OF DIGITAL SIGNAL PROCESSING	L	Т	Р	С
		3	1	0	4
OBJECTIVE	ES:				
• To lea	rn discrete Fourier transform and its properties				
• To kn	ow the characteristics and design of FIR filter.				
• To dea	sign a IIR filters to filter undesired signals.				
• To une	derstand Finite word length effects.				
• To stu	dy the concept of Multirate Signal Processing and its applications.				
UNIT I	DISCRETE FOURIER TRANSFORM			9	+ 3
	ges – .Introduction to DFT – Properties of DFT – Circular Convolu ed on DFT – FFT Algorithms – Decimation in time Algorithms, gorithms.				
TINHT H	DECICN OF FID FILTED			0	. 2
UNIT II	DESIGN OF FIR FILTER FIR filter – Filter design (Low Pass, High Pass filters) using window	lina	taal		+ 3
(Rectangular	Window, Hamming Window, Hanning Window), Frequency samplir ructures of FIR Filter - Transversal, Poly-phase and Linear phase struc	ng te	chn		
				0	
UNIT III	DESIGN OF IIR FILTER s of Analog filters – Butterworth filters, Chebyshev Type I filters. Tra				+ <u>3</u>
	s into equivalent digital filters using Impulse invariant method n method- Realization structures for IIR filters – direct, cascade, parall				ear
UNIT IV	FINITE WORD LENGTH EFFECTS			9	+ 3
	and floating point number representations – ADC – Quantization-				
	ors - Quantization noise – coefficient quantization error – Product quantize power - limit cycle oscillations due to product round off and over caling.				
UNIT V	MULTIRATE SIGNAL PROCESSING				+ 3
	Decimation, Interpolation, Sampling rate conversion by a rational factor of sampling rate conversion - Applications of Multirate signal proce TOTAL: (L: 45 + T: 15):	ssin	g.		U
Ουταοια		1			
 Deter trans Interpresponse Obse Asse 	f the course, learners will be able to rmine the frequency spectrum of Discrete time signal using Discrete fo form. pret the characteristics of FIR filters and articulate the design of finite i onse filters for filtering undesired signals rve the IIR filter characteristics and manipulate IIR filters in real time ss the word length effect in signal processing systems. pulate multirate signal processing and observe its characteristics.	mpu	ılse	ions	
TEXT BOO	KS: At the end of the course, learners will be able to				
1. John	G. Proakis& Dimitris G.Manolakis, "Digital Signal Procesples, Algorithms & Applications", Fourth Edition, Pearson Education		-	- e Ha	ıll,

2007.

2. Andreas Antoniou, -Digital Signal Processingl, Tata Mc Graw Hill, 2006.

- 1. Emmanuel C. Ifeachor, &Barrie.W. Jervis, "Digital Signal Processing", Second Edition, Pearson Education / Prentice Hall, 2002.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th Indian Reprint, Pearson, 2004.

EC18503	COMPUTER ORGANIZATION AND DESIGN	L T P C 3 1 0 4
OBJECTIVE	78.	3 1 0 4
	Inderstand the basic structure and operation of computers.	
	ain knowledge about the various arithmetic operations that performed b	V ALU.
U	spose the students to the concept of Pipelining.	, i i i i i i i i i i i i i i i i i i i
	troduce the students to the major ideas and concepts in parallel process	ing.
	escribe hierarchical memory systems including cache memories and vir	0
		<u> </u>
UNIT I	OVERVIEW AND INSTRUCTIONS	9+3
Eight ideas in	Computer Architecture – Components – Technology – Performance –	- Power wall –
	s to multiprocessors; Instructions – operations and operands –	
instructions -	Logical operations - Control operations - Addressing and addressing r	nodes.
UNIT II	ARITHMETIC OPERATIONS	9+3
	on and subtraction – Multiplication – Division – Floating Point operati	ons –Subword
parallelism.		
UNIT III	BRACESSOR AND CONTROL LINUT	0 + 2
	PROCESSOR AND CONTROL UNIT mplementation – Building datapath – Control Implementation scheme	9+3
	apath and control – Handling Data hazards & Control hazards – Excepti	
	ipati and control – Handring Data nazarus & Control nazarus – Except	0115.
UNIT IV	PARALLEL PROCESSORS	9+3
UNIT IV Instruction-lev	PARALLEL PROCESSORS vel-parallelism – Parallel processing challenges – Flynn's classificatio	
Instruction-lev	PARALLEL PROCESSORS vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors	
Instruction-lev Multithreadin	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors	on – Hardware
Instruction-lev Multithreadin UNIT V	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS	9+3
Instruction-lev Multithreadin UNIT V Memory hier	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp	on – Hardware 9 + 3 proving cache
Instruction-lev Multithreadin UNIT V Memory hiers performance -	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA	on – Hardware 9 + 3 proving cache
Instruction-lev Multithreadin UNIT V Memory hier	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp · Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s.	on – Hardware 9 + 3 proving cache and interrupts,
Instruction-lev Multithreadin UNIT V Memory hiers performance -	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA	on – Hardware 9 + 3 proving cache and interrupts,
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp - Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15):	on – Hardware 9 + 3 proving cache and interrupts,
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S:	on – Hardware 9 + 3 proving cache and interrupts,
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imp - Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to	on – Hardware 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of • Comp	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors <u>MEMORY AND I/O SYSTEMS</u> archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. <u>TOTAL: (L: 45 + T: 15):</u> S: the course, learners will be able to ute the performance of various computer architecture and to interpret th	on – Hardware 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of • Compu- instruction-lev • Compu-	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors <u>MEMORY AND I/O SYSTEMS</u> archy - Memory technologies – Cache basics – Measuring and im- Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. <u>TOTAL: (L: 45 + T: 15):</u> S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor.	n – Hardware 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of • Compu- instruct • Design	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors <u>MEMORY AND I/O SYSTEMS</u> archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. <u>TOTAL: (L: 45 + T: 15):</u> S: the course, learners will be able to ute the performance of various computer architecture and to interpret th	n – Hardware 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of • Compu- instruct • Design compu-	vel-parallelism – Parallel processing challenges – Flynn's classificatio g – Multicore processors <u>MEMORY AND I/O SYSTEMS</u> archy - Memory technologies – Cache basics – Measuring and imp Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. <u>TOTAL: (L: 45 + T: 15):</u> S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic in architecture and Logic in the course of various arithmetic circuits for an Arithmetic and Logic in the course of the cour	n – Hardware 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of OUTCOMES At the end of OUTCOMES	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and im- Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic to ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems	9 + 3 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of OUTCOMES At the end of OUTCOMES At the end of OUTCOMES At the end of OUTCOMES At the compu- instruct OUTCOMES At the compu- instruct OUTCOMES Contro	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and import Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic to ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems prize various paralleling process techniques and its challenges and also	9 + 3 9 + 3 proving cache and interrupts, 60 PERIODS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of Outread At the end of Outread Ou	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and imposed - Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic of ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems prize various paralleling process techniques and its challenges and also is multithreading techniques	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of OUTCOMES At the end of Outread Outread At the end of Outread At the end of Outread At the end of Outread Outread At the end of Outread At the end of Outread At the end of Outread Outread At the end of Outread Outread At the end of Outread Outread Outread At the end of Outread Outread At the end of Outread Outread Outread Outread Outread At the end of Outread At the end of Outread Outread Outread Outread Outread Outread Outread At the end of Outread Out	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and im- Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic n ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems orize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of Outread At the end of Outread Ou	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and im- Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems prize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred ectural design	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of OUTCOMES At the end of OUTCOMES At the end of Outread OUTCOMES At the end of Outread Outread Assess Compu Assess Contro Organ archite	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and import Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic to ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems orize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred ectural design KS:	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish for computer
Instruction-lev Multithreadin UNIT V Memory hier performance - I/O processors OUTCOMES At the end of OUTCOMES At the compu- instruct OUTCOMES At the end of Compu- instruct OUTCOMES At the end of Compu- compu- Compu- Compu- Compu- Contro Variou At the Compu- Co	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and import Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic to ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems prize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred ectural design KS: A. Patterson and John L. Hennessey, "Computer organization and design	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish for computer
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of Outread At the end of Outread Ou	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and import of Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. S: TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic to ting systems sing various pipelining techniques to implement it for better datapath color to a computing systems orize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred bectural design KS: A. Patterson and John L. Hennessey, "Computer organization and design Morgan kauffman, Fifth Edition, 2014.	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish for computer gn", MIPS
Instruction-lev Multithreadin UNIT V Memory hiera performance - I/O processors OUTCOMES At the end of Outread At the end of Outread Ou	vel-parallelism – Parallel processing challenges – Flynn's classification g – Multicore processors MEMORY AND I/O SYSTEMS archy - Memory technologies – Cache basics – Measuring and im- Virtual memory, TLBs - Input/output system, Programmed I/O, DMA s. TOTAL: (L: 45 + T: 15): S: the course, learners will be able to ute the performance of various computer architecture and to interpret the ction set of MIPS processor. n and construct various arithmetic circuits for an Arithmetic and Logic of ting systems sing various pipelining techniques to implement it for better datapath co ol units of computing systems orize various paralleling process techniques and its challenges and also is multithreading techniques ize the different Memory technologies and I/O systems to be preferred ectural design KS: A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design KS: A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. A. Patterson and John L. Hennessey, "Computer organization and design Market S. Market S.	9 + 3 proving cache and interrupts, 60 PERIODS ne units of onstruction for to distinguish for computer gn", MIPS

- 1. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", Tata McGraw Hill, Second Edition, 2017
- 2. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 2012.

EC18504	TRANSMISSION LINES AND WAVEGUIDES	L	Τ	P	С
		3	1	0	4
OBJECTIVI					
	o give insight about Passive filters.	100	tha	100	
	o introduce the various types of transmission lines and to discussociated.	188	the	108	ses
	b give thorough understanding about high frequency line, power a	nd	imn	eda	nce
	easurements.		mp	cuu	
	o impart technical knowledge in impedance matching using smith chart				
	o impart knowledge on waveguide and cavity resonators.				
UNIT I	FILTERS				+ 3
	impedance of symmetrical networks - filter fundamentals, Design of fi , High Pass, Band Pass, Band Elimination, m- derived sections - low p ers.				
UNIT II	TRANSMISSION LINE THEORY			9	+ 3
	y of Transmission lines-Types of transmission line - general solution	i -]	Гhe		
Loading and -calculation o	ength, velocity of propagation - Waveform distortion - the distort different methods of loading - Line not terminated in ZO - Reflect f current, voltage, power delivered and efficiency of transmission - Inp Dpen and short circuited lines - reflection factor and reflection loss.	ion	coe	ffici	ent
UNIT III	HIGH FREQUENCY TRANSMISSION LINES				+ 3
current on th	line equations at radio frequencies - Line constants of Zero dissipatione dissipationless line, Standing Waves, Nodes, Standing Wave the dissipation-less line - Open and short-circuited linesReflection l	Rat	io -	<u> </u>	
UNIT IV	IMPEDANCE MATCHING IN HIGH FREQUENCY LINES			9	+ 3
Impedance m	hatching: $\lambda/8$, $\lambda/2$ lines, Quarter wave transformer- Basics of Ta atching by stubs - Single stub and double stub matching - Smith chang Smith chart -Single and double stub matching using Smith chart.	-			
UNIT V	WAVE GUIDES AND CAVITY RESONATORS			9	+ 3
Introduction t waves in Red Bessel's diffe	o TM, TE and TEM waves, TM and TE waves between parallel plate ctangular wave guides, Impossibility of TEM waves in Rectangular erential equation and Bessel function, TM and TE waves in Circular nd circular cavity Resonators.	r W	/ave ave	and guic guic	TE les, les,
	TOTAL: (L: 45 + T: 15):	60	PEI	KIO	DS
OUTCOMES	z.				
	5. the course, learners will be able to				
• Interp	ret the filter fundamentals and familiarize with types and techniques of in line theory and classify transmission lines. Assess distortionless trans	-			
• Expre	ss transmission lines at high frequency and assess the performance. s performance of lines implementing impedance matching techniques u	sing	g Sn	nith	
	in waveguides and Cavity Resonators and categorise them.				

TEXT BOOKS:

- 1. John D.Ryder, "Networks, lines and fields", Prentice Hall of India, 2nd Edition, 2006.
- **2.** E.C.Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating System, Prentice Hall of India, 2006.

- 1. G.S.N Raju "Electromagnetic Field Theory and Transmission Lines Pearson Education, 2005.
- 2. R. K. Shevgaonkar, " Electromagnetic Waves, Tata Mc Graw Hill Publications, 2006
- 3. Umesh Sinha, "Transmission Lines and Networks: Networks, Filters and Transmission lines" Satya Prakashan, Publication, 2010.

GE18551	PRINCIPLES OF MANAGEMENT (Common to EC, AE, BT, EE and ME)	L	Т	Р	С
	(Common to EC, AE, D1, EE and ME)	3	0	0	3
OBJECTIVES :		5	U	U	5
	students to study the evolution of management, functions and	nrii	ncii	oles	of
	I to learn the application of management principles in an organization.	pm	licij	105	01
UNIT I	INTRODUCTION TO MANAGEMENT AND				9
	ORGANIZATIONS				,
Definition of Ma	nagement –Nature of Management-Management as Science or Art-Ma	anag	em	ent a	nd
	Evolution of Management-Contribution of Taylor and Fayol- types	-			
	and skills - Organization Culture – Dimensions, strong and weak cul				
	ecific and general environment – Understanding the global environme				
UNIT II	PLANNING				9
	ose of planning – Steps Involved in planning process – Types of plans	– ma	ana	gem	ent
	Strategic management process- types of corporate strategies - Plann				
	casting – Benchmarking - Decision making steps and process	υ			
UNIT III	ORGANISING				9
	ose - Formal and informal organization - Line and staff authority -	- del	ega	tion	of
	rtmentalization by different strategies - centralization and decentraliz				
• •	Resource Management – External factors - HR Planning - Re			-	
	election – selection tools – Orientation – Employee training - Employe				
	Appraisal methods - Compensation and benefits.				
UNIT IV	DIRECTING				9
Foundations of	individual and group behaviour - motivation - motivation theories	– m	otiv	atio	nal
	o satisfaction – job enrichment – leadership – types and theories o				
	- process of communication – barrier in communication – effective con				
UNIT V	CONTROLLING				9
Types of control	systems: Market, Bureaucratic, Clan- Importance of control - process	of	con	troll	ing
	trol: Feed forward, Concurrent, Feedback -Qualities of effective con				
	control – controlling for organizational performance – control techni				
	ion and review technique – Information technology in controlling: op	-		-	
challenges.					
	TOTAL: (L: 45):	45 I	PE	RIO	DS
OUTCOMES:					
At the end of the	course, learners will be able to				
• Apply m	anagerial approaches and practice managerial roles as demanded by the	e cur	ren	t	
environn	nent of the organization.				
Develop	planning process and apply strategies, planning tools and techniques to	o atta	in		
organiza	ional objectives.				
		t tas	ks.		
U	activities in the organization and execute human resource management	ii ius			
Organize	activities in the organization and execute human resource management e motivational and leadership techniques and utilize communication m				
OrganizeApply th	e motivational and leadership techniques and utilize communication m				
OrganizeApply th in the org	e motivational and leadership techniques and utilize communication m ganization.	etho			
 Organize Apply th in the org Apply co 	e motivational and leadership techniques and utilize communication m ganization. ntrol techniques to monitor the progress of activities and to take correct	etho			
 Organize Apply th in the org Apply co measures 	e motivational and leadership techniques and utilize communication m ganization. Introl techniques to monitor the progress of activities and to take correct accordingly.	etho			
 Organize Apply th in the org Apply co measures TEXT BOOKS	e motivational and leadership techniques and utilize communication m ganization. Introl techniques to monitor the progress of activities and to take correct accordingly.	etho tive:	ds	Prent	ice
 Organize Apply the in the organize Apply comeasures TEXT BOOKS 1. Stephen 	e motivational and leadership techniques and utilize communication m ganization. Introl techniques to monitor the progress of activities and to take correct accordingly. P. Robbins, Mary Coulter and Agna Fernandez, "Management", 14th Ed	etho tive:	ds	Prent	ice
 Organize Apply the in the organize Apply control of the example of the e	e motivational and leadership techniques and utilize communication m ganization. Introl techniques to monitor the progress of activities and to take correct accordingly.	etho etive ditio	ds n, F		ic

REFERENCES:

- 1. Harold Koontz & Heinz Weihrich "Essentials of management" 10th edition, Tata Mc Graw Hill, 2015.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 3. Heinz Weihrich, Mark V Cannice, and Harold Koontz "Management: A Global, Innovative and Entrepreneurial Perspective", 15th Edition, McGrawHill, 2019.

WEB RESOURCES

- 1. https://nptel.ac.in/courses/110105069/
- 2. https://nptel.ac.in/courses/122108038/
- 3. https://nptel.ac.in/courses/110/102/110102016/

EC18511	COMMUNICATION SYSTEMS LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECTIVE	CS:			1	
• To vi	sualize the effects of sampling, multiplexing and digital pulse modula	atior	tech	niques.	
• To ir	plement AM & FM modulation and demodulation.				
	plement FSK, PSK and M-ary schemes.				
• To in	plement Equalization algorithms and Error control coding schemes				
• To si	mulate communication link and CDMA link.				
LI	ST OF EXERCISES USING MATLAB & DIGITAL AND ANA	LO	G DE	VICE	S
1. Signal	Sampling and reconstruction				
-	Division Multiplexing				
3. AM N	Iodulator and Demodulator				
4. FM M	lodulator and Demodulator				
5. Pulse	Code Modulation and Demodulation				
	Modulation and Demodulation				
	vation (simulation) of signal constellations of BPSK, QPSK and QA	AM			
	coding schemes				
	PSK, DPSK and M-ary schemes (Simulation)				
10. Error	control coding schemes - Linear Block Codes (Simulation)				
10. Error 11. Comm	control coding schemes - Linear Block Codes (Simulation) nunication link simulation				
10. Error 11. Comr 12. Equal	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation)				
 Error Comm Equal CDM 	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation)	41		1	• • • •
 Error Communication Equal CDM Note: Plotti 	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to	the	recor	ds wr	itte
 Error Comm Equal CDM 	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to				
 Error Communication Equal CDM Note: Plotti 	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to			ds wr PERI	
10. Error 11. Comr 12. Equal 13. CDM Note: Plotti by students	control coding schemes - Linear Block Codes (Simulation) nunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to				
10. Error 11. Comr 12. Equal 13. CDM Note: Plotti by students	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to				
10. Error 11. Comm 12. Equal 13. CDM Note: Plotti by students OUTCOMES At the end of	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to	ΓΑΙ	2: 60	PERI	OD
 10. Error 11. Comm 12. Equal 13. CDM Note: Plotti by students OUTCOMES At the end of Constr 	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to TO S: The course, the student will be able to ruct and validate the results of AM, FM modulator and Demodul	TAI ator	.: 60	PERI	OD isio
10. Error 11. Comr 12. Equal 13. CDM Note: Plotti by students OUTCOMES At the end of • Constr Multip	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to	TAI ator	.: 60	PERI	OD isic
10. Error 11. Comm 12. Equal 13. CDM Note: Plotting by students OUTCOMES At the end of • Constru- Multing Delta	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A- DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to • • • • • • • • • • • • • • • • • • •	TAI ator	.: 60	PERI	OD isio
10. Error 11. Comm 12. Equal 13. CDM Note: Plotting by students OUTCOMES At the end of • Constru- Multing Delta - • Constru-	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to	ΓΑΙ ator Mo	2 : 60 , Tim dulati	PERIO ne Div on (PO	OD isio CM
10. Error 11. Comm 12. Equal 13. CDM Note: Plotti by students OUTCOMES At the end of • Constr Multip Delta • Constr • Simula	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to	ΓΑΙ ator Mo	2 : 60 , Tim dulati	PERIO ne Div on (PO	OD isio CM
 10. Error 11. Commission 12. Equal 13. CDM Note: Plotting by students OUTCOMES At the end of Construction Construction Construction Construction Simulation Equalition 	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to TO S: The course, the student will be able to ruct and validate the results of AM, FM modulator and Demodul blexing (TDM), Signal Sampling and Reconstruction, Pulse Code Modulation and Demodulation ruct and Observe the results of Base Band Signaling techniques. ation and Forecasting of Signal Constellations, Digital Mo zation using Zero forcing and LMS algorithm in MATLAB.	TAI ator Moo	, Tim dulati	PERIO ne Div on (PO Sche	OD isio CM
10. Error 11. Comm 12. Equal 13. CDM Note: Plotting by students OUTCOMES At the end of • Constra Multip Delta • Constra • Simula Equalia • Simula	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to TO S: The course, the student will be able to ruct and validate the results of AM, FM modulator and Demodul blexing (TDM), Signal Sampling and Reconstruction, Pulse Code Modulation and Demodulation ruct and Observe the results of Base Band Signaling techniques. ation and Forecasting of Signal Constellations, Digital Mo zation using Zero forcing and LMS algorithm in MATLAB. ate and Verify the results of error detection and correction c	TAI ator Moo	, Tim dulati	PERIO ne Div on (PO Sche	OD isio CM
10. Error 11. Comm 12. Equal 13. CDM Note: Plotti by students OUTCOMES At the end of OUTCOMES At the end of Constr Multip Delta Simula Equali Simula MATI	control coding schemes - Linear Block Codes (Simulation) hunication link simulation ization – Zero Forcing & LMS algorithms(simulation) A-DSSS and FHSS (simulation) ng of drawings must be made for each exercise and attached to TO S: The course, the student will be able to ruct and validate the results of AM, FM modulator and Demodul blexing (TDM), Signal Sampling and Reconstruction, Pulse Code Modulation and Demodulation ruct and Observe the results of Base Band Signaling techniques. ation and Forecasting of Signal Constellations, Digital Mo zation using Zero forcing and LMS algorithm in MATLAB. ate and Verify the results of error detection and correction c	TAI ator Moo odul odir	, Tim dulati ation	PERIO te Div on (PO Sche chniqu	OD isio CM

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:	
Description of Equipment	Quantity
Kits for Signal Sampling, TDM, AM, FM, PCM, DM and Line Coding	2 Nos. each
Schemes	
MATLAB / SCILAB or equivalent software package for simulation	10 Licenses
experiments	
PCs	10 Nos.

EC18512	DIGITAL SIGNAL PROCESSING LABORATORY	L	Т	Р	С
		0	0	4	2
OBJECTIVE	ES:				
To in	nplement DFT and FFT				
• To in	nplement Linear and Circular Convolution				
• To d	esign a FIR filter using windowing method.				
• To de	esign a IIR filter using Impulse Invariant technique and Bilinear T	ransfo	ormati	on me	thod.
To st	udy the architecture of DSP processor				
LIST	Γ OF EXERCISES USING MATLAB / EQUIVALENT SOFT	ſWAŀ	RE PA	CKA	GE
	tion of standard signals, periodic and Aperiodic signal				
2. DFT at 3. FFT at	gorithms - Decimation in Time / Decimation in Frequency.				
	and Circular Convolution in time domain and in frequency doma	in (usi	ng DF	T)	
	and Chedran Convolution in time domain and in frequency doma im Analysis using DFT	III (usi	ing Di	1)	
1	er design				
	ter design				
	ation and Interpolation				
	DSP PROCESSOR BASED IMPLEMENTATIO	DN			
1. Study	of architecture of Digital Signal Processor				
	operation using various addressing modes				
	through Circular Convolution in time domain				
4. Wavef	orm generation				
5. FIR In	plementation				
	T	OTA	L: 60]	PERI	ODS
OUTCOME					
	the course, the student will be able to				
	ate Elementary signals				
-	n the applications of FFT in signal processing				
Ũ	n digital filters.				
	ine the DSP processor based implementation of DSP systems				
	late filtering applications of DSP				
LIST OF EQ	UIPMENTS FOR A BATCH OF 30 STUDENTS:	r	0	4 • -	
			Qua	ntity	
	ed / Floating point DSP Processors		1	5	
(Kit / Add-on					
	th Simulink and Signal Processing Tool Box or Equivalent esktop systems		15 Lic	censes	

	INTERVIEW AND CAREER SKILLS LABORATORY (Common to all Branches except BT and EE)	L	Т	Р	С
	· · · · · · · · · · · · · · · · · · ·	0	0	3	2
OBJECTIVI	ES:				
• To • To	enable learners to build confidence and enhance their language profici- expose learners to the use of professional English. equip them with employability skills. expose learners to build entrepreneurship skills	ency	/.		
					10
UNIT I	LISTENING AND SPEAKING SKILLS n Skills – Types - Small Talk, Face-to-Face and Telephonic, Formal		T., f.		12
(one –to-on with Facul Discussion Projects usi	ns – Skills in presenting ideas and collating information during Come and technical group / team) – Academic and Workplace Situations - ty/Visiting Faculty/Guests/Officials/Employers and Employees – Etiquette and Dos and Don'ts, Turn-taking –Presentation Skills – Sing Digital Tools; Mock Interview – Etiquette and Dos and Don'ts – Academic and Dos and Don'ts – Signal Content of Listening and Speaking Skills	– Co – Sem	onve C inar	ersin Grou s an	g p d
	WRITING SKILLS				14
Email Writi Publication	fields of study for analysis and critical thinking; Employability Skill ations – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed	Let g Ar l Re	ters ticle adii	an es fo ng o	d r f
Email Writi Publication Voluminous	tions – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed Reports / Documents and Exacting Necessary Information and Abstraction	Let g Ar l Re	ters ticle adii	an es fo ng o	d r f
Email Writi Publication Voluminous including D UNIT III Sentences, Technical T	tions – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed Reports / Documents and Exacting Necessary Information and Abstract	Let g Ar d Re ct Pr Ger	ters ticle eadin epan	an es fo ng o ratio	d r f n <u>12</u> d
Email Writi Publication Voluminous including D UNIT III Sentences, Technical T User-Specif	tions – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed Reports / Documents and Exacting Necessary Information and Abstractissemination ENGLISH FOR PROFESSIONAL EXAMINATIONS Paragraphs and Reading Comprehension – Vocabulary Building – Cerms – Contextual Meaning – Spelling – Subject-Specific Words ic Terminology	Let g Ar d Re ct Pr Ger	ters ticle eadin epan	an es fo ng o ratio	d r f n <u>12</u> d
Email Writi Publication Voluminous including D UNIT III Sentences, Technical T User-Specif UNIT IV Introduction Setting and Strategies - Industry Aj Economy /	 Ations – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed Reports / Documents and Exacting Necessary Information and Abstractissemination ENGLISH FOR PROFESSIONAL EXAMINATIONS Paragraphs and Reading Comprehension – Vocabulary Building – Yerms – Contextual Meaning – Spelling – Subject-Specific Words ic Terminology ENTREPRENEURSHIP SKILLS Ato Entrepreneurship; Developing Leadership Qualities and Team Real-Life Scenarios; Fundamentals of Entrepreneurial Skills – Microcosmic and Macrocosmic Levels of Product Sales and Surver ppraisal and Appreciation (Review and Understanding State of the Environment / Sector Reports Published) - Interaction & Understanding Appreciation / Industrial Agencies such as World Examples of the product Sales and Surver Surver Statement / Sector Reports Published) - Interaction & Understanding State of the Environment / Industrial Agencies such as World Examples of the product Sales and Surver Statement / Sector Reports Published) - Interaction & Understanding State of the Environment / Industrial Agencies such as World Examples of the Statement and Financial / Industrial Agencies such as World Examples of the Statement (Sector Reports Published) - Interaction (Sector Reports Published) - Int	Let g Ar l Re ct Pr Ger – U Wc Wc	ters ticle eadin epan nera sage ork; Aark See Nat	an es fc ng co atio	d r f n 12 d d d g // f
Email Writi Publication Voluminous including D UNIT III Sentences, Technical T User-Specif UNIT IV Introductior Setting and Strategies - Industry Aj Economy / Multi-Later	 Ations – Cover Letter accompanying Résumé – Types of Business ng and Etiquette; Writing Reports – Statement of Purpose – Writing Style and Format – Creating Blogs or Company Profiles – Speed Reports / Documents and Exacting Necessary Information and Abstractissemination ENGLISH FOR PROFESSIONAL EXAMINATIONS Paragraphs and Reading Comprehension – Vocabulary Building – Yerms – Contextual Meaning – Spelling – Subject-Specific Words ic Terminology ENTREPRENEURSHIP SKILLS Ato Entrepreneurship; Developing Leadership Qualities and Team Real-Life Scenarios; Fundamentals of Entrepreneurial Skills – Microcosmic and Macrocosmic Levels of Product Sales and Surver ppraisal and Appreciation (Review and Understanding State of the Environment / Sector Reports Published) - Interaction & Understanding Appreciation / Industrial Agencies such as World Examples of the product Sales and Surver Surver Statement / Sector Reports Published) - Interaction & Understanding State of the Environment / Industrial Agencies such as World Examples of the product Sales and Surver Statement / Sector Reports Published) - Interaction & Understanding State of the Environment / Industrial Agencies such as World Examples of the Statement and Financial / Industrial Agencies such as World Examples of the Statement (Sector Reports Published) - Interaction (Sector Reports Published) - Int	Let g Ar l Re ct Pr Ger – U Wc Wc wc the ding 3ank	ters ticle eadin epan nera sage ork; Aark See Nat: g Rc , A	an es fc ng c atio	d r f n 12 d d d 9 / / / f f,

- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for gaining proficiency and better participation in the class.
- 6. Learners to form team(s), select a module of external Industrial / Institutional interaction and prepare a short thesis/project proposal.

OUTCOMES:

At the end of the course, learners will be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.

WEB SOURCES:

- 1. http://www.slideshare.net/rohitjsh/presentation-on-group- discussion
- 2. http://www.washington.edu/doit/TeamN/present_tips.ht ml
- 3. http://www.oxforddictionaries.com/words/writing-job- applications
- 4. http://www.kent.ac.uk/careers/cv/coveringletters.htm
- 5. http://www.mindtools.com/pages/article/newCDV_34.html

SEMESTER VI

EC18601	VLSI DESIGN	L	Т	Р	С
	(Common to EC and EE)				-
		3	0	0	3
OBJECTIVI	ES:				
To study the					
• Fabric scalin	cation processes of MOS circuits, design rules for layouts and the limita	tion	IS 1N		
	zation of MOS circuits for various combinational logic blocks and analy	ze t	he		
	rmance tradeoffs with respect to the area, power and delay				
-	us arithmetic building blocks and their timing constraints				
	us synchronous and asynchronous sequential designs and analyze the tir	min	g		
constr			D		
	us architectural choices available for FPGA.				
UNIT I	MOS TRANSISTOR PRINCIPLE				9
	DS -Enhancement and depletion MOSFET; MOS transistor-Ideal I-V of	char	acte	risti	cs:
	Process - MOSFET, CMOS- n-well, p-well, Twin tub, SOI; Scaling				
	limits; CMOS inverter characteristics; Stick diagram; Layout diagrams;	-	-		
Layer Repres			U		,
**					
UNIT II	COMBINATIONAL LOGIC CIRCUITS				Δ
					9
Static CMOS	S Design : Examples of Combinational Logic Design; Complementary C	CMC	DS c	onc	-
					ept
and properti	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic	c -	Co	once	ept pt,
and properti Complementa	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const	c - tant	Со ; Dy	once man	ept pt, nic
and properti Complementa	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig	c - tant	Со ; Dy	once man	ept pt, nic
and properti Complementa CMOS desig	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig	c - tant	Со ; Dy	once man	ept pt, nic
and properti Complementa CMOS desig	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig	c - tant	Со ; Dy	once man	ept pt, nic
and properti Complementa CMOS desig Dynamic Gat	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes	c - tant gn;	Co ; Dy Cas	once nan cadi	ept pt, nic ng 9
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS	c - tant gn; lity	Co ; Dy Cas	ncip	ept pt, nic ng 9
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N	tant gn; lity clo	Co ; Dy Cas Pri ock s S Re	ncip igna	ept pt, nic ng 9 ole; tls; er;
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal	tant gn; lity clo	Co ; Dy Cas Pri ock s S Re	ncip igna	ept pt, nic ng 9 ole; tls; er;
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N	tant gn; lity clo MOS ies;	Co ; Dy Cas Pri ock s S Re	ncip igna	ept pt, nic ng 9 ole; tls; er;
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal teches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip	tant gn; lity clo MOS ies;	Co ; Dy Cas Pri ock s S Re	ncip igna	ept pt, nic ng 9 ole; tls; er;
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal aches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issues	tant gn; lity clo MOS ies;	Co ; Dy Cas Pri ock s S Re	ncip igna	ept pt, nic ng 9 ole; uls; er;
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal teches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip	c - tant gn; lity clo MOS ues; bles	Co ; Dy Cas Pri ck s S Re Pip	ncip igna egist	ept pt, nic ng 9 lle; er; es; es; 9
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders by Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone	c - tant gn; lity clo MOS ues; lles s; C ; M	Co ; Dy Cas Pri ck s S Re Pip arry cultij	ncip igna egist elin Sel	ept pt, pic ng 9 le; er; es; 9 ect s
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal aches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issues gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone e multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of	c - tant gn; lity clo MOS ues; lles s; C ; M	Co ; Dy Cas Pri ck s S Re Pip arry cultij	ncip igna egist elin Sel	ept pt, pic ng 9 le; er; es; 9 ect s
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders by Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone	c - tant gn; lity clo MOS ues; lles s; C ; M	Co ; Dy Cas Pri ck s S Re Pip arry cultij	ncip igna egist elin Sel	ept pt, nic ng 9 lle; er; es; 9 ect s -
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu rics; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks	c - tant gn; lity clo MOS ues; lles s; C ; M	Co ; Dy Cas Pri ck s S Re Pip arry cultij	ncip igna egist elin Sel	ept pt, nic ng 9 ile; er; es; 9 ect s ove
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal taches and Registers; Transmission-Gate Edge-triggered Registers; C2N registers; True Single-Phase Clocked Register (TSPCR) Timing issues ties; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders registers; High speed adders - Brunt Kung adder, Kogge Stone multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES	c - tant gn; lity clo MOS ues; bles s; C s; M ff fo	Co ; Dy Cass Pri ck s S Re Pip arry fultij r all	ncip igna egist elin Selo plier abc	ept pt, nic ng 9 ile; ils; er; 9 ect s - ove 9 9
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal aches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone e multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA	c - tant gn; lity clo MOS ues; iles s; C s; M ff fo buil	Cas , Dy Cas Pri ck s S Re Pip arry fulting r all ding	ncip igna egist elin Selior abc	ept pt, nic ng 9 ile; er; es; 9 ect s ove 9 ock
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal teches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone e multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA - FPGA interconnect routing procedures; Design for Testability: Ad	c - tant gn; lity clo MOS ues; iles s; C s; M ff fo buil	Cas , Dy Cas Pri ck s S Re Pip arry fulting r all ding	ncip igna egist elin Selior abc	ept pt, nic ng 9 ile; er; es; 9 ect s ove 9 ock
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal tches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Pypass Adder; High speed adders - Brunt Kung adder, Kogge Stone e multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA - FPGA interconnect routing procedures; Design for Testability: Ad BIST	c - tant gn; lity clo MOS les; clos s; C s; C s; C f fo buil Hc	Cos ; Dy Cas Pri ck s S Re Pip arry fulting r all ding oc T	ncip igna egist elin Seli plier abc	ept pt, nic ng 9 le; es; 9 ect s - 9 ect s - 9 ock ng,
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Designes SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal teches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone e multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA - FPGA interconnect routing procedures; Design for Testability: Ad	c - tant gn; lity clo MOS les; clos s; C s; C s; C f fo buil Hc	Cos ; Dy Cas Pri ck s S Re Pip arry fulting r all ding oc T	ncip igna egist elin Seli plier abc	ept pt, nic ng 9 le; es; 9 ect s - 9 ect s - 9 ock ng,
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture - Scan Design,	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal cches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders by Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA - FPGA interconnect routing procedures; Design for Testability: Ad BIST TOTAL: (L: 45):	c - tant gn; lity clo MOS les; clos s; C s; C s; C f fo buil Hc	Cos ; Dy Cas Pri ck s S Re Pip arry fulting r all ding oc T	ncip igna egist elin Seli plier abc	ept pt, nic ng 9 le; es; 9 ect s - 9 ect s - 9 ock ng,
and properti Complementa CMOS desig Dynamic Gat UNIT III Timing Metr Multiplexer E Dynamic Lat Dual-Edge R Clock Strateg UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture - Scan Design,	ies; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic ary PTL and Differential PTL; CMOS transmission gate; Elmores const gn: Dynamic Logic - Basic Principles; Issues in Dynamic Desig res SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabi Based Latches; Master-Slave based Edge Triggered Register; Non-ideal cches and Registers; Transmission-Gate Edge-triggered Registers; C2N Registers; True Single-Phase Clocked Register (TSPCR) Timing issu gies; Synchronous and Asynchronous design- Low power design princip DESIGNING ARITHMETIC BUILDING BLOCKS cuits; Architectures for Ripple Carry Adders; Carry Look Ahead Adders by Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-of uilding Blocks IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA - FPGA interconnect routing procedures; Design for Testability: Ad BIST TOTAL: (L: 45):	c - tant gn; lity clo MOS les; clos s; C s; C s; C f fo buil Hc	Cos ; Dy Cas Pri ck s S Re Pip arry fulting r all ding oc T	ncip igna egist elin Seli plier abc	ept pt, nic ng 9 le; es; 9 ect s - 9 ect s - 9 ock ng,

- Sketch the CMOS logic circuit using Stick Diagrams and Layout Diagrams.
- Identify the MOS circuits for various combinational logic blocks and analyze performance parameters.
- Develop Sequential logic blocks and perform timing analysis.
- Detect suitable MOS logic style for designing arithmetic logic blocks.
- Compute FPGA and perform testing.

TEXT BOOKS:

- 1. Jan Rabaey, AnanthaChandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.

- 1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993.
- 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005.
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.

EC18602	ANTENNA THEORY AND DESIGN	L	Т	Р	С
		3	1	0	4
OBJECTIVI	ES:				
To giv	ve an insight of Radiation Phenomena in antennas.				
-	ve thorough understanding of the radiation characteristics of different ty	pes	of a	oert	ure
anteni		L			
• To un	derstand and analyse the recent special antennas.				
• To un	derstand radiation in microstrip antennas and design/ analyse patch stru	ctur	es.		
• To co	ompare, analyse and understand the different types of propagation r	necl	nani	sms	at
differe	ent frequencies.				
UNIT I	ANTENNA FUNDAMENTALS AND ARRAYS				+ 3
	echanism, Types of Antenna, Antenna terms and parameters- Gai				
-	rture, Radiation Resistance, Band width, Beam width, Input Impedance				
	riis transmission equation, Reciprocity principle, Radiation from Hal				
-	e, N element linear array, Pattern multiplication, Broadside and E	nd	fire	arr	ay,
Binomial arra					
UNIT II	APERTURE AND SLOT ANTENNAS			0	+ 3
	inciple, Field equivalence principle, Radiation from rectangular a	erti	ires		
	inets principle, Slot and complementary dipole, Reflector antenna-Aper				
	ods -Radiation mechanisms of above antennas and Application.			• • • • •	8-,
8					
UNIT III	MICROSTRIP ANTENNAS			9	+ 3
Radiation me	echanisms of patch antennas, Types, Excitation techniques, Design	of	mic	rost	rip
	liation analysis using cavity model, Computer aided design of microstri				-
UNIT IV	SPECIAL ANTENNAS				+ 3
-	na, Helical antenna, Log periodic, Yagi antenna-Design, Mod				
-	le antenna, Reflect array antenna, Electronic band gap (EBG) ant	enna	as,	MIN	40
Antenna, Ant	ennas for 5G applications.				
UNIT V	ANTENNA MEASUREMENTS AND PROPAGATION			0	+ 3
	surements- Measurement of Gain, Radiation pattern, Polarization.)	- J
	ropagation, Structure of atmosphere, Ground wave propagation,	Τn	onos	snhe	ric
	Duct propagation, Sky wave propagation – Virtual height, critic				
	able frequency – Skip distance, Fading, Multi hop propagation.				-,
	TOTAL: (L: 45 + T: 15):	60]	PEF	RIO	DS
OUTCOME	S:				
	the course, learners will be able to				
• Illustr	ate the insights of antennas and arrays				
• Deter	mine the radiation characteristics of different types of aperture and slot	ante	nna	•	
-	n microstrip antennas and its analysis				
	the recent special antennas and its analysis				
Identi	fy the different types of propagation mechanisms at different frequencies	es.			
TEXT BOO					

- 1. John D Kraus,"Antennas for all Applications", 3rd Edition, Mc Graw Hill, 2005.
- 2. Constantine.A.Balanis "Antenna Theory Analysis and Design", Wiley Student Edition, 2006.
- 3. Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India, 2006.

- 1. R.E.Collin,"Antennas and Radiowave Propagation", Mc Graw Hill 1985.
- 2. Rajeswari Chatterjee, "Antenna Theory and Practice" Revised Second Edition New Age International Publishers, 2006.
- 3. S. Drabowitch, "Modern Antennas" Second Edition, Springer Publications, 2007.
- 4. Robert S.Elliott "Antenna Theory and Design" Wiley Student Edition, 2006.
- 5. H.Sizun "Radio Wave Propagation for Telecommunication Applications", First Indian Reprint, Springer Publications, 2007.

EC18603	COMMUNICATION NETWORKS	L	Τ	P	С
OBJECTIVE	29.	3	0	0	3
 To u To P To b To le 	nderstand the concepts of network architecture and transmission mediu erform and understand methods for error detection and correction of da e exposed to various addressing schemes and routing protocols. earn the flow control and congestion control algorithms e familiar with real time applications of networks				
	FUNDAMENTALS OF NETWORKING Data Communication Networks – Network Topology – Types of Netwing a Network - Layering and protocols - OSI Model – Overview of Da				
UNIT II	DATA LINK LAYER				9
	o Data Link Layer – Link Layer Addressing - Error Detection and Cor - Ethernet - Wireless LANs – Bluetooth - Zigbee – Switching.	recti	ion -	-Mee	dia
UNIT III	ROUTING				9
	working - Routing – Unicast Routing – Algorithms - Protocols – Mult IPv4 & IPv6 Addressing - Transition from IPv4 to IPv6.	ticas	t Ro	utin	g -
UNIT IV	TRANSPORT LAYER				9
	o Transport layer – Protocols - UDP - TCP - Connection management - on – Timer Management - TCP Congestion control - Congestion avoid)l -
UNIT V	APPLICATION LAYER				9
Traditional A	pplications - Electronic Mail – WWW & HTTP – DNS – Need for C	rypt	ogra	iphy	&
Network Secu					
	TOTAL: (L: 45):	45	PEF		DS
OUTCOME	2.				
OUTCOMES	5: the course, learners will be able to				
 Adop Recog Exercic comm Deter 	t the required functionality at each layer for given application gnize and Correct the error in the frame tise the knowledge of addressing scheme and various routing protocols nunication to select optimal path. mine the flow of information from one node to another node in the net lop real time applications of networks				
McGr	uz A. Forouzan, "Data Communications and Networking", awHill, 2013. w S. Tanenbaum, David J. Wetherall, "Computer Networks" 5 th I n.				
1. James I the Inte	F. Kurose, Keith W. Ross, "Computer Networking - A Top-Down Appr ernet", Fifth Edition, Pearson Education, 2009. F. Mir, "Computer and Communication Networks", Pearson Prentice F				_

- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open-Source Approach", Mc Graw Hill Publisher, 2011.
- 4. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.

EC18604		L	Т	Р	С
	WIRELESS COMMUNICATION	3	1	0	4
OBJECTIV	ES : The student should be made to	U	-	v	-
	w the characteristic of wireless channel				
	n the various cellular architectures				
	erstand the concepts behind various digital signaling schemes for fading	cha	anne	els	
	amiliar with various multipath mitigation techniques	, •11		10	
	knowledge of few cellular standards				
UNIT I	WIRELESS CHANNELS			9.	+ 3
design – Sma - Coherence	rge scale path loss – Path loss models: Free Space and Two-Ray models Il scale fading - Parameters of mobile multipath channels – Time dispers bandwidth – Doppler spread & Coherence time, Fading due to Multip	ion ath	para time	met e de	ers lay
spread – flat f fading.	ading – frequency selective fading – Fading due to Doppler spread – fas	t fac	iing	- si	ow
UNIT II	CELLULAR ARCHITECTURE			0	+ 3
	ess techniques - FDMA, TDMA, CDMA – Capacity calculations – Co		ar o		
Frequency rea	use - channel assignment - hand off - interference & system capacity - true coverage and capacity improvement.				
UNIT III	DIGITAL SIGNALING FOR FADING CHANNELS			0	+ 3
	a wireless communication link, Principles of Offset-QPSK, p/4-DQP				
Shift Keying	a wireless communication link, Principles of Offset-QPSK, p/4-DQP, Gaussian Minimum Shift Keying, Error performance in fading cha yclic prefix, Windowing, PAPR				
Shift Keying	, Gaussian Minimum Shift Keying, Error performance in fading cha			OFE	
Shift Keying principle – Cy UNIT IV Equalization Algorithms.	, Gaussian Minimum Shift Keying, Error performance in fading cha clic prefix, Windowing, PAPR	cing	ls, (OFI 9 - 1 LN	DM + 3 /IS
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in	 Gaussian Minimum Shift Keying, Error performance in fading characterized prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver 	cing	ls, (9 - 9 - 1 LN Eri	DM + 3 AS cor
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V	 Gaussian Minimum Shift Keying, Error performance in fading cha yclic prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS 	cing	ls, (and ues,	9 - 9 - 1 LN Err 9 -	$\frac{+3}{4S}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects,	 Gaussian Minimum Shift Keying, Error performance in fading charactic prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS dization - architecture and function partitioning - GSM radio aspects - s el - call flow sequences - evolution to 2.5G mobile radio networks. IS-key features of IS-95 CDMA systems – 3G WCDMA - UMTS, LTE pork architecture - CDMA 2000 physical layer – 4G WiMax – Intro mology. 	inne cing niq ecui 95 s shys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ or $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects. UMTS netwo	 Gaussian Minimum Shift Keying, Error performance in fading characterized prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS dization - architecture and function partitioning - GSM radio aspects - s el - call flow sequences - evolution to 2.5G mobile radio networks. IS-key features of IS-95 CDMA systems – 3G WCDMA - UMTS, LTE pork architecture - CDMA 2000 physical layer – 4G WiMax – Intro 	inne cing niq ecui 95 s shys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ or $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects, UMTS netwo Wireless Tech	 Gaussian Minimum Shift Keying, Error performance in fading characterize prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS dization - architecture and function partitioning - GSM radio aspects - s el - call flow sequences - evolution to 2.5G mobile radio networks. ISkey features of IS-95 CDMA systems – 3G WCDMA - UMTS, LTE p ork architecture - CDMA 2000 physical layer – 4G WiMax – Intromology. TOTAL: (L: 45 + T: 15): 	inne cing niq ecui 95 s shys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ or $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects, UMTS netwo Wireless Tech	Gaussian Minimum Shift Keying, Error performance in fading characterized prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES - Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS dization - architecture and function partitioning - GSM radio aspects - s el - call flow sequences - evolution to 2.5G mobile radio networks. IS- key features of IS-95 CDMA systems – 3G WCDMA - UMTS, LTE p ork architecture - CDMA 2000 physical layer – 4G WiMax – Intro mology. S:	inne cing niq ecui 95 s shys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ for $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects, UMTS netwo Wireless Tech	 Gaussian Minimum Shift Keying, Error performance in fading characterize prefix, Windowing, PAPR MULTIPATH MITIGATION TECHNIQUES Adaptive equalization, Linear and Non-Linear equalization, Zero for Diversity – Micro and Macro diversity, Diversity combining tech fading channels with diversity reception, Rake receiver STANDARDS dization - architecture and function partitioning - GSM radio aspects - s el - call flow sequences - evolution to 2.5G mobile radio networks. ISkey features of IS-95 CDMA systems – 3G WCDMA - UMTS, LTE p ork architecture - CDMA 2000 physical layer – 4G WiMax – Intromology. TOTAL: (L: 45 + T: 15): 	inne cing niq ecui 95 s shys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ or $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects. UMTS netwo Wireless Tech OUTCOME At the end of • Chara	 Gaussian Minimum Shift Keying, Error performance in fading characterize wireless channels, assignment, and capacity improvement. 	inne cing niq ecui 95 s s bhys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ or $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects. UMTS netwo Wireless Tech OUTCOME At the end of • Chara • Desig	, Gaussian Minimum Shift Keying, Error performance in fading characterize wireless channels, assignment, and capacity improvement.	inne cing niq ecui 95 s s bhys duc	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ for $\frac{+3}{5G}$
Shift Keying principle – C UNIT IV Equalization Algorithms. probability in UNIT V GSM standar protocol mod radio aspects. UMTS netwo Wireless Tech OUTCOME At the end of OLTCOME At the end of Desig OCOM	 Gaussian Minimum Shift Keying, Error performance in fading characterize wireless channels, assignment, and capacity improvement. 	inne cing niqu ecun 95 s shys duct 60	ils, (anc ues, iity a servi ical	9 - l LN Err 9 - ce a laye to	$\frac{+3}{4S}$ for $\frac{+3}{6}$ for $\frac{+3}{5G}$

TEXT BOOKS:

- 1. Rappaport, T.S., "Wireless communications", Second Edition, Pearson Education, 2010.
- 2. Haykin & Moher, "Modern Wireless Communications" Pearson 2011 (Indian Edition).

- 1. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.
- 2. Andreas Goldsmith, "Wireless Communication Cambridge University Press, Aug-2005.
- 3. D. Tse and P. Viswanath, "Fundamentals of Wireless Communications," Cambridge University Press, 2005.

EC18611	COMMUNICATION NETWORKS LABORATORY	L	Т	Р	С
Leittii		0	0	4	2
OBJECTIVE	<u></u>	•	v	-	_
	n to communicate between two desktop computers.				
	in to implement the different protocols				
	familiar with socket programming.				
	familiar with the various routing algorithms.				
	familiar with simulation tools.				
10.00					
LIST OF EX	ERCISES USING Ns & LSIM NETWORK SIMULATOR				
	nentation of Error Detection / Error Correction Techniques				
1	nentation of Stop and Wait Protocol and sliding window				
1	nentation and study of Goback-N and selective repeat protocols				
4. Implei	nentation of High Level Data Link Control				
	of Socket Programming and Client – Server model				
	a socket Program for Echo/Ping/Talk commands				
	ate scenario and study the performance of network with CSMA	/ CA	proto	col an	d
1	re with CSMA/CD protocols.				
	rk Topology - Star, Bus, Ring				
-	nentation of distance vector routing algorithm				
	nentation of Link state routing algorithm	1 . 1	•.1		
	of Network simulator (NS) and simulation of Congestion Control	ol Alg	gorithi	ms usi	ng
NS 12 Imploy	pontation of any one symmetric and asymmetric operation and	doom	ntion		
algorit	nentation of any one symmetric and asymmetric encryption and	uecry	puon		
	of DHCP protocol				
	of Switching and Routing.				
14. Study		TAI	: 60 I	PERI	ODS
					020
OUTCOMES	:				
At the end of	he course, the student should be able to				
• Comm	unicate between two desktops				
• Write	program using sockets				
	nent and compare the various routing algorithms				
-	mulation tools like NSIM, LSIM and NS				
	nent different protocols				
	UIPMENTS FOR A BATCH OF 30 STUDENTS:				
			Qı	antit	y
Software C / C	C++ / Java, Network simulator like NS2/ NS3 / Glomosim/OPNE	ET		30	
PCs				30	

EC18612	VLSI DESIGN LABORATORY	L	T	P	C
		0	0	4	2
OBJECTI					
	learn Hardware Descriptive Language	_			
	learn the fundamental principles of VLSI circuit design in digital a	nd an	alog d	omair	1
	familiarize fusing of logical modules on FPGAs				
• To	provide hands on design experience with professional design (EDA) pla	forms	5	
	EXERCISES				
	L based design entry and simulation of Combinational circuits				
	4-bit Ripple Carry Adder				
• • •	Carry Look ahead adder				
. ,	Multiplexer and Demultiplexer				
	Decoder and Priority Encoder				
· · ·	Code Converters				
	L based design entry and simulation of Sequential circuits Shift register (SISO, SIPO, PIPO)				
	Synchronous and asynchronous Counter design				
	Mealy and Moore model				
. ,	L based design entry, simulation and implementation of Multiplier	and			
	form Synthesis, P&R, post P&R simulation and static timing analy			cation	of
	ical path				
	nulation of Static/Dynamic logic using EDA tool.				
	ign and simulation of a MOS differential amplifier.				
	out generation, parasitic extraction and post-simulation of Inverter				
7. Are	a, Delay and Power estimation of Adder using EDA tool.				
	TO	DTAL	.: 60 I	PERIC)D
OUTCOM					
	of the course, the student should be able to	•.			
	epare HDL code for basic as well as advanced digital integrated cir	cuits.			
	se and Import the logic modules into FPGA Boards.				
	esign,Synthesize, Place and Route the digital ICs.	1			
	esign, Simulate and Extract the layouts of IC Blocks using EDA too	ls.			
	ompute Area, Delay and Power of digital circuits using EDA tools.				
LIST OF	EQUIPMENTS FOR A BATCH OF 30 STUDENTS:		0		
1 1.1	Sector Vilian an Alter EDCA			antit	
	software, Xilinx or Altera FPGA			$\frac{1}{10000000000000000000000000000000000$	
2. Cadenc	e/Tanner or equivalent software package		101	licens	es

10 Nos.

3. PCs

SEMESTER VII

EC18701	RF AND MICROWAVE ENGINEERING	L	Τ	P	С
		3	1	0	4
OBJECTIV					
	culcate understanding of the basics required for circuit representation of	f RF	net	wor	KS.
	al with the issues in the design of microwave amplifier.				
	still knowledge on the properties of various microwave components.				
	al with the microwave generation and microwave measurement technic				
• To un	derstand the measurement of microwave signals and analyze the param	eter	S		
				0	
UNIT I	TWO PORT NETWORK THEORY		<u>n</u>		+ 3
	ncy parameters, Formulation of S parameters, Properties of S paramet			-	
	Network, Transmission matrix, RF behavior of Resistors, Capacitors	and	Ind	ucto	ors.
Applications	of RF and Microwaves.				
UNIT II	RF AMPLIFIERS AND MATCHING NETWORKS			0	+ 3
			ahil		
	es of Amplifiers, Amplifier power relations, Stability considerations is Figure, Constant VSWR, Broadband, High power and Multista				
	atching using discrete components, Two component matching Netwo	-	-		
-	quality factor.	185,	TIE	quei	icy
response and					
UNIT III	PASSIVE AND ACTIVE MICROWAVE DEVICES			0	+ 3
	, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, I	Powe	r di		
	solator, Impedance matching devices: Tuning screw, Stub and				
	Crystal and Schottkey diode detector and mixers, PIN diode switc	-			
	PATT diode oscillator and amplifier, Varactor diode, YIG Devices.	ii, C		un	/40
UNIT IV	MICROWAVE GENERATION			9	+ 3
	to klystron, Theory and application of two cavity Klystron Amplifier, F	Refle	x K	-	-
	aveling wave tube amplifier, and Magnetron oscillator using Cylir				
	age tunable Magnetrons, Backward wave Crossed field amplifier and c				,
UNIT V	MEASUREMENTS			9	+ 3
Measuring In	astruments: Principle of operation and application of VSWR meter,	Pov	wer	me	er,
Spectrum and	alyzer, Network analyzer, Measurement of Impedance, Frequency, F	owe	er, V	/SW	'R,
Q-factor, Die	lectric constant, Scattering coefficients, Attenuation, S-parameters				
	TOTAL: (L: 45 + T: 15):	60]	PEF	RIO	DS
OUTCOME					
	the course, learners will be able to				
-	in the active and passive components at microwave frequencies.				
•	ze the multi port networks and transistor amplifiers at RF frequencies.				
-	ze microwave devices for various applications.				
	ate the microwave sources and their applications.				
Measu	are and analyze the microwave signal parameters	1			
TEXT BOO	KS:				

TEXT BOOKS:

- 1. Reinhold Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and Applications", Pearson Education Inc., 2011.
- 2. Samuel Y Liao, "Microwave Devices and Circuits" Prentice Hall of India 2012.

3. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2005.

- 1. Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons Inc, 2005.
- 2. David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 2008.
- 3. Mathew M Radmanesh, "RF and Microwave Electronics", Prentice Hall, 2000.

	OPTICAL COMMUNICATION AND NETWORKS	L	Т	P	С
		3	1	0	4
OBJECTIVES					
• To study ab	out the various optical fiber modes, configuration and transmission cha	arac	teri	stics	of
optical fibe	rs				
• To gain the	knowledge about various types signal degradation that occurs in optica	l fib	ers		
• To learn ab	out the various optical sources, detectors and transmission techniques				
• To explore	various idea about optical fiber measurements and various coupling tech	hniq	ues	5	
• To Enrich t	he idea of optical fiber networks algorithm such as SONET/SDH and op	ptica	al C	DM	A.
UNIT I	INTRODUCTION TO OPTICAL FIBERS			9	+ 3
Evolution of fi	ber optic system- Element of an Optical Fiber Transmission link -	Tot	al i	inter	nal
reflection-Accept	ptance angle –Numerical aperture – Skew rays – Meridional rays – Ax	kial	ray	s - F	Ray
	Fiber Modes and Configurations - Mode theory for Circular Wave guides				
Modes - Key M	Iodal concepts, Linearly Polarized Modes - Single Mode Fibers -Grad	ed I	nde	ex fi	ber
structure.					
UNIT II	SIGNAL DEGRADATION IN OPTICAL FIBERS				+ 3
	Attenuation units - Absorption losses, Scattering losses, Bending Los				
	Signal Distortion in Optical Wave guides-Information Capacity determined				
	l Dispersion, Wave guide Dispersion, Signal distortion in SM fibe	ers-l	Inte	rmo	dal
	e Broadening in GI fibers.				
UNIT III	FIBER OPTICAL SOURCES AND COUPLING				+ 3
	ect Band gaps - LED structures - Light source materials - Quantum effici				
± ·	tion of a LED, lasers Diodes - Modes and Threshold condition - F		-		
	ntum efficiency - Resonant frequencies -Laser Diodes, Temper				
	Quantum laser, Fiber amplifiers - Power Launching and coupling, Len	ising	g sc	nem	es,
UNIT IV	joints, Fiber splicing - Signal to Noise ratio, Detector response time.				
				0	1 3
	FIBER OPTIC RECEIVER AND MEASUREMENTS	n 1	Dra		+ 3
Fundamental re	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio			babi	lity
Fundamental re- of Error – Qua	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer	nen	ts -	babi - Fi	lity ber
Fundamental re of Error – Qua Refractive index	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer & profile measurements – Fiber cut- off Wave length Measurements – Fi	nen	ts -	babi - Fi	lity ber
Fundamental re of Error – Qua Refractive index Aperture Measu	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements	nen	ts -	babi - Fi meri	lity ber cal
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION	nen ber	ts - Nu	babi - Fi meri 9	lity ber cal + 3
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave	nen ber leng	ts - Nu gth	babi - Fi meri 9 Rou	lity ber cal + 3 ted
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No	ceiver operation, Pre amplifiers, Error sources – Receiver Configuration antum limit. Fiber Attenuation measurements- Dispersion measurements a profile measurements – Fiber cut- off Wave length Measurements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise	nen ber leng e tir	ts - Nu gth	babi - Fi meri 9 Rou budg	lity ber cal +3 ted get,
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance – Link Power budget -Rise on System Performance-Operational Principles of WDM Performance	nen ber leng e tir	ts - Nu gth	babi - Fi meri 9 Rou budg	$\frac{1}{1000}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performance Soliton – Optical CDMA – Ultra High Capacity Networks.	nent ber leng e tir e of	ts - Nu gth ne f W	babi – Fi meri 9 Rou budg /DM	$\frac{\text{lity}}{\text{ber}}$ $\frac{+3}{\text{ted}}$ $\frac{1}{\text{get}}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance – Link Power budget -Rise on System Performance-Operational Principles of WDM Performance	nent ber leng e tir e of	ts - Nu gth ne f W	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system –	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fiber rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performance Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15):	nent ber leng e tir e of	ts - Nu gth ne f W	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performance Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to	nent ber leng e tir e of	ts - Nu gth ne f W	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the • Recogni	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types	nent ber leng e tir e of	ts - Nu gth ne f W	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the • Recogni • Investiga	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performance Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber	nenti ber Lenge tir e of 60 l	ts - Nu gth ne f W PEI	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the • Recogni • Investiga • Evaluate	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber e the various optical sources and optical detectors and their use in the op	nenti ber Lenge tir e of 60 l	ts - Nu gth ne f W PEI	babi – Fi meri 9 Rou budg /DM	$\frac{1}{1}$
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the • Recogni • Investiga • Evaluate commun	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance – Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber e the various optical sources and optical detectors and their use in the op- nication systems	nentiber ber lenge tir e of 60 l	ts - Nu: gth ne f W PEI	babi - Fi meri 9 Rou budậ VDM	lity ber cal + 3 ted get, [+ DS
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the • Recogni • Investiga • Evaluate commun • Examine	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION - SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance —Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber the various optical sources and optical detectors and their use in the op ication systems e the digital transmission and its associated parameters on system perform	nentiber ber lenge tir e of 60 l	ts - Nu: gth ne f W PEI	babi - Fi meri 9 Rou budậ VDM	lity ber cal + 3 ted get, (+ DS
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the Recogni Investiga Evaluate commun Examine optical f	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION - SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performance Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber the various optical sources and optical detectors and their use in the op- dication systems the digital transmission and its associated parameters on system performance iber measurements and various coupling techniques	nenti ber leng e tir e of 60 l	ts - Nu: gth ne f W PEI	babi - Fi meri 9 Rou budş /DM	lity ber cal + 3 ted get, (+ DS
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the Recogni Investiga Evaluate commun Examine optical f	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance – Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber the various optical sources and optical detectors and their use in the op- dication systems e the digital transmission and its associated parameters on system perform iber measurements and various coupling techniques ne's own knowledge on design of optical fiber networks such as SONE	nenti ber leng e tir e of 60 l	ts - Nu: gth ne f W PEI	babi - Fi meri 9 Rou budş /DM	lity ber cal + 3 ted get, [+ DS
Fundamental re of Error – Qua Refractive index Aperture Measu UNIT V Basic Networks Networks – No Noise Effects of EDFA system – OUTCOMES: At the end of the Recogni Investiga Evaluate commun Examine optical f	ceiver operation, Pre amplifiers, Error sources – Receiver Configuratio antum limit. Fiber Attenuation measurements- Dispersion measurer a profile measurements – Fiber cut- off Wave length Measurements – Fi rements – Fiber diameter measurements OPTICAL NETWORKS AND SYSTEM TRANSMISSION – SONET / SDH – Broadcast – and –select WDM Networks –Wave n-linear effects on Network performance –-Link Power budget -Rise on System Performance-Operational Principles of WDM Performanc Soliton – Optical CDMA – Ultra High Capacity Networks. TOTAL: (L: 45 + T: 15): e course, learners will be able to ze and classify the structures of Optical fiber and its types ate the various signal degradation factors associated with optical fiber e the digital transmission and its associated parameters on system perform be the digital transmission and its associated parameters on system perform iber measurements and various coupling techniques ne's own knowledge on design of optical fiber networks such as SONE CDMA systems.	nenti ber leng e tir e of 60 l	ts - Nu: gth ne f W PEI	babi - Fi meri 9 Rou budş /DM	lity ber cal + 3 ted get, (+ DS

Limited, 2016

- 2. Gred Keiser,"Optical Fiber Communication^{II}, McGraw Hill Education (India) Private Limited. Fifth Edition, Reprint 2013.
- 3. John M. Senior, "Optical Fiber Communications: Principles and Practice", Third Edition, Pearson Education, 2010.

- 1. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
- 2. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.
- 3. Govind P. Agrawal, "Fiber optic communication systems", third edition, John Wiley & sons, 2004.

	EMBEDDED AND REAL TIME SYSTEMS	LI	P	C
		3 1	0	4
OBJECTIVI	2 S :			
• 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	To learn the architecture and programming of ARM processor. To be familiar with the embedded computing platform design and analy To be exposed to the basic concepts and overview of real time Operating the processes involved. To learn the system design techniques and networks for embedded ndustrial applications. To learn the applications of embedded systems in various domains. INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS to embedded computing: Characteristics of embedded computing	ng sys	stems	to + 3
	n embedded system design, Embedded system Design process. AR truction set-Programming – GPIO configuration, UART, Interfacing			
UNIT II	EMBEDDED COMPUTING PLATFORM DESIGN		0	+ 3
loading – con optimization	npilation techniques– Program level performance analysis – Softward Program level energy and power analysis and optimization – Program size– Program validation and testing.	e perf	orma	nce
UNIT III	PROCESSES AND OPERATING SYSTEMS		9	+ 3
Preemptive remechanisms.	– Kernel, Threads –Multiple tasks and multiple processes – Multi eal–time operating systems– Priority based scheduling– Interprocess c Introduction to OS- GPOS versus RTOS- Classification of RTOS- g systems– POSIX/Windows CE. Evaluating operating system performance	ommı Exam	inica	ion
UNIT IV	SYSTEM DESIGN TECHNIQUES AND NETWORKS			
			9	
Assurance te	odologies– Design flows – Requirement Analysis – Specificatio chniques– Distributed embedded systems – Networks for embedded d bus– Overview on Internet of Things.		Qua	+ 3 lity
Assurance te	odologies– Design flows – Requirement Analysis – Specificatio chniques– Distributed embedded systems – Networks for embedded		Qua ms:]	+ 3 lity
Assurance te Ethernet, Fiel UNIT V GPS Navigat	odologies– Design flows – Requirement Analysis – Specificatio chniques– Distributed embedded systems – Networks for embedded d bus– Overview on Internet of Things. APPLICATIONS OF EMBEDDED SYSTEMS ion system – Engine control unit – Pacemaker– Defibrillator – S nart Home Security System – Challenges and trends in embedde lications.	mart mart	Qua ms: 1 9 Vencestems	+3 lity ^{2}C , +3 ling in
Assurance te Ethernet, Fiel UNIT V GPS Navigat Machine –Sr	odologies– Design flows – Requirement Analysis – Specificatio chniques– Distributed embedded systems – Networks for embedded d bus– Overview on Internet of Things. APPLICATIONS OF EMBEDDED SYSTEMS ion system – Engine control unit – Pacemaker– Defibrillator – S nart Home Security System – Challenges and trends in embedded	mart mart	Qua ms: 1 9 Vencestems	+3 lity ^{2}C , +3 ling in

• Categorize the design methodologies and Networks for embedded systems.

• Design real-time consumer/industrial applications using embedded-system concepts.

TEXT BOOKS:

- 1. Marilyn Wolf, "Computers as Components Principles of Embedded Computing System Design", Fourth Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2016.
- 2. Alexander G. Dean, "Embedded Systems Fundamentals with Arm Cortex-M based Microcontrollers: A Practical Approach", ARM Education media, Paperback 1 March 2017.

- 1. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
- 2. David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, AddisonWesley Professional, 2007.
- 3. C.M. Krishna, Kang G. Shin, "Real-Time Systems", Tata McGraw-Hill Education, 2010.
- 4. K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", DreamTech Press, 2005.
- 5. Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGrawHill, 2017.
- 6. ARM Cortex M4 Cookbook by Dr.Markfisher, PACKT publications.
- 7. Discovering the STM32 Micro controller, Geoffrey Brown, Indiana University press, 2016.

EC18711	MINI PROJECT	L	Τ	Ρ	С
		0	0	6	3
OBJECTIV	ES:				
• To de	fine, formulate and analyze a real-world problem in the field of ECE.				
	lve the problems independently or as part of a team.				
	quire knowledge in terms of the innovation & product design developm	nent	proc	cess	of
	oject work.		•		
-	ork independently as well as in teams.				
	anage the project from start to finish.				
PROJECT	WORK MODALITIES				
Students can	take up small real world problems in the field of electronics and o	com	mun	icat	ior
engineering a	s mini project. Each student or as a team should conceive, design deve	elop	and	real	ize
an electronic	product. The basic elements of product design - the function en	rgon	omi	cs a	inc
	hould be considered while conceiving and designing the product. It can	-			
	n engineering problem, verification and analysis of experimental dat				
	uitable experiments on various engineering subjects, characterization				
	for the solution of an engineering problem etc. The realization				
	le design and fabrication of PCB. The student should submit a soft bou				
	nester. The product should be demonstrated at the time of examination		cpor	ιαι	ιn
end of the se	nester. The product should be demonstrated at the time of examination	•			
	TOTAL	: 90	PEI	RIO	DS
OUTCOME	S:				
At the end of	the course, learners will be able to				
• Iden	tify problems and perform survey on the existing methods				
• Dev	elop a novel idea and analyze the various implementation issues				
• Imp	ement the design and develop a prototype				
• Den	ionstrate the working module.				
_					

Demonstrate the working module.Prepare a presentation and a report and explain the project work

OBJECTIVE • To und	OPTICAL AND MICROWAVE LABORATORY	L	Т	P	С
		0	0	4	2
 To und 					
	erstand the working principle of optical sources, detector, fibers a	and	micro	wave	
compo					
	elop understanding of simple optical communication link.				
	n about the characteristics and measurements in optical fiber				
	w about the behavior of microwave components.				
•	ctice microwave measurement procedures				
	PERIMENT – OPTICAL				
	aracteristics of LED and PIN Photo diode				
	Characteristics of Fibers				
	rement of connector loss, bending losses and Attenuation loss in l	Fibe	rs		
	alysis in Fibers-Analog and Digital Link				
	ical Aperture determination for Fibers				
	PERIMENT – MICROWAVE				
	klystron or Gunn diode characteristics				
	rement of VSWR, frequency, wavelength.				
	onal Coupler Characteristics.				
	on Pattern of Horn Antenna.				
-	neter Measurement of the Isolator and Circulator				
-	neter Measurement of E plane Tee, H Plane Tee and Magic Tee ation and Power Measurement				
7. Attenu		ГАТ	. <u>(</u>) T	PERIC	אר
Notos Diottino					
-	of drawings must be made for each exercise and attached to t	the I	record	is wri	tter
by students. OUTCOMES					
	he course, the student will be able to				
	ate microwave signal aspects and parameters.				
	ate the performance of optical link and its parameters.				
 evalu 	ate the properties of microwave components.				
	are and analyze the mode characteristics of fiber optics.				
	are and analyze the radiation pattern of horn antenna.				
• measu					
• measure the measure of the measure	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment		Qu	antity	y
• measonaire meas	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi			antity Nos.	y
• measure LIST OF EQ Trainer kit for meter, optical	UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter.				y
• measure LIST OF EQ Trainer kit for meter, optical Trainer kit for	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber		2	Nos. Nos.	y
• measure LIST OF EQ Trainer kit for meter, optical Trainer kit for Trainer kit for	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS		2	Nos.	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS 0 MHz signal generator		2	Nos. Nos.	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10 Optical Kit for	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber		2 2 2 2 2	Nos. Nos. Nos.	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10 Optical Kit for MM/SM Glass	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors		2 2 2 2 2	Nos. Nos. Nos. 2 set	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10 Optical Kit for MM/SM Glass LEDs with ST	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors / SC / E2000 receptacles – 650 /850 nm		2 2 2 2 2	Nos. Nos. Nos.	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10 Optical Kit for MM/SM Glass LEDs with ST PiN PDs with	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors / SC / E2000 receptacles – 650 / 850 nm ST / SC / E2000 receptacles – 650 / 850 nm		2 2 2 2	Nos. Nos. Nos. 2 set 2 set 2 set	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source, 10 Optical Kit for MM/SM Glass LEDs with ST PiN PDs with Microwave tes	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors / SC / E2000 receptacles – 650 / 850 nm ST / SC / E2000 receptacles – 650 / 850 nm t Bench at X band to determine Directional coupler characteristic		2 2 2 2	Nos. Nos. Nos. 2 set 2 set	y
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source,10 Optical Kit for MM/SM Glass LEDs with ST PiN PDs with Microwave tes Microwave tes	are and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors / SC / E2000 receptacles – 650 / 850 nm ST / SC / E2000 receptacles – 650 / 850 nm t Bench at X band to determine Directional coupler characteristic t Bench at X band and Antenna turn table to measure Radiation		2 2 2 2 2 2 2 2 2 2 2 2	Nos. Nos. Nos. 2 set 2 set 2 set	
• measure LIST OF EQ Trainer kit for Trainer kit for Trainer kit for Data source,10 Optical Kit for MM/SM Glass LEDs with ST PiN PDs with Microwave tes pattern of Hor	ure and analyze the radiation pattern of horn antenna. UIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment carrying out LED and PIN diode characteristics, Digital multi power meter. determining the mode characteristics, losses in optical fiber analyzing Analog and Digital link performance, 2 Mbps PRBS MHz signal generator measuring Numerical aperture and Attenuation of fiber and plastic fiber patch chordswith ST/SC/E2000 connectors / SC / E2000 receptacles – 650 / 850 nm ST / SC / E2000 receptacles – 650 / 850 nm t Bench at X band to determine Directional coupler characteristic		2 2 2 2 2 2 2 2 2 2 2 2	Nos. Nos. Nos. 2 set 2 set 2 set 2 set 2 Nos.	

Circulator, E Plane Tee, H plane Tee, Magic Tee.	
Gunn source based Microwave test Bench at X band	3 Nos
Microwave power meter	2 Nos
30 MHz Digital / Analog Oscilloscope	15 Nos
3 MHz Function Generator	5 Nos

	713 EMBEDDED SYSTEMS LABORATORY	Ι	L T	Р	C
		() 0	4	2
OBJEC	CTIVES:				
٠	To learn the working of ARM processor				
٠	To write programs to interface the I/Os with processor				
•	To write programs to interface the various peripherals with p	processor			
•	To learn the Raspberry-Pi initial setup and web interface				
٠	To write programs for IoT based application on Raspberry-F	Pi			
LIST C)F EXERCISES USING µKeil / IAR WORK BENCH /AF	RM C COM	PILEF	ł	
1.	Study of ARM evaluation system.				
2.	Interfacing ADC and DAC.				
3.	Interfacing LED and PWM.				
4.]	Interfacing real time clock and serial port.				
5.	Interfacing keyboard and LCD.				
	Interfacing of servo motor and DC motor.				
	Interfacing stepper motor and temperature sensor.				
8. 1	Implementing zigbee protocol with ARM.				
LIST O	OF EXERCISES USING RASPBERRY PI 3				
1.	Study of Raspberry-Pi and OS installation				
2.	Simple web interface for Raspberry-Pi to control the connect	ed LEDs rei	notely	throug	h th
i	interface.				
3.	Implementation of client and server application on Raspberry	T .			
	implementation of cheft and server application on Raspoerry				
	Imperientation of cheft and server application on Raspoerry		AL: 60	PERI	OD
			AL: 60	PERI	OD
OUTC	OMES:		AL: 60	PERI	OD
			AL: 60	PERI	OD
At the e	OMES:				
At the e	OMES: end of the course, the student will be able to				
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr	TOTA	ng STM	1320 s	erie
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE	TOTA	ng STM	1320 s	erie
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin	TOTA tex M4 usir	ng STM erfacin	1320 s g ADC	erie
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM	TOTA tex M4 usin g LED's, Int rith the ARM	ng STM erfacin I proce	1320 s g ADC ssor .	erie Can
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w	TOTA tex M4 usin g LED's, Int with the ARM cessor to int	ng STM Terfacin I proce Terface v	1320 s g ADC ssor . with Zi	erie Can gbe
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro	TOTA tex M4 usin g LED's, Int rith the ARM cessor to int on using the	ng STM erfacin I proce erface v inbuilt	1320 s g ADC ssor . vith Zi t featur	erie Can gbe
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generation	TOTA tex M4 usin g LED's, Int rith the ARM cessor to int on using the	ng STM erfacin I proce erface v inbuilt	1320 s g ADC ssor . vith Zi t featur	erie Cane gbe
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i	TOTA tex M4 usin g LED's, Int rith the ARM cessor to int on using the	ng STM erfacin I proce erface v inbuilt	1320 s g ADC ssor . vith Zi t featur	erie Cane gbe
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i communication.	TOTA tex M4 usin g LED's, Int rith the ARM cessor to int on using the	ng STM eerfacin I proce erface v inbuilt Client-S	1320 s g ADC ssor . vith Zi t featur	erie 2 and gbe res
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i communication. DF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:	TOTA tex M4 usin g LED's, Int rith the ARM cessor to int on using the	ng STM erfacin I proce erface v e inbuilt Client-S	1320 s g ADC ssor . vith Zi t featur erver	erie 2 and gbe es y
At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i communication. DF EQUIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment WARE: Embedded Trainer kits with ARM Boards	TOTA tex M4 usin ag LED's, Inta with the ARM cessor to inta on using the implement C	ng STM erfacin I proce erface v e inbuilt Client-S	1320 s g ADC ssor . with Zi t featur erver <u>uantit</u>	erie 2 and gbe es y
At the e I I I I I I I I I I I I I	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i communication. DF EQUIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment WARE: Embedded Trainer kits with ARM Boards VARE: uKeil / IAR WORK BENCH, Raspbian OS, Python 3	TOTA tex M4 usin ag LED's, Inta with the ARM cessor to inta on using the implement C	ng STM eerfacin I proce erface v inbuilt Client-S	1320 s g ADC ssor . vith Zi t featur erver <u>uantit</u> 0 Nos	erie 2 and gbe es y
At the e At the e I I At the e I At the e At the e	OMES: end of the course, the student will be able to Illustrate the ARM evaluation system based on ARM corr processor through any open source IDE Design to program the I/O ports of ARM processor by flashin implementing PWM Interface the Keyboard, DAC, LCD module, stepper motor w Articulate the embedded C concepts to program the ARM pro modules, DC motor. Also to perform Realtime clock generati Develop python codes for Raspberry-Pi to flash LED and to i communication. DF EQUIPMENTS FOR A BATCH OF 30 STUDENTS: Description of Equipment WARE: Embedded Trainer kits with ARM Boards	TOTA tex M4 usin ag LED's, Inta with the ARM cessor to inta on using the implement C	ng STM erfacin I proce erface v e inbuilt Client-S Q 1 1	1320 s g ADC ssor . vith Zi t featur erver <u>uantit</u> 0 Nos	erie 2 and gbe es y

SEMESTER VIII

EC18811	PROJECT WORK	L	Τ	Р	С
		0	0	24	12
OBJECTIV	/ES:				
• To s	olve engineering problems relevant to the society.				
• To c	ffer students an opportunity to integrate the knowledge gained in various	s sub	oject	s of	the
degr	ee course.				
• To d	emonstrate their competence in practical courses.				
• To a	pply communication skills, both oral and written, to communicate results	s, co	nce	pts a	nd
idea	S.			-	
PROJECT	WORK MODALITIES				
The object	of Project Work is to enable the student to take up investigative study in	n the	e bro	oad f	ïeld
	ics & Communication Engineering, either fully theoretical/practical or			<u> </u>	
	and practical work to be assigned by the Department on an individual ba				
	a group, under the guidance of a Supervisor from the Department alone				
-	drawn from R&D laboratory/Industry. This is expected to provide ago				
	the student(s) in R&D work and technical leadership. The assignment	ent	to 1	norm	ally
include:					
	epth survey and study of published literature on the assigned topic;				
	ew and finalization of the Approach to the Problem relating to the assign		opic	2	
	aring an Action Plan for conducting the investigation, including team we				
	king out a preliminary Approach to the Problem relating to the ass				and
	ducting preliminary Analysis/Modelling/Simulation/Experiment/Design/				
	iled Analysis/Modelling/Simulation/Design/Problem Solving/Experiment				
	l development of product/process, testing, results, conclusions and future aring a paper for Conference presentation/Publication in Journals, if poss			JIIS;	
1	aring a Dissertation in the standard format for being evaluated by the De			.t	
-	1 Seminar Presentation before a Departmental Committee.	part	men	IL	
<i>)</i> . Tina	i Seminar i resentation before a Departmentar Committee.				
	TOTAL	: 36) PI	ERIC	DDS
OUTCOM	ES:				
At the end of	of the course, learners will be able to				
• Iden	tify challenging practical problems, solutions to cope up with present sce	nari	o in	the f	ïeld
of E	lectronics and Communication Engineering.				
• Dist	inguish various methodologies and technologies for solving the problem	witł	n tea	m.	
• Use	technical knowledge and project management skills for solving the problem	lem.			
• Dev	elop specific hardware and/or software for the project.				

- Develop specific hardware and/or software for the project.
- Conclude concepts, results and analysis in written and oral form.

PROFESSIONAL ELECTIVES

EC18001	CAD FOR VLSI CIRCUITS	L	Т	P	С
		3	0	0	3
OBJECTIV	ES:				
• To be	exposed to VLSI Design Methodologies.				
• To fan	niliar with VLSI design automation tools.				
• To be	exposed to floor planning and routing.				
• To be	exposed to various modeling and simulation.				
• To be	exposed to high level synthesis.				
UNIT I	INTRODUCTION TO VLSI DESIGN FLOW				9
	to VLSI Design methodologies, Basics of VLSI design auto	mat	ion	too	ols,
Algorithmic					
Graph Theor	y and Computational Complexity, Tractable and Intractable problems.	1			
					•
UNIT II	LAYOUT, PLACEMENT AND PARTITIONING		• •		9
	paction, Design rules, Problem formulation, Algorithms for con				
Partitioning	Placement and partitioning, Circuit representation, Placement	ll a	ugoi	nuni	ns,
Fartitioning					
UNIT III	FLOOR PLANNING AND ROUTING				(
	ng concepts, Shape functions and floorplan sizing, Types of local rou	tino	pro	bler	
	Channel routing.		Pro	0101	,
8					
UNIT IV	SIMULATION AND LOGIC SYNTHESIS				9
Simulation,	Gate-level modeling and simulation, Switch-level modeling an	d s	simu	lati	on,
Combination	al Logic Synthesis, Two Level Logic Synthesis.				
UNIT V	HIGH LEVEL SYNTHESIS				9
	odels for high level synthesis, internal representation, allocation, a	ssig	nme	nt a	nd
scheduling, H	ligh level transformations.				
	TOTAL: (L: 45):	45 I	PER		DS
OUTCOME					
	the course, learners will be able to	.1			
	mine the VLSI design methodologies for tractable and Intractable prol			n ~	
-	in compact layouts and develop algorithms for circuit placement and p	artit	IOIII	ng	
	fy routing problems and develop floor planning and routing late and synthesize logical functions.				
	lop hardware models for high level synthesis.				
• Deve					
TEXT BOO	K•	L			
	Gerez, "Algorithms for VLSI Design Automation", John Wiley & Son	s 20)06		
	Sherwani, "Algorithms for VLSI Physical Design Automation", Kluw			ami	•
	shers, 2002.		Lau		-
D1 1'					
Publi REFERENC					

- 1. Stephen M. Trimberger,"An Introduction to CAD for VLSI" Springer, 2013.
- 2. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific 1999.
- 3. Steven M. Rubin,"Computer Aids For VLSI Design", R. L. Ranch Press, 2009

CS18051	FUNDAMENTALS OF OPERATING SYSTEMS	L T 3 0	P C 0 3
OBJECTIVES:			
• To under	stand the basic concepts and functions of operating systems.		
• To under	stand Process and to analyze Scheduling algorithms.		
	stand the concept of Deadlocks.		
•	ve various memory management schemes.		
	stand I/O management and File systems.		
	TRODUCTION TO OPERATING SYSTEMS		. 9
	m Organization - Computer System Architecture – Evolut	-	-
	ing System Structures - Services and Operations - System m Structure – Virtual Machines.	1 Calls -	System
riograms - Syste	in Structure – Virtuar Machines.		
UNIT II PF	OCESS SCHEDULING		9
	ess concept – Process scheduling – Operations on processe	es – Coot	-
	rprocess communication, CPU Scheduling: Scheduling crite		
-	tiple-processor scheduling – Real time scheduling – Algorith		-
UNIT III PF	OCESS SYNCHRONIZATION AND DEADLOCK		9
Process Synchr	onization: The critical-section problem – Synchronizati	ion hard	ware –
Semaphores – C	lassic problems of synchronization – Deadlock: System m	odel – D	eadlock
-	- Methods for handling deadlocks - Deadlock prevent		
	dlock detection – Recovery from deadlock		
	ORAGE STRUCTURE		9
Memory Manag	ement: Background – Swapping – Contiguous memory allo	ocation –	Paging
-Segmentation -	Segmentation with paging. Virtual Memory: Background -	Demand	paging,
<u> </u>	t - Allocation – Thrashing		
	LE SYSTEMS & MASS STORAGE STRUCTURE		9
	age - File Concepts - Access Methods – File Sharing and		
-	- File System Implementation - Directory Structure - Alloca		iods -
Mass Storage Su	ructure - Disk Scheduling and Management - RAID Structure TOTAL (L:45		DIODS
	IOTAL (L.4.	5) . 4 5 I E	RIUDS
OUTCOMES:			
On the completio	on of the course the students will be able to		
	the students to apply the functionality of operating systems		
	students knowledgeable to design various Scheduling algorit		
	the students able to apply the principles of concurrency and to) design d	eadlock
-	n, detection and avoidance algorithms.		_
	students able to Compare and contrast various memory mana	igement s	chemes
	nt a prototype file systems and I/O systems.		
TEXT BOOKS		<u> </u>	
	n Silberschatz, Peter B Galvin, and Gerg Gagne, "Operating S	System	
REFERENCES	", 10 th Edition, Wiley India Pvt Ltd, 2018		
	5. Tanenbaum, "Modern Operating Systems", fourth Edition,	Pearson	
	n/PHI, 2015		
Laucuilo			

EC18003	HIGH SPEED ELECTRONICS	L	Т	Р	С
		3	0	0	3
OBJECTIV	ES:	-	-		
To impart kn	owledge on the following Topics				
-	bus semiconductor properties and characteristics				
	acteristics and small signal analysis of Homojunction Devices				
	acteristics of various MOS Devices				
	acteristics and small signal analysis of various Hetrojunction Devices				
	ication techniques.				
UNIT I	SEMICONDUCTOR MATERIALS CHARACTERISTICS				9
Review of C	Crystal Structure: Crystal structure of important semiconductors (S	i, G	JaAs	s, Ir	P)
	periodic lattices - energy band diagram - carrier concentration and ca				
	- electrical - optical - thermal and high field properties of semiconducto			1	
•					
UNIT II	HOMOJUNCTION DEVICES				9
Homojunctio	n Devices (BJT and FET): Structure - band diagram - operation -	I–V	and	d C	-V
characteristic	s (analytical expressions) - small signal switching models.				
UNIT III	MOS DEVICE				9
breakdown an	acture - operation - I–V and C–V characteristics (analytical expression ad punch through – subthreshold current – scaling down; Alternate Hi F–MOSFETs - SOI MOSFET - buried channel MOSFET - charge coupl	gh k	c-die	elect	
UNIT IV	ADVANCED DEVICES				9
	ADVANCED DEVICES MT Devices: AlGaAs/ GaAs, InP and SiGe based HBT and HEMT s	tmio	turo	h	-
	eration - I–V and C–V characteristics (analytical expressions) – small si				
	efits of heterojunction transistor for high speed applications, Silicon C				
Devices, SiC	• • • • •	arv	luc	bo	CI
UNIT V	FABRICATION AND CHARACTERIZATION TECHNIQUES				9
Crystal Grow	th and Wafer Preparation: Epitaxy - diffusion - ion implantation -	diel	ectri	ic fi	lm
•	d oxidization techniques - masking and lithography techniques (optical				
	ed lithography techniques) - metallization - bipolar and MOS integration				
interface pas	sivation techniques; Characterization Techniques: Four probe ar	ld ł	nall	eff	ect
measurement	- I–V and C–V for dopant profile characterization and DLTS.				
	TOTAL: (L: 45):	45]	PER	lOI	DS
OUTCOME					
	the course, learners will be able to				
 analyz 	e the crystal structure of different types of Semiconductor mat	eria	ls a	nd	its

- analyze the crystal structure of different types of Semiconductor materials and its characteristics.
- understanding the basic structure, band diagram and principle of operation of different homo junction devices (BJT & FET)

- understanding the basic structure, band diagram and principle of operation of different MOS devices.
- analyze the Characteristics and small signal analysis of various Hetrojunction Devices

• understand and compare the different types of fabrication and characterization techniques.

TEXT BOOKS:

- 1. Nandita Das Gupta and Amitava Das Gupta, "Semiconductor Devices: Modeling and Technology", Prentice Hall of India, 2004.
- 2. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 2008.

- 1. S. M. Sze, "Physics of Semiconductor Devices", 3rd edition, John Wiley and Sons, 2007
- 2. J. Singh, "Semiconductor Devices: Basic Principles", John Wiley and Sons, 2007.

EC18005	INDUSTRIAL INTERNET OF THINGS	L	Τ	P	C
		3	0	0	3
OBJECTIV					
custorTo geTo knTo brit	roduce how IoT has become a game changer in the new economy when ners are looking for integrated value. t insights over architecture and protocols of IIoT ow the various sensors and interfacing used in IIoT. ing the IoT perspective in thinking and building solutions. troduce the tools and techniques that enable IoT solution and Sector.				
UNIT I	INTRODUCTION to IOT, What is IIOT? IOT Vs. IIOT, History of IIOT, Components of I				9
examples, Ke &Manip	works, People & amp; Process, Hype cycle, IOT Market, Trends& by terms – IOT Platform, Interfaces, API, clouds, Data Management Ana ulation; Role of IIOT in Manufacturing Processes, Use of IIOT in plan ustainability through Business excellence tools Challenges & amp g IIOT.	alyti nt m	ics, l aint	Min enai	ing nce
UNIT II	ARCHITECTURE AND PROTOCOLS				9
disadvantages Gateways, Ro	IOT components; Various Architectures of IOT and IIOT, Adva s, Industrial Internet - Reference Architecture; IIOT System componenters, Modem, Cloud brokers, servers and its integration, WSN, WSN in d for protocols, Wi-Fi, Zigbee, Bacnet, IIOT protocols –COAP, MQTT	nent netw	s: S /ork	enso des	ors,
UNIT III	SENSORS AND INTERFACING				9
Introduction sensors, Desi actuators, typ	to sensors, Transducers, Classification, Roles of sensors in IIOT, Va gn of sensors, sensor architecture, special requirements for IIOT se pes of actuators. Hardwire the sensors with different protocols su erial & amp; Parallel, Ethernet, BACNet, Current, M2M etc.	nsoi	rs, F	Role	of
	CLOUD SECUDITY AND COVEDNANCE				9
cloud service technology ar	CLOUD, SECURITY AND GOVERNANCE latforms: Overview of cots cloud platforms, predix, thingworks, azure. s, Business models: Saas, Paas, Iaas; Introduction to web security, Con nd relationship with IIOT, Vulnerabilities of IoT, IoT security tomograp el, Identity establishment, Access control, Message integrity; Managen y.	nver hy a	ntion and l	al v aye	ics, veb red
UNIT V	IOT ANALYTICS AND APPLICATIONS				9
IOT Analytic Applications	s : Role of Analytics in IOT, Data visualization Techniques, Statistical : Smart Metering, e-Health Body Area Networks, City Automation, Au Plant Automation, Real life examples of IIOT in Manufacturing Sector	tom r.	otiv	e	T
	TOTAL: (L: 45):	43	rEb	aO	D 2
• Distin variou	S: the course, learners will be able to guish between IOT and Industrial IOT and interrelate the role of key co as applications. orize the reference architectures and protocols for IOT & IIOT.	omp	onei	nts i	n

- Identify the different sensors and actuators that are used in IIOT.
- Interrelate the Commercially available IIOT Cloud Platforms and detect vulnerabilities with respect to security in IOT.
- Distinguish between various Data analytics models and visualization tools and relate to real life examples of IIOT.

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", 1st Edition, Wiley Publications, 2013
- 2. Dieter Uckelmann , Mark Harrison, Florian Michahelles, "Architecting the Internet of Things", Springer-Verlag Berlin Heidelberg 2011 Industry 4.0: The Industrial Internet of Things
- 3. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things, "First edition, Apress

- 1. Hakima Chaouchi, "The Internet of Things Connecting Objects to the Web "Willy Publications.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, 2nd Edition, Wiley Publications
- 3. Internet of Things From Research and Innovation to Market Deployment; by Ovidiu Vermesan & Peter Friess; 2014, River Publishers Series
- 4. How Protocol Conversion Addresses IIoT Challenges: White Paper By RedLion.
- 5. Alasdair Gilchrist," Industry 4.0: The Industrial Internet of Things", First edition, Kindle edition

	MEASUREMENTS AND INSTRUMENTATION	L	Т	P	С
		3	0	0	3
OBJECTIV					
-	owledge on the following topics				
	Basics of Measurements				
	Fundamentals of Analog Instruments				
	Fundamentals of Digital Instruments				
	Various Physical Quantity Measurements using Sensors				
•	Recent development in Sensors				
UNIT I	BASICS OF MESUREMENTS				9
Metrics and	d Tolerances of various Electrical parameters (V, I, f, Po	wei	r),	Sta	tic
	es-Errors in measurements -Dynamic characteristics, Calibrations and Sta				
UNIT II	ANALOG INSTRUMENTS				9
	to analog measuring instruments-Construction, principle and application				<u> </u>
	ent- Moving Iron instrument - Rectifier type instrument - Dynar				
	Induction type instrument, Selection of a measuring instrument f			-	
	Statistical analysis of error data (Simple Problems) - Error correct	ion	me	etho	ds,
Measuremen	ts of power using CT & PT.				
					-
UNIT III	DIGITIAL INSTRUMENTS	r			9
	neter -Digital Multi meter - Digital Watt meter - Digital Frequency M				
	lloscope - LCR meter - Energy meter - Power factor meter - Harmon alyzer – concepts of Smart Meters - Automatic Meter Reading (AMR) –				
-	$a_1v_2e_1 - c_0(c_0)s_0(s_0)s_0(a_1v_1e_1e_1s - Automatic_ve_1e_1e_1 - c_0(c_0)s_0(s$	INCI			ug.
otatisticai an					
_ tation our un	alysis of error data - Error correction methods.				
UNIT IV					9
UNIT IV	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS			ragn	-
UNIT IV Pressure Me	Alysis of error data - Error correction methods. APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors –	Dia	aphi		n -
UNIT IV Pressure Me Bourdon Tul	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS	Dia	aphi	eme	n -
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating	Dia Mea ture sea	aphi isur De irch	eme tect coi	n - ont: ors 1 –
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperature ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas	Dia Mea ture sea	aphi isur De irch	eme tect coi	n - ont: ors 1 -
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating	Dia Mea ture sea	aphi isur De irch	eme tect coi	nt: ors 1 –
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meass - Rogowski coil	Dia Mea ture sea	aphi isur De irch	eme tect coi	n – ont: ors 1 – [all
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperature ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas	Dia Mea ture sea	aphi isur De irch	eme tect coi	n - nt: ors 1 –
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS	Dia Mea ture sea	aphi isur De irch	eme tect coi	n - ont: ors 1 – [all
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperat ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil	Dia Mea ture sea ure	aphn Isur De Irch men	eme tecto coi t: H	n - ont: ors 1 – fall 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. (L: 45): 4	Dia Mea ture sea ure	aphn Isur De Irch men	eme tecto coi t: H	n - ont: ors 1 - [all] 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. (L: 45): 4	Dia Mea ture sea ure	aphn Isur De Irch men	eme tecto coi t: H	n - ont: ors 1 - [all] 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME At the end of • Unde	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperature ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. I TOTAL: (L: 45): 4 S:	Dia Mea sea uren 45 I	aphn Isur De urch men	eme tecto coi t: H	n - ent: ors 1 – fall 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME At the end of • Unde and c	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperate ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. TOTAL: (L: 45): 4 S: The course, learners will be able to rstanding the principle of measurement of electrical parameters, Error in alibration.	Dia Mea ure sea ure 45 1 me	aphn Isur De urch men	eme tecto coi t: H	n - ent: ors 1 – fall 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME At the end of • Unde and c • Unde	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperat ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. TOTAL: (L: 45): 4 S: The course, learners will be able to rstanding the principle of measurement of electrical parameters, Error in alibration. rstand the working principle of operation of analog measuring instrument	Dia Mea sure sea uren 45 1 me ts.	aphn Isur De urch men	eme tecto coi t: H	n - ent: ors 1 – fall 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME At the end of • Unde and c • Unde • Unde • Unde	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperature ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. TOTAL: (L: 45): 4 S: The course, learners will be able to rstanding the principle of measurement of electrical parameters, Error in alibration. rstand the working principle of operation of analog measuring instrumen rstand the working principle of operation of digital measuring instrumen stand the principle of measurement of different physical quantities using	Dia Mea sea uren 45 I me ts.	aphn Isur De Irch men	eme tecto coi t: H	n - ent: ors 1 – fall 9
UNIT IV Pressure Me Bourdon Tul Temperature (RTD) – The three orthogo effect sensor UNIT V Introduction OUTCOME At the end of • Unde and c • Unde • Unde • Unde	APPLICATION OF SENSORS FOR PHYSICAL QUANTITY MESUREMENTS asurement: Principles of pressure – Standards - Types of Sensors – be – Pirani Gauge – principle, operations & applications; Temperature I standards - Types of Sensors – Bimetallic strip – Resistance Temperature ermistors – Thermocouples - Magnetic Field Measurement: Oscillating onal search coils – principles and applications; Current & Voltage Meas - Rogowski coil INTRODUCTION TO RECENT DEVELOPMENTS IN SENSORS – SMART Sensors, MEMS, Nano Sensors. TOTAL: (L: 45): 4 S: The course, learners will be able to rstanding the principle of measurement of electrical parameters, Error in alibration. rstand the working principle of operation of analog measuring instrumen rstand the working principle of operation of digital measuring instrumen	Dia Mea sea uren 45 I me ts.	aphn Isur De Irch men	eme tecto coi t: H	n - ent: ors 1 - fall 9 9 DS

- 1. A.K. Sawhney, A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & Co, 2010.
- 2. E.O. Doebelin, Measurement Systems Application and Design, Tata McGraw Hill publishing company, 2003.

- 1. Electronic Instrumentation, "Kalsi H.S", Tata McGraw-Hill 2003
- 2. Electrical Measurements and Measuring Instruments, "E.W. Golding and F.E. Widdis" Wheeler's student edition, 2009.
- 3. A Course in Electronics and Electrical Measurements and Instrumentation "J.B. Gupta", S.K. Kataria & Sons 2001.
- 4. Modern electronic Instrumentation and Measurement techniques, "Albert D.Helifrick, William D. Cooper", PHI, 1992.
- 5. Robert.B.Northrop, Introduction to instrumentation and measurements, Allied Publishers, 2002.
- 6. Patranabis, D, Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010.
- 7. Alan S. Morris, Principles of Measurement and Instrumentation, Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.

EC18009	MEDICAL ELECTRONICS	L	T P	С
		3	0 0	3
OBJECTIVES :				
 To gain kno 	wledge about the origin of bio potentials and the methods of reco	rding	g bio	
potentials.				
• To understa	nd various non- electrical parameters and the methods of recordin	ig the	ose	
parameters.				
 To study ab 	out the various implantable and non-implantable assist devices			
To understa	nd the physiological effects of HF radiation and its application			
 To gain kno 	wledge about the recent technological development in diagnosis a	ind t	herapy	′ .
UNIT I	ELECTRO-PHYSIOLOGY AND BIO-POTENTIAL			9
	RECORDING	L		
Ū.	o-potentials; bio-potential electrodes; biological amplifiers-In			
1 ·	amplifier, ECG, EEG, EMG, PCG, lead systems and recording m	etho	ds, typ	ical
waveforms and sign				
UNIT II	BIO-CHEMICAL AND NON ELECTRICAL			9
	PARAMETER MEASUREMENT	L		
-	plorimeter, Auto analyzer, Blood flow meter-Electromagnetic a			
	cardiac output - Fick's method, Indicator dilution and Dye dil			
	ement, Blood pressure, temperature, pulse, Blood Cell Counters, A	Angi	ograph	
UNIT III	ASSIST DEVICES			9
-	rs, Artificial heart valves, DC Defibrillator, Dialyser, Heart-L	ung	Mach	ine,
Introduction to Hea	ring Aid, Dental implants, prosthetic and orthotic devices			
UNIT IV	PHYSIOTHERAPY AND DIATHERMY EQUIPMENT			9
Physiological effect	ts of HF radiation, Depth of Penetration-Diathermies-Shortwave,	ultra	asonic	and
	nd their applications, Surgical Diathermy, Physiological effect			
-	ficro and macro electric shock, GFI units, Earthing Scheme, El	ectri	ical sat	fety
Analyzer.				
UNIT V	RECENT TRENDS IN MEDICAL INSTRUMENTATION	L		9
	oscopy unit, Laser in medicine, cryogenic application, Introductio			
	ncy selection, biotelemetry, Radiopill, Introduction to Med	lical	Imag	ging
techniques, Princip	les of MRI-MRI instrumentation, Patient Monitoring System			
	TOTAL: (L: 45):	45 F	PERIC	DS
OUTCOMES:				
Upon completion of	f the course, students will be able to			
	nd explain various bio-potential measuring instruments			
	h and categorize bio chemical and Non electrical parameter measu	ırem	ents	
0	d differentiate various assist devices			
-	nd explain the operation of therapeutic and telemetric devices.			
	d explain the operation of advanced diagnostic devices.			
TEXT BOOKS:				
1. Leslie Cror	nwell, "Biomedical Instrumentation and Measurement", Prentice	Hall	of Ind	lia,
New Delhi	, 2007.			
	bster, "Medical Instrumentation Application and Design", 3rd Ed	ition	, Wile	у
India Editio	on, 2007			
REFERENCES:				

- 1. Khandpur, R.S., "Handbook of Biomedical Instrumentation", TATA Mc Graw-Hill, New Delhi, 2003.
- 2. Joseph J.Carr and John M.Brown, "Introduction to Biomedical Equipment Technology", John Wiley and Sons, New York, 2004.
- 3. Steve Webb, "The Physics of Medical Imaging", Taylor & Francis, New York.1988.
- 4. D.N.Chesney and M.O.Chesney, "Radio Graphic Imaging", CBS Publications, New Delhi, 1987.
- 5. Peggy, W., Roger D.Ferimarch, "MRI for Technologists", Mc Graw Hill, New York, 1995

EC18011	CISC AND RISC ARCHITECTURES	L	Т	P	С
		3	0	0	3
OBJECTIVE	CS:				
To enTo en	pose the students to the fundamentals of CISC microprocessor architect able the students to understand RISC architectures. Table the students to understand ARM application development troduce the advanced features in microprocessors and microcontrollers.				
	able the students to understand various microcontroller architectures.				
	able the students to understand various incrocontroller areintectures.				
UNIT I	HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM				9
Segmentation	cture- Bus Operations – Pipelining – Branch prediction – Operat and Paging – Multitasking – Exception and Interrupts – Instruction se ramming the Pentium processor.				
UNIT II	HIGH PERFORMANCE RISC ARCHITECTURE – ARM				9
	or - ARM architecture and cores- ARM programmer's model- ARM o	raar	izat	ion	
	- 5 stage pipeline- ARM instruction set- Assembly language programm			1011	- 5
stage pipeline	s stage pipernie That instruction set Tisseniory language programmi	ing.			
UNIT III	ARM APPLICATION DEVELOPMENT				9
Introduction to Environment-	o Firmware and Boot loader – Embedded Operating systems -Integrated STDIO Libraries – Peripheral Interface – Application of ARM Proce ection Units – Memory Management units.			-	
UNIT IV	FEATURES OF MODERN MICROCONTROLLERS				9
				('or	
Memory inter	o modern microcontrollers – General microcontroller architecture - Pro rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI ners – Interrupts.				
Memory inter Watchdog tim	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI ners–Interrupts.				[_
Memory inter Watchdog tim UNIT V	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI hers – Interrupts. PIC MICROCONTROLLER	DC	- P'	WM	[– 9
Memory inter Watchdog tim UNIT V CPU Architec	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI ners–Interrupts.	DC	- P'	WM	[– 9
Memory inter Watchdog tim UNIT V	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI ers – Interrupts. PIC MICROCONTROLLER eture – Instruction set – interrupts- Timers- I ² C Interfacing –UART- A	A/D	- P'	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Architec	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI hers – Interrupts. PIC MICROCONTROLLER	A/D	- P'	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Architec –PWM. OUTCOMES At the end of Interpr Interpr Design	rfaces- Communication interfaces (SPI, I ² C, USB and CAN) - AI ers - Interrupts. PIC MICROCONTROLLER eture - Instruction set - interrupts- Timers- I ² C Interfacing -UART- A TOTAL: (L:45): S: the course, students will be able to ret CISC architecture and program it. ret RISC architecture and program it. n applications using Integrated Development Environment	A/D	Con	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Architec –PWM. OUTCOMES At the end of Interpre Interpre Design Exploi	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI errs – Interrupts. PIC MICROCONTROLLER eture – Instruction set – interrupts- Timers- I ² C Interfacing –UART- A TOTAL: (L:45): S: the course, students will be able to ret CISC architecture and program it. ret RISC architecture and program it. n applications using Integrated Development Environment it the features of the modern microcontrollers for communication interface	A/D	Con	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Architec –PWM. OUTCOMES At the end of Interpre Interpre Design Exploi	rfaces- Communication interfaces (SPI, I ² C, USB and CAN) - AI ers - Interrupts. PIC MICROCONTROLLER eture - Instruction set - interrupts- Timers- I ² C Interfacing -UART- A TOTAL: (L:45): S: the course, students will be able to ret CISC architecture and program it. ret RISC architecture and program it. n applications using Integrated Development Environment	A/D	Con	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Architec –PWM. OUTCOMES At the end of Interpr Interpr Design Exploi	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI eres – Interrupts. PIC MICROCONTROLLER eture – Instruction set – interrupts- Timers- I ² C Interfacing –UART- A TOTAL: (L:45): S: the course, students will be able to ret CISC architecture and program it. ret RISC architecture and program it. n applications using Integrated Development Environment it the features of the modern microcontrollers for communication interface it the features of the PIC Microcontroller for various applications.	A/D	Con	WM	[– 9 ter
Memory inter Watchdog tim UNIT V CPU Archited –PWM. OUTCOMES At the end of Interpre Interpre Design Exploi Exploi Exploi TEXT BOOH 1. James 2. Andre Design 2004.	rfaces– Communication interfaces (SPI, I ² C, USB and CAN) – AI eres – Interrupts. PIC MICROCONTROLLER eture – Instruction set – interrupts- Timers- I ² C Interfacing –UART- A TOTAL: (L:45): S: the course, students will be able to ret CISC architecture and program it. ret RISC architecture and program it. n applications using Integrated Development Environment it the features of the modern microcontrollers for communication interface it the features of the PIC Microcontroller for various applications.	DC A/D 45 1 aces 097. ope	- P'	WM nver RIO	[

- 1. Daniel Tabak, "Advanced Microprocessors", Mc Graw Hill. Inc., 1995
- 2. Steve Furber, "ARM System -On -Chip architecture", Addision Wesley, 2000.
- 3. James L.Antonakos, "An Introduction to the Intel family of Microprocessors", Pearson Education, 1999.
- 4. Barry. B. Breg," The Intel Microprocessors ", PHI, 2008.

EC18013	ROBOTICS AND AUTOMATION	L	Τ	P	C
		3	0	0	3
OBJECTIVI • To a the o • To e man • To s • To a • To a • To a • To e UNIT I Robotics: De of a robot – Precision of r Automation: control – Corr Material hand		3 s al ned min lom ited	0 ong wit g. ; Ar , SC	0 wit h	3 h
UNIT II	SENSORS AND MANIPULATOR				9
 Potentiome Inductive, Ca 	sor characteristics, Types of sensors – Tactile sensors, Touch sensors; Poteter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force	al,	Ultr	asoı	nic,
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to 	eter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force	al, ¹ e/Pr Belt ate ation	Ultr essu and Sw n Sy rol	ason are a d ch vitch vster valv	nic, and ain es, n – es;
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to End effector 	eter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force rs. Mechanical Actuation System – Cams, Gear trains, Ratchet and Pawl, I ings; Electrical Actuation System– Electrical systems, Solid St C. motors, A.C motors, Stepper motors; Hydraulic and Pneumatic Actuation to Hydraulic and Pneumatic Systems, Directional Control valves, Flow of	al, ¹ e/Pr Belt ate ation	Ultr essu and Sw n Sy rol	ason are a d ch vitch vster valv	nic, and ain es, n – es;
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to End effector selection; 	eter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force rs. Mechanical Actuation System – Cams, Gear trains, Ratchet and Pawl, I ings; Electrical Actuation System– Electrical systems, Solid St C. motors, A.C motors, Stepper motors; Hydraulic and Pneumatic Actua to Hydraulic and Pneumatic Systems, Directional Control valves, Flow of rs: Grippers and Tools – Types and mechanisms, Design consideration ROBOT MOTION ANALYSIS AND CONTROL	al, e/Pr Belt ate ate tition cont	Ultr essu and Sw n Sy rol in g	ason ire a d ch vitch vster valv grip	nic, and ain les, n – es; per 9
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to End effector selection; UNIT III Overview or representation equations – S Joint interpol Static analysis 	eter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force rs. Mechanical Actuation System – Cams, Gear trains, Ratchet and Pawl, I ings; Electrical Actuation System– Electrical systems, Solid St C. motors, A.C motors, Stepper motors; Hydraulic and Pneumatic Actua to Hydraulic and Pneumatic Systems, Directional Control valves, Flow or rs: Grippers and Tools – Types and mechanisms, Design consideration	al, Pr Belt ate ation cont cont cont cont cont n – contr contr d	Ultr essu Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw	ason ire a ire a i ire a ire a i i i i i i i i i i i i i	hic, hid ain es, $n - es;$ per 9 ion ttic ew, s -
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to End effector selection; UNIT III Overview or representation equations – S Joint interpol Static analysis 	ter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Force rs. Mechanical Actuation System – Cams, Gear trains, Ratchet and Pawl, I ings; Electrical Actuation System – Electrical systems, Solid St C. motors, A.C motors, Stepper motors; Hydraulic and Pneumatic Actua to Hydraulic and Pneumatic Systems, Directional Control valves, Flow of rs: Grippers and Tools – Types and mechanisms, Design consideration n controller and its types – PI, PD, PID; Manipulator kinemation of and orientation – Forward, Reverse and Homogeneous transformation Solving Inverse kinematic equations; Overview on Manipulator path co lated and Straight line motion; Differential motions – Jacobian; Robo is – Robot arm dynamics – Newton-Euler method – Euler-Lagrangian	al, Pr Belt ate ation cont cont cont cont cont n – contr contr d	Ultr essu Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw	ason ire a ire a i ire a ire a i i i i i i i i i i i i i	hic, und ain es, $n - es;$ per 9 ion tric ew, $s - s$
 Potentiome Inductive, Ca torque sensor Actuators: M drives, Beari Solenoids, D. Introduction to End effector selection; UNIT III Overview or representation equations – S Joint interpol Static analysi Force control UNIT IV Architecture a Image histogr other features visual servoir robot, Mobile Robot progra 	 ter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic apacitive, Eddy current; Speed sensors – Velocity/motion sensors; Forcers. Mechanical Actuation System – Cams, Gear trains, Ratchet and Pawl, I ings; Electrical Actuation System – Electrical systems, Solid St. C. motors, A.C motors, Stepper motors; Hydraulic and Pneumatic Actuation Hydraulic and Pneumatic Systems, Directional Control valves, Flow or sets: Grippers and Tools – Types and mechanisms, Design consideration and orientation – Forward, Reverse and Homogeneous transformation Solving Inverse kinematic equations; Overview on Manipulator path collated and Straight line motion; Differential motions – Jacobian; Robot arm dynamics – Newton-Euler method – Euler-Lagrangian – Tasks, Strategies. 	al, 1 e/Pr Belt ate ation cont cont cont cont cont cont d n fc enta e, F hage	Ultr essu and Sw n Sy rol in g - P Kin rol - P Kin rol - yna ation Point e bas Arr	ason ire a l ch vitch valv grip osit ema - Sle mic llati n; t ano sed n-ty	nic, nic, nic, nic, nic, nic, nic, nic,

UNIT V ROBOTIC AUTOMATION IN INDUSTRY

Flexible Manufacturing Systems – Components, Planning and implementation issues, Benefits and applications; Automated Storage Retrieval Systems (ASRS) – types, components and operating features; Automated processing/machining – Transfer lines; Automatic assembly – System configuration, parts delivery, applications; Automatic inspection – types, procedure, accuracy; Overview – Internet of Robotic Things – Cloud robotics.

TOTAL: (L: 45): 45 PERIODS

OUTCOMES:

At the end of the course, learners will be able to

- Categorize robots and automation based on various aspects
- Identify appropriate sensors, robot actuators, end effectors for certain applications
- Solve the basic manipulator kinematics, robot dynamics and sketch the manipulator path control
- Design appropriate vision system for certain robotic applications and compute the required robot controls using basic robotic programming.
- Use the acquired knowledge on robotics for certain automation in industry

TEXT BOOKS:

- 1. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel and Nicholas G. Odrey, "Industrial Robotics", Tata Mc Graw Hill, 2010.
- 2. Peter Corke, "Robotics, Vision and control-Fundamental algorithms in MATLAB", Springer International publishing AG, 2017.
- 3. Mittal R K, Nagrath I J, "Robotics and control", Tata McGraw Hill, 2010.

- 1. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.
- 2. Saeed B. Niku, "An Introduction to Robotics: Analysis, systems and applications", Pearson Education, 2009.
- 3. Richard D Klafter, and Michael Negin, "Robotics Engineering", Prentice Hall, 2009.
- 4. John.J. Craig, "Introduction to Robotics: Mechanics and control", Pearson Education, 2009.
- 5. Mikell P. Groover, "Automation, Production systems and Computer Integrated Manufacturing", Prentice Hall India Pvt. Ltd., 2011.
- J. Wan, S. Tang, H. Yan, D. Li, S. Wang, A. Vasilakos, "Cloud robotics: Current status and open issues", IEEE Access, vol. 4, pp. 2797-2807, Jun. 2016. (DOI: 10.1109/ACCESS.2016.2574979)
- 7. P.P. Ray, "Internet of robotic things: concept technologies and challenges", IEEE Access, vol. 4, pp. 9489-9500, 2016. (DOI: 10.1109/ACCESS.2017.2647747)

EC18015	SATELLITE COMMUNICATION	L	T	P	C
		3	0	0	3
OBJECTIVI					
-	e an insight of communication using satellites.				
 To give 	ve thorough understanding of the space segment and ground segment	that	ma	kes	the
satelli	te system				
• To un	derstand and analyse the uplink and downlink behavior and work out li	nk t	oudg	et.	
• To un	derstand access techniques of satellites through FDMA, TDMA ar	nd C	DM	A a	anc
compa	are the characteristics and performance.				
• To fa	miliarize the different arena in which satellite systems are applied	and	stu	dy	the
applic	ations.			-	
UNIT I	SATELLITE ORBITS				9
Kepler's Lav	vs, Newton's law, orbital parameters, orbital perturbations, geo	sta	tion	ary	VS
	nous orbits – Look Angle Determination- Limits of visibility –Eclips				
point –Sun tra	ansit outage-Launching Procedures - launch vehicles.				
-					
UNIT II	SPACE SEGMENT AND EARTH SEGMENT				9
Spacecraft su	bsystems- Structure, Primary power, Attitude and Orbit control, Therr	nal	cont	rol a	and
Propulsion,	communication Payload and supporting subsystems, Telemetry,	Tra	ckin	g a	and
	tenna, System reliability and design lifetime.			-	
	t - Introduction – Receive – Only home TV systems – Outdoor unit – I	ndo	or in	nit f	or
	ΓV – Master antenna TV system – Community antenna TV system – T				
-	stations – Problems.	Tunis	m		
UNIT III	SATELLITE LINK DESIGN				9
	ansmission – Transmission losses–Noise– Carrier to- Noise ratio – Sate	llite	unli	nk :	-
	alysis and Design, Link power budget equation, E/N calculation, Effects				
	nbined uplink and downlink C/N ratio – Performance impairments.	5 01	lam	1	auc
	Infinited upfinik and downlink C/1(1000 1 efformance impairments.				
UNIT IV	SATELLITE ACCESS				9
	nd Multiplexing: Voice, Data, Video, Analog – digital transmission	evet	m	Dia	
	ast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Sp	-		-	
	on, compression – encryption.	лса	ւթի	ccu	um
communicatio	l				
UNIT V	SATELLITE APPLICATIONS				9
	Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INM			тт	
	te Navigational System. Direct Broadcast satellites (DBS)- Direct to h				
· · · ·	al audio broadcast (DAB)- Worldspace services, Business TV(BTV)), U	КАI	vis/	11,
specialized se	ervices – E –mail, Video conferencing, Internet.	47	DET		DO
	TOTAL: (L: 45):	45	rEF	ao	D2
OUTCOME					
At the end of	the course, learners will be able to				
T 1		c			

• Explain the various terms and parameters of satellites and develop equations of orbit to locate satellite in space.

• Categorise and recognise the significance of various satellite subsystems and ground segment.

- Identify the various aspects involved in satellite communication link and measure link budget.
- Classify and grade the varied multiple access techniques.
- Develop various satellite based applications.

- 1. Dennis Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill International, 2006.
- 2. Timothy Pratt, Charles Bostian and Jeremy Allnutt, "Satellite Communications", Wiley India, 3rd Edition, 2019

- 1. Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.
- 2. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- 4. Tri T. Ha, "Digital Satellite Communication", II nd edition, 1990.
- 5. Emanuel Fthenakis, "Manual of Satellite Communications", Mc Graw Hill Book Co., 1984.
- 6. M.Richharia, "Satellite Communication Systems-Design Principles", Macmillan 2003.

EC18017	SPEECH PROCESSING	L	T	P	C
		3	0	0	3
OBJECTIV					
	erstand speech production and speech related parameters				
	amiliar with various pattern comparison techniques				
• To unde	erstand various speech modelling methods				
0	knowledge about various speech recognition techniques				
• To anal	yze issues in speech synthesis and evaluation				
UNIT I	BASIC CONCEPTS				9
	amentals: Articulatory Phonetics – Production and Classification of Spe				
	netics -Acoustics of speech production; nature of speech signal, model				
	urpose of speech processing, Digital processing of speech signals, Sign	ifica	nce	;	
-Short-Time	Fourier Transform, MDCT, Filter-Bank and LPC Methods	r			
UNIT II	SPEECH ANALYSIS				9
	ture Extraction and Pattern Comparison Techniques: Speech distortion				
	and perceptual -Log-Spectral Distance, Cepstral Distances, Weighted				
	l Filtering, Likelihood Distortions, Spectral Distortion using a Warped				
	PLP and MFCC Coefficients, Time Alignment and Normalization –Dyr	namio	: Ti	me	
Warping, Mu	ltiple Time –Alignment Paths	r –			
					0
	SPEECH MODELING				9
UNIT III				1	-
Modeling tec	hniques for developing speech systems: Vector quantization, Hidden M				els,
Modeling tec Optimal State	hniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga				els,
Modeling tec Optimal State	hniques for developing speech systems: Vector quantization, Hidden M				els,
Modeling tec Optimal State models, Supp	hniques for developing speech systems: Vector quantization, Hidden N Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks				els, are
Modeling tec Optimal State models, Supp UNIT IV	hniques for developing speech systems: Vector quantization, Hidden N e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION	ussia	an r	nixtı	els, ure 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee	hniques for developing speech systems: Vector quantization, Hidden N Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION cch recognition, Isolated word recognition, Connected word recognition	ussia	an r	nixtu	els, are 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn	hniques for developing speech systems: Vector quantization, Hidden N Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture	ussia	ntir	nixtu	els, ure <u>9</u> s
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c	hniques for developing speech systems: Vector quantization, Hidden N e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod	ussia	ntir	nixtu	els, ure <u>9</u> s
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c	hniques for developing speech systems: Vector quantization, Hidden N Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture	ussia	ntir	nixtu	els, ure <u>9</u> s
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper	hniques for developing speech systems: Vector quantization, Hidden N e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod ident sub-word units; Applications and present status	ussia	ntir	nixtu	<u>9</u> s
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS	ussia , Co e of a dels	ntir lar n-n-	nixtu nuou ge grar	els, ure <u>9</u> s
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee	hniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS ech synthesis, Text-to-Speech Synthesis: Concatenative and waveform s	a, Co e of a dels	ntir lar ntir	nixtu nuou ge grar	9 s 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod ident sub-word units; Applications and present status SPEECH SYNTHESIS ech synthesis, Text-to-Speech Synthesis: Concatenative and waveform s- word units for TTS, intelligibility and naturalness –role of prosody, Ap	a, Co e of a dels	ntir ntir lar -n-	nixtu nuou ge grar s s ons a	9 s 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status	hniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS ech synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Aj , Development of speech synthesis system. Evaluation methodologies f	a, Co e of a dels	ntir ntir lar -n-	nixtu nuou ge grar s s ons a	9 s 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status	hniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ch recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod ident sub-word units; Applications and present status SPEECH SYNTHESIS ech synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	9 9 9 9 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status	hniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ech recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS ech synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Aj , Development of speech synthesis system. Evaluation methodologies f	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	<u>9</u> ns, nd
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition intion, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod indent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f tems TOTAL: (L:45):	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	<u>9</u> ns, nd
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod ndent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f rems TOTAL: (L:45): S:	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	<u>9</u> ns, nd
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition intion, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s- word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f ems TOTAL: (L:45): S: the course, learners will be able to	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	9 s ns, 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of • Expl	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition hition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Aj , Development of speech synthesis system. Evaluation methodologies f tems TOTAL: (L:45): S: the course, learners will be able to ain the fundamentals of speech	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	9 s ns, 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of • Expl • Extra	hniques for developing speech systems: Vector quantization, Hidden M e Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION ch recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mode adent sub-word units; Applications and present status SPEECH SYNTHESIS ch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s- word units for TTS, intelligibility and naturalness –role of prosody, Aj , Development of speech synthesis system. Evaluation methodologies f tems TOTAL: (L:45): S: the course, learners will be able to ain the fundamentals of speech act and compare different speech parameters	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	9 s ns, 9
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of • Expl • Extra • Idem	hiniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition ition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mod adent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f tems TOTAL: (L:45): S: the course, learners will be able to ain the fundamentals of speech act and compare different speech parameters tify an appropriate statistical speech model for a given application	a, Co e of a dels synth oplic.	ntir 1 lar –n- nesi atic	nixtu nuou ge grar s ns a ch	9 s ns, 9 nd
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of • Expl • Extra • Idem • Desi	hiniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition ition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language modent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, Ap , Development of speech synthesis system. Evaluation methodologies f ems TOTAL: (L:45): S: the course, learners will be able to ain the fundamentals of speech act and compare different speech parameters tify an appropriate statistical speech model for a given application gn a speech recognition system.	a, Co e of a dels synth pplic. for sp	an r ntir lar n-n- nesi atic beec	nixtu nuou ge grar s ons a ch RIO I	9 s ns, 9 9 1
Modeling tec Optimal State models, Supp UNIT IV Issues in spee speech recogn vocabulary c context deper UNIT V Issues in spee methods, sub present status synthesis syst OUTCOME At the end of • Expl • Extra • Idem • Desi	hiniques for developing speech systems: Vector quantization, Hidden M Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Ga ort vector machines and Neural networks SPEECH RECOGNITION sch recognition, Isolated word recognition, Connected word recognition nition, Large Vocabulary Continuous Speech Recognition: Architecture ontinuous speech recognition system –acoustics and language mode adent sub-word units; Applications and present status SPEECH SYNTHESIS sch synthesis, Text-to-Speech Synthesis: Concatenative and waveform s -word units for TTS, intelligibility and naturalness –role of prosody, AI , Development of speech synthesis system. Evaluation methodologies f terms TOTAL: (L:45): S: the course, learners will be able to ain the fundamentals of speech act and compare different speech parameters tify an appropriate statistical speech model for a given application gn a speech recognition system. gorize different speech synthesis techniques and develop a speech synthesis speech synthesis techniques and develop a speech synthesis	a, Co e of a dels synth pplic. for sp	an r ntir lar n-n- nesi atic beec	nixtu nuou ge grar s ons a ch RIO I	9 s ns, 9 9 1

- 1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education India, 2008.
- 2. Daniel Jurafsky and James H Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education, 2009.

- 1. Steven W. Smith, "The Scientist and Engineer"s Guide to Digital Signal Processing", California Technical Publishing, 1997.
- 2. Thomas F Quatieri, "Discrete-Time Speech Signal Processing Principles and Practice", Pearson Education, 2004.
- 3. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.
- 4. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing, Processing and Perception of Speech and Music", Wiley- India Edition, 2006.

EC18019	DEEP LEARNING AND ITS APPLICATIONS	L	Т	Р	С
		3	0	0	3
OBJECTIV	ES:				
	nderstand the basic ideas and principles of Neural Networks				
	nderstand the basic concepts of Convolutional Neural Networks				
	nderstand the basic concepts of recurrent and recursive nets				
	nderstand and implement Deep Learning Architectures				
• To u	nderstand the use of Deep Learning Applications	1			
UNIT I	INTRODUCTION TO DEEP LEARNING				(
	rd Neural Networks – Gradient Descent – Back Propagation Algorith	 m	Var	nishi	
Gradient prol	blem – Mitigation – RelU Heuristics for Avoiding Bad Local Minima ng – Nestors Accelerated Gradient Descent – Regularization – Dropout	- He			
UNIT II	CONVOLUTIONAL NEURAL NETWORKS				9
	ctures – Convolution – Pooling Layers – Transfer Learning – Image C	laceit	Ticat	ion	-
	er Learning-Popular CNN Architectures: ResNet, AlexNet – Applicatio		icat		
UNIT III	RECURRENT AND RECURSIVE NETS				9
	eural Networks, Bidirectional RNNs, Encoder-decoder sequence	e to	sec	quer	IC
architectures	- BPTT for training RNN, Long Short-Term Memory Networks.				
architectures UNIT IV	- BPTT for training RNN, Long Short-Term Memory Networks. DEEP LEARNING ARCHITECTURES				ç
UNIT IV Learning Alg Functions: R					01
UNIT IV Learning Alg Functions: R Deep Boltzm	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders				nc
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING	Res	trict	ed a	or nc
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ag Recursive Neural Networks.	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ag Recursive Neural Networks.	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ng Recursive Neural Networks. TOTAL: (L: 45)	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ng Recursive Neural Networks. TOTAL: (L: 45)	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ng Recursive Neural Networks. S:	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of • Unde	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ng Recursive Neural Networks. S: the course, learners will be able to	Rest	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of • Unde • To de	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ag Recursive Neural Networks. S: the course, learners will be able to rstand the role of Deep learning in Machine Learning Applications.	Rest toma g and : 45	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of • Unde • To de • Critic	DEEP LEARNING ARCHITECTURES gorithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Aodels for Computer Vision – Case Study: FACE Recognition - Parsing ng Recursive Neural Networks. TOTAL: (L: 45) S: the course, learners will be able to rstand the role of Deep learning in Machine Learning Applications. sign and implement Convolutional Neural Networks.	Rest toma g and : 45	ntic Sen	ed a	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of • Unde • To de • Critic • Unde	DEEP LEARNING ARCHITECTURES corithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ag Recursive Neural Networks. TOTAL: (L: 45) S: the course, learners will be able to rstand the role of Deep learning in Machine Learning Applications. sign and implement Convolutional Neural Networks. ally Analyze Different Deep Learning Models in Image Related Project rstand basic concept of Deep Learning Architectures. now about applications of Deep Learning in Image Processing and Convolutions	Rest toma g and : 45]	ntic Sen	Ima Ima RIO	
UNIT IV Learning Alg Functions: R Deep Boltzm UNIT V Image Proce Captioning, N Analysis usir OUTCOME At the end of • Unde • To de • Critic • Unde	DEEP LEARNING ARCHITECTURES corithms: Capacity - Overfitting - Underfitting - Bayesian Classificati ELU, LRELU, ERELU, Unsupervised Training of Neural Networks, ann Machines, Auto Encoders APPLICATIONS OF DEEP LEARNING ssing Application: Image Segmentation – Object Detection – Au Models for Computer Vision – Case Study: FACE Recognition - Parsing ag Recursive Neural Networks. TOTAL: (L: 45) S: the course, learners will be able to rstand the role of Deep learning in Machine Learning Applications. sign and implement Convolutional Neural Networks. ally Analyze Different Deep Learning Models in Image Related Project rstand basic concept of Deep Learning Architectures. now about applications of Deep Learning in Image Processing and Convolutions	Rest toma g and : 45]	ntic Sen	Ima Ima RIO	

1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, "Deep Learning", First Edition,

MIT Press, 2016.

- 2. Nikhil Buduma and Nicholas Lacascio, "Fundamentals of Deep Learning", First Edition, O.Reilly, 2017.
- 3. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018

- Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
- 2. Laura Graesser, Wah Loon Keng "Foundations of Deep Reinforcement Learning: Theory and Practice in Python" Addison-Wesley Professional -2020
- 3. Jon Krohn, Grant Beyleveld, Aglaé Bassens "Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence", 1st edition Addison-Wesley Professional 2019
- 4. Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 5. Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018.
- 6. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018. 6. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.

EC18021	WIRELESS TECHNOLOGIES	L	Т	Р	С
		3	0	0	3
OBJECTIVE	ES:	1			
 To una Netwo To ana To una stack o To ana standa To una and Do 	derstand the fundamentals of WLAN, Bluetooth and high rate Wireless orks (WPAN) alyze the network layer protocols for wireless internet derstand the evolution of cellular technologies from 2G to 3G, architect of 3G networks and concept of cognitive radio alyze the architecture, protocol stack, security aspects of 4G Long Tern	ture, n Ev ned I	, pro rolut Netv	ion vork	ol cs 9
1	r, Mac layer mechanism, CSMA/CA, RTS/CTS, Polling, Bluetooth- U Radio layer, Baseband layer, Link manager protocol, L2CAP, Securi				
UNIT II	WIRELESS INTERNET				9
	-wireless internet, address mobility, inefficiency of transport layer ar	1 .4			-
IPv6 advances over wireless, UNIT III	, mobile IP – simultaneous binding, route optimization, mobile IP variat ments, IP for wireless domain, security in mobile IP, TCP in wireless TCPs -traditional, snoop, indirect, mobile, transaction- oriented, impace 3G NETWORKS	dom ct of	ain mo	– T bilit	CP ty. 9
UMTS Radio	m GSM, 3G Services and Applications - UMTS network structure - C access - HSPA – HSUPA- HSDPA- CDMA 1X - EVDO Rev -0, H ecture- Protocol stack, Cognitive Radio network, Spectrum Sensing.				
UNIT IV	4G - LTE				9
Radio Protoc Reservation -	TE Networks - Need for LTE- From LTE to LTE-Advanced SAE:- LTI ol stack , Interfaces, Concept of HetNET, Quality of Service as QoS metrics, Signaling for Bandwidth Requests and Grants, Bandwi andling, Mobility Management, Security Protocols.	nd	Ban	dwi	dth
UNIT V	INNOVATIVE NETWORKS				9
Software Defi data and cont Needs of the	ned Networks – Evolution of switches and control planes – Centralized rol planes – OpenFlow and SDN Controllers – Network Function V Data Centres – SDN solutions for data centres - Delay Tolerant Netwo Bundle Protocol – Opportunistic routing and Epidemic routing TOTAL: (L: 45):	'irtu orks	aliza – C	atio Ver	ted n — lay
	101AL. (L. 43).	-13		40	00
	5: the course, learners will be able to fy the wireless LAN technologies	<u> </u>			

- Categorize IP and TCP protocols in wireless domain
- Compare 2G,3G and 3.5 G technologies in mobile cellular networks
- Interrelate advanced wireless networking technologies, their features and services in 4G networks
- Analyze the architecture and protocols for next generation networks like SDN and DTN.

1. Jochen Schiller, —Mobile Communication, Pearson education, 2nd edition 2005.

2. Vijay. K. Garg, —Wireless Communication and Networkingl, Morgan Kaufmann Publishers, 2007.

REFERENCES:

1.Abd-Elhamid M. Taha and Hossam S. Hassanein and Najah Abu Ali, —LTE, LTEAdvanced and Wimax towards IMT-advanced networks John Wiley &Sons, 2012.

2. HarriHolma and Antti Toskala, -HSDPA/HSUPA for UMTSI, John Wiley & Sons, 2006.

3. JuhaKorhonen, —Introduction to 3G Mobile Communication, Artech House, 2003.

4. Larry J. Greenstein, Andrea J. Goldsmith, —Principles of Cognitive Radiol, Cambridge University press, 2013.

5.Paul Goransson, Chuck Black, —Software Defined Networks: A Comprehensive Approach^{II}, Morgan Kauffman, 2014

EC18002	ADHOC AND SENSOR NETWORKS	L	T	P	С
		3	0	0	3
OBJECTIVI	ES:				
• To int	roduce the concept of Adhoc networks				
 To get 	t insights of MAC protocols for Adhoc networks				
• To int	roduce the energy management techniques for adhoc networks				
• To pro	ovide overview of the wireless sensor networks				
-	roduce the protocols and QoS services of wireless sensor networks				
UNIT I	ADHOC WIRELESS NETWORKS				9
Introduction-	Cellular and Adhoc Wireless Networks, Applications of Adhoc Wire	less	Net	wor	ks:
	oc Wireless Networks- Medium Access schems, routing, multicasting,				
	cing scheme, QoS provisioning, self organisation, security, Addressing				
	ergy management, scalability, deployment considerations; Adhoc wirel	-			
,					
UNIT II	MAC PROTOCOLS FOR ADHOC WIRELESS NETWORKS				9
	gning a MAC protocol for Adhoc Wireless networks, design goals of a	MA	Cp	roto	col
	reless networks,; Contention based protocols- MACAW, floor acqui		-		
	cols; Contention based protocols with reservation mechanisms- Dist				
	ultiple access protocol, collision avoidance time allocation protocol; Co				
	ols with scheduling mechanisms- distributed wireless ordering p				
	ng directional antennas- Directional busy tone based MAC protocol, dir				
	Adhoc wireless networks		iona	1 1 1 1	10
UNIT III	ENERGY MANAGEMENT IN ADHOC WIRELESS NETWORKS				9
Need for ene	rgy management in adhoc wireless networks; classification of energ	y m	ana	gem	ent
	tery management schemes- device dependent schemes, data link laye				
	s; transmission power management schemes- data link layer, network l				
	r management schemes	•			
UNIT IV	WIRELESS SENSOR NETWORKS				9
Introduction,	Applications of sensor networks, comparison with adhoc wireless netwo	orks.	, issi	ies a	ınd
	designing a sensor network; sensor network architecture- layered				
-	hitecture, Data dissemination- flooding, gossiping, rumor routing				
assignment r	outing, directed diffusion; data gathering- direct transmission, p	owe	er e	ffici	ent
-	sensor information systems, binary scheme, chain based three level sch				
UNIT V	MAC PROTOCOLS AND QUALITY OF A SENSOR				9
MAC	NETWORKS			T T1-	
-	ols - self organising MAC for sensor networks, eavesdrop and re	-		-	
	A, CSMA- based MAC Protocols; Location Discovery- Indoor local				
	lisation; quality of a sensor network- coverage, exposure; evolving st	and	aras	; ot	ner
issues- energy	efficient design, synchronisation, transport layer issues and security				
OUTCOME					
	the course, learners will be able to				
 Differ 	entiate the cellular networks and adhoc networks.				

- Identify the various protocols in adhoc networks
- Design a adhoc system with energy management schemes
- Differentiate the adhoc and sensor networks.
- Learn various MAC protocols and Quality of sensor networks.

- 1. C.Siva Ram Murthy and B.S. Manoj, "Adhoc Wireless Sensor Networks", Pearson Publications, 2017.
- 2. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.

- 1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications, 2011.
- 2. Sabrie Soloman, "Sensors Handbook" by McGraw Hill publication. 2009.
- 3. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", Elsevier Publications, 2004.

EC18004	COGNITIVE RADIO COMMUNICATION	L	T	P	C
OBJECTIVI	70.	3	0	0	3
 To er of So To ex Ident To m To pr To er 	able the students to understand the need, characteristics and benefits and ftware Defined Radio and Cognitive Radio technologies. Appose the students to gain knowledge on the various methods of Specification function of Cognitive Radio and the associated Trade – offs. ake the students to learn about the Cooperative Communication technic rovide insights of Theoretical Limits of Information in Cognitive radio able the students to identify the need and suitability of Cognitive radio ablic Safety Applications.	ctru ques Netv	m S vork	ens:	ing
Introduction -	Software-Defined Radio, Cognitive Radio – Evolution of Cognitive Radio s and Usage- Applications for Spectrum Occupancy Data	adio	, Sp	ectr	um
UNIT II	SPECTRUM SENSING AND IDENTIFICATION				9
Detection, Fu Measures, Gl	Sensing, Definition and Implications of Spectrum Opportunity, Spectru undamental Trade-offs: Performance versus Constraint, MAC Layer obal Interference Model, Local Interference Model, Fundamental Trade sus Sensing Overhead.	Perf	orm	anc	e -
UNIT III	USER COOPERATIVE COMMUNICATION				9
Wireless Rela Cooperative V	ation and Cognitive Systems, Relay Channels: General Three-Node F ay Channel, User Cooperation in Wireless Networks: Two-User Cooper Wireless Network, Multihop Relay Channel				
UNIT IV	INFORMATION THEORETICAL LIMITS ON CR NETWORKS				9
Interference (Rates, Under	ognitive Behaviour, Interference - Avoiding Behaviour: Spectrum Controlled Behaviour: Spectrum Underlay, Underlay in Small Network lay in Large Networks: Scaling Laws, Interference-Mitigating Behavio portunistic Interference Cancellation, Asymmetrically Cooperating Co	ks: A	Achi : Sp	eva ectr	ble um
UNIT V	PUBLIC SAFETY AND COGNITIVE RADIO				9
Introduction- the Spectrum C2000; Appl Study, Bandy	Requirements, Commercial Wireless Communication Networks, Econ , Benefits of Cognitive Radio; Standards for Public Safety Communications of Cognitive Radio- The Firework Disaster in The Netherla vidth Requirements, Spectrum Organization, Propagation Conditions System Spectral Efficiency, Antijamming TOTAL: (L: 45):	atior inds , W	n- T – A hite	ETF A C Spa	e of RA, ase ace
	101AL: (L: 45):	43		40	<u>00</u>
• To id comm	S: the course, learners will be able to lentify the application of cognitive radio technology to the diff unication standards. entify suitable spectrum sensing technique for a given wireless c				

• To identify suitable spectrum sensing technique for a given wireless communication scenario to improve the performance.

- To apply user cooperative communication techniques to improve the performance of cognitive radio networks.
- To apply proper interference avoiding & controlling techniques to improve the performance of cognitive radio networks.
- To Identify the requirements of public safety applications and apply cognitive radio technology to meet out the same.

- 1. Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio Communication and Networks", Elsevier, 2010.
- 2. Joseph Mitola III," Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering", John Wiley & Sons Ltd. 2000.

- 1. Thomas W.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless communication", ARTECH HOUSE .2009.
- 2. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.

	CRYPTOGRAPHY AND COMMUNICATION NETWORK SECURITY	L	Т	Р	С
	20	3	0	0	3
• To u	28: nderstand OSI security architecture and classical encryption techniques nderstand various block cipher and stream cipher models. cquire fundamental knowledge on the concept of authentication function				
sign	escribe the principles of public key cryptosystems, hash functions and ature. nderstand the network and system level security.	digit	al		
UNIT I	SYMMETRIC CIPHERS				9
OSI Security Standard-Blo	Architecture-Classical Encryption techniques-Cipher Principles-D ck Cipher Design Principles and Modes of Operation-Evaluation criteri DES-Placement of Encryption Function-Traffic Confidentiality				
UNIT II	PUBLIC KEY CRYPTOGRAPHY				9
Introduction (to Number Theory-Key Management - Diffie-Hellman key Exchange ad Cryptography - Public Key Cryptography and RSA.	e-Elli	ptic	Cu	-
UNIT III	AUTHENTICATION AND HASH FUNCTION				9
Signatures-Au	curity of Hash Functions and MACs-Secure Hash Algorithm– uthentication Protocols-Digital Signature Standard.	-HM.	AC-	Dig	ital
UNIT IV Authenticatio Security-PGP	NETWORK SECURITY n Applications: Kerberos-X.509 Authentication Service-Ele Y-S/MIME-IP Security-Web Security.	ectro	nic	Μ	9 [ail
2		1			
	SVOTEM SECUDITY				0
UNIT V Intrusion dete	SYSTEM SECURITY oction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems.	ounte	r me	easu	-
UNIT V Intrusion dete					
UNIT V Intrusion dete - Firewall Des	ction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems. TOTAL: (L: 45):				res
UNIT V Intrusion dete - Firewall Des	ction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems. TOTAL: (L: 45): S:				res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of	ction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to				res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of • Comp • Comp	sction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques. are and implement symmetric and asymmetric key algorithms for real	: 45	PER		res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of • Comp • Comp applic	ction - password management - Viruses and related Threats - Virus Co sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques.	: 45	PER		res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of • Comp • Comp applic • Realiz	sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques. are and implement symmetric and asymmetric key algorithms for real ations.	: 45	PER		res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of • Comp • Comp applic • Realiz • Figure	ction - password management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques. are and implement symmetric and asymmetric key algorithms for real ations. te the authentication and hash function concepts.	: 45	PER		res
UNIT V Intrusion dete - Firewall Des OUTCOMES At the end of • Comp • Comp • Comp applic • Realiz • Figure • Figure	sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques. are and implement symmetric and asymmetric key algorithms for real ations. the authentication and hash function concepts. e out network security issues and identify suitable solution.	: 45	PER		res
UNIT V Intrusion dete - Firewall Dese OUTCOMES At the end of Comp Comp applic Realiz Figure Figure Figure 1. Willia	sign Principles – Trusted Systems. TOTAL: (L: 45): S: the course, learners will be able to arison of classical encryption techniques. are and implement symmetric and asymmetric key algorithms for real ations. the authentication and hash function concepts. e out network security issues and identify suitable solution.	time	PER		res

- 1. Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.
- 2. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd, 2003.

0		L	T	P	(
• To ge	20.	3	0	0	3
0	2 0 :				
T 1	et exposed to different image enhancement techniques and color image	ana	lysi	s.	
• To le	arn about image transformation and image restoration.				
• To le	arn about image segmentation.				
• To ge	et exposed to different classification techniques.				
• To st	udy various applications of image processing.				
UNIT I	INTRODUCTION TO IMAGE PROCESSING AND IMAGE TRANSFORMS				
	Introduction-Origins, Fundamental steps, Components, Fundamental				
	tion, Image Sensing & Acquisition, Sampling and Quantization, Relatio				
	forms: Discrete Fourier Transform, Discrete sine transform, Discrete cos	sine	trar	nsfor	m
Walsh, Hadar	nard transform.	1			
UNIT II	IMAGE ENHANCEMENT AND COLOR IMAGE PROCESSING				
Spatial Doma	in Enhancement: Gray level transformations – Histogram processing	g –,	Ba	sics	0
Spatial Filteri	ng–Smoothing and Sharpening Spatial Filtering, Mean Filters – Order S	Stati	istic	filte	ers
	omain Enhancement: Smoothing and Sharpening frequency domain the	filte	rs –	- Ide	eal
	nd Gaussian filters, Homomorphic filters				
• 1	processing: Color: Models- RGB and HSI models, Conversion of RGB to	οH	SIa	nd v	ic
versa.					
UNIT III	IMAGE RESTORATION AND SEGMENTATION				(
	ation: Noise models, Image degradation and restoration model, Noise	filt	are	Invo	
-	ner filtering. Image Segmentation: Detection of Discontinuities–Edge				
	- Active contours- image segmentation using Snakes, Region based				
	I processing- erosion and dilation.	305	inci	nan	011
UNIT IV	IMAGE CLASSIFICATION				9
Pattern classi	fication: Statistical classifier-Neural Networks and Deep learning: M	lulti	laye	er Fe	ee
forward Neur	al Networks, Deep Convolutional Neural Networks.				
UNIT V	IMAGE COMPRESSION AND APPLICATIONS OF IMAGE PROCESSING				(
Image Comp	ression: Fundamentals – Image Compression models – Error Free C	ີ ດຫ	nres	sior	<u>ו</u>
	gth Coding-Huffman and Arithmetic coding – Lossy Compression – Lo		-		
0 1	EG Compression Standards.Applications of Image processing: Face	-			
Variable Leng			C	2	
Variable Leng Coding – JP	ecognition, In-Vehicle Vision systems.				
Variable Leng Coding – JP	tecognition, In-Vehicle Vision systems. TOTAL: (L: 45):	45	PEF	RIO	D
Variable Leng Coding – JP		45]	PEF	RIO	D
Variable Leng Coding – JP Finger print R OUTCOMES	TOTAL: (L: 45): S:	45]	PEF	RIO	D
Variable Leng Coding – JP Finger print R OUTCOMES	TOTAL: (L: 45):	45	PEF	RIO	D
Variable Leng Coding – JP Finger print R OUTCOMES At the end of • Exami	TOTAL: (L: 45): S:	45	PER	RIO	D

Assess various image transformation techniques and Image analysis.

- Determine the image segmentation and classification techniques for various applications.
- Infer the various image processing techniques employed for real time applications

- 1. Rafael C.Gonzalez & Richard E.Woods Digital Image Processing Pearson Education-4/e – Reprint 2018
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2020.
- 3. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd. Third edition, 2015.

- 1. Willliam K Pratt, "Digital Image Processing", John Willey, Fourth edition, 2015.
- 2. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd., 2011.
- 3. E. R. Davies, "Computer & Machine Vision", Fifth Edition, Academic Press, 2017.
- 4. S.Sridhar, "Digital Image Processing", Oxford University Press, second edition, 2016.

	DIGITAL SWITCHING AND TRANSMISSION		T	P	<u>C</u>
OBJECTIVI	7S .	3	0	0	3
	roduce fundamental concepts in Communication networks				
	roduce different types of signaling in digital telephony				
	roduce various transmission schemes for telephony and broadband				
	roduce principles and evolution of Switching systems				
• 10 int	roduce modeling and analysis techniques for data transmission				
UNIT I	INTRODUCTION				9
	existing Voice, Data and Multimedia Networks and Services; I	Review	of	Ba	
	on principles; Synchronous and Asynchronous transmission, Line Co		01	20	
UNIT II	TRUNK TRANSMISSION				9
Multiplexing	& Framing - types and standards; Trunk signaling; Optical Transmis	sion-li	ne c	ode	s
	SONET/SDH; ATM; Microwave and Satellite Systems				
UNIT III	LOCAL LOOP TRANSMISSION				9
		Eih an is	· 41•	<u>_ 1</u> _	-
-	ocal Loop; ISDN local loop; DSL and ADSL; Wireless Local Loop; atellite Phone local loop	Fiber 11	1 th	e 10	op
widdlie and S					
UNIT IV	SWITCHING				(
	bace switching, Time switching and Combination Switching; Blo	cking s	nd	De	-
	s; Message, Packet and ATM switching; Advances in switching tec	0			•
	s, mossage, i denet and i i mi switching, i dvances in switching tee			Silu	
memory tast				nac	ket
-	packet switches, shared medium fast packet switches and space div			pac	ket
-				pac	ke
-	packet switches, shared medium fast packet switches and space div			pac	
switches, Pho UNIT V	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING	vision f	ast		9
switches, Pho UNIT V Telecom Ne	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfect	vision f	ast	pac De	9
switches, Pho UNIT V Telecom Ne	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking performance euing system analysis and delay performance TOTAL: (L: 45)	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking performance euing system analysis and delay performance TOTAL: (L: 45)	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Networks-Qu OUTCOME At the end of	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe euing system analysis and delay performance TOTAL: (L: 45) S:	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOME At the end of • Basic	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking performance euing system analysis and delay performance TOTAL: (L: 45) S: the course, learners will be able to	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Net Networks-Qu OUTCOME At the end of • Basic • Under	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfecting euing system analysis and delay performance TOTAL: (L: 4: 5: the course, learners will be able to principles behind voice, data and multimedia communication.	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOMES At the end of Basic Under Under	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfecting euing system analysis and delay performance TOTAL: (L: 45) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission.	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Net Networks-Qu OUTCOMES At the end of Basic Under Under Analy	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4: 5: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes.	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOMES At the end of Basic Under Under Analy	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 45) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network.	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOME At the end of • Basic • Under • Under • Analy • Mode TEXT BOO	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 45) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network.	vision f	ast e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOMES At the end of Basic Under Under Under Analy Mode TEXT BOO 1. J. Bell	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING twork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4: S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. and analyze the performance of telecom network. KS:	ormanc	e;	De	9 lay
switches, Pho UNIT V Telecom Net Networks-Qu OUTCOMES At the end of Basic Under Under Analy Mode TEXT BOO 1. J. Bell 2. JE Flo	packet switches, shared medium fast packet switches and space division of the switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfected and the system analysis and delay performance TOTAL: (L: 45) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso	ormanc	e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOMES At the end of Basic Under Under Under Analy Mode TEXT BOOI 1. J. Bell 2. JE Flo	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING twork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso ES:	n, 2005	e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOME At the end of Basic Under Under Analy Mode TEXT BOO 1. J. Bell 2. JE Flo REFERENC 1. R.A.T	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING twork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso ES: hompson, "Telephone switching Systems", Artech House Publishers	n, 2005	e;	De	9 lay
switches, Pho UNIT V Telecom Net Networks-Qu OUTCOMES At the end of Basic Under Under Analy Mode TEXT BOO 1. J. Bell 2. JE Flo REFERENC 1. R.A.T 2. W. Sta	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso ES: hompson, "Telephone switching Systems", Artech House Publishers alling, "Data and Computer Communications", Prentice Hall, 1993.	vision f ormanc 5): 45 F n, 2005 , 2000.	e;	De	9 lay
switches, Pho UNIT V Telecom Ne Networks-Qu OUTCOMES At the end of Basic Under Under Under Analy Mode TEXT BOO 1. J. Bell 2. JE Flo REFERENC 1. R.A.T 2. W. Sta 3. T.N.S	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso ES: hompson, "Telephone switching Systems", Artech House Publishers alling, "Data and Computer Communications", Prentice Hall, 1993. aadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunications"	vision f ormanc 5): 45 F n, 2005 , 2000.	e;	De	9 lay
switches, Pho UNIT V Telecom Net Networks-Qu OUTCOMES At the end of Basic Under Under Under Mode TEXT BOO 1. J. Bell 2. JE Flo REFERENC 1. R.A.T 2. W. Sta 3. T.N.S Netwo	packet switches, shared medium fast packet switches and space div tonic switching - Optical TDM, WDM. TELE TRAFFIC ENGINEERING etwork Modeling; Arrival Process; Network Blocking perfe- euing system analysis and delay performance TOTAL: (L: 4) S: the course, learners will be able to principles behind voice, data and multimedia communication. stand the different type of signaling in Trunk transmission. stand and compare Local loop transmission schemes. ze different Switching techniques for data transmission. I and analyze the performance of telecom network. KS: amy, "Digital Telephony", John Wiley, 3 rd Edition, 2003 od, "Telecommunications Switching, Traffic and Networks", Pearso ES: hompson, "Telephone switching Systems", Artech House Publishers alling, "Data and Computer Communications", Prentice Hall, 1993.	vision f ormanc 5): 45 F n, 2005 , 2000.		De	9 lay

- (Telecomm Handbook Series), 1995.
- 5. Tarmo Anttalaien, "Introduction to Telecommunication Network Engineering", 2nd edition, Artech House, 2003.
- 6. T. Viswanathan, "Telecommunication Switching Systems", Prentice-Hall, 1992.

EC18012	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	L	T	Р	С
		3	0	0	3
OBJECTIVE	ES:				
Comp • To und • To stu	roduce the concepts of electromagnetic interference and electromagnet atibility derstand various modes of electromagnetic interference coupling princ dy the electromagnetic interference control techniques.	iples	5.		
• To inf	er on electromagnetic interference measurements and Instruments.				
UNIT I	BASIC THEORY				9
Victims of E	o EMI and EMC, Intra and inter system EMI, Elements of Interference EMI, Conducted and Radiated EMI emission and susceptibility, C ards to humans, Various issues of EMC, EMC Testing categories EM	Case	Hi	stori	es,
UNIT II	COUPLING MECHANISM				9
coupling, Dif Radioactive of	tic field sources and Coupling paths, Coupling via the supply network, ferential mode coupling, Impedance coupling, Inductive and Capac coupling, Ground loop coupling, Cable related emissions and coup motive transients.	itive	e co	upli	ng,
UNIT III	EMI MITIGATION TECHNIQUES				9
effectiveness, shielding, Pri	ciple of Shielding and Murphy"s Law, LF Magnetic shielding, Aperture Choice of Materials for H, E, and free space fields, Gasketting and seal inciple of Grounding, Isolated grounds, Grounding strategies for I r mixed signal systems, Filter types and operation, Surge protection dev	ing, Larg	PCE e sy	B Le	vel ns,
UNIT IV	STANDARD AND REGULATION				9
Standards, Pr ANSI, FCC,	ndards, Generic/General Standards for Residential and Industrial envi oduct Standards, National and International EMI Standardizing Orga AS/NZS, CISPR, BSI, CENELEC, ACEC. Electro Magnetic standards and specifications, MIL461E Standards.	niza	tion	s; IE	EC,
UNIT V	EMI TEST METHODS AND INSTRUMENTATION				9
Fundamental immunity tes analyzer, EM	considerations, EMI Shielding effectiveness tests, Open field test, t, Shielded chamber, Shielded anechoic chamber, EMI test receiv II test wave simulators, EMI coupling networks, Line impedance ed through capacitors, Antennas, Current probes, MIL -STD test me nods	vers, e st thoc	Sp abil ls, C	ectru izati Civil	for um ion ian
	TOTAL: (L: 45):	45	PEF	RIO	DS
• Gain k	5: the course, learners will be able to knowledge to understand the concept of EMI / EMC related to product opment.	desi	gn &	¢	

- Analyze different EM coupling principles and its impact on performance of electronic system.
- Know how to mitigate electromagnetic interference using the concepts of susceptibility and immunity
- Have broad knowledge of various current leading edge industry standards across the globe.
- Measure emission and immunity level from different systems to couple with the prescribed EMC standards.

TEXT BOOKS:

- 1. V Prasad Kodali, "Engineering Electromagnetic Compatibility", IEEE Press, Newyork, 2001.
- 2. Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986.

3. Clayton Paul, "Introduction to Electromagnetic Compatibility", Wiley Interscience, 2006.

- 1. Daryl Gerke and William Kimmel, "EDN"s Designer"s Guide to Electromagnetic Compatibility", Elsevier Science & Technology Books, 2002.
- 2. Dr Kenneth L Kaiser, "The Electromagnetic Compatibility Handbook", CRC Press 2005.
- 3. Electromagnetic Compatibility by Norman Violette, Published by Springer, 2013.
- 4. Electromagnetic Interference and Compatibility: Electrical noise and EMI specifications Volume 1 of A Handbook Series on Electromagnetic Interference and Compatibility, Donald R. J. White Publisher-Don white consultants Original from the University of Michigan Digitized 6 Dec 2007.
- 5. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons Inc, Newyork, 2009.
- 6. W Scott Bennett, "Control and Measurement of Unintentional Electromagnetic Radiation", John Wiley & Sons Inc., (Wiley Inter science Series) 1997.

EC18014	INFORMATION THEORY	L	Т	Р	С
		3	0	0	3
OBJECTIVI	ES:				
• To under	stand the principles of Information theory.				
	the different data compression techniques.				
•	the channel classification and capacity.				
	knowledge on differential entropy and Gaussian channel capacity.				
-	stand the characterization of Rate Distortion and Gaussian channel.				
UNIT I	ENTROPY AND MUTUAL INFORMATION				9
1.	t, Conditional and Relative Entropies, Mutual Information, Chain Ruiquality and Its Consequences, Log Sum Inequality and Its				
Data-Process	ng Inequality and Fano's Inequality.				
UNIT II	DATA COMPRESSION				9
Inequality fo	Codes, Kraft Inequality, Optimal Codes Bounds on the Optimal Code r Uniquely Decodable Codes, Huffman Codes, Optimality of Hu o–Elias Coding, Competitive Optimality of the Shannon Code.		0	, ,	
UNIT III	CHANNEL CAPACITY				9
Inequality an Coding Theor	Jointly Typical Sequences, Channel Coding Theorem, Zero-Error d the Converse to the Coding Theorem, Equality in the Converse t rem, Hamming Codes.				nel
UNIT IV	DIFFERENTIAL ENTROPY AND GAUSSIAN CHANNEL				9
Entropy, Prop	Relation of Differential Entropy to Discrete Entropy, Joint and Condition perties of Differential Entropy, Relative Entropy and Mutual Information initions and Capacity, Parallel Gaussian Channel				
UNIT V	RATE DISTORTION THEORY				9
	Definitions, Calculation of the Rate Distortion Function - Binary Source	0.07	10		-
Source, Conv Strongly Typ	erse to the Rate Distortion Theorem, Achievability of the Rate Distorcal Sequences and Rate Distortion, Characterization of the Rate Distortion of Channel Capacity and the Rate Distortion Function.	rtior rtio	ı Fu ı Fu	ncti ncti	on, on,
	TOTAL: (L: 45):	45	PEF	RIO	DS
01/00/07					
OUTCOME: At the end of	S: the course, learners will be able to				
	fy various fundamental limits over information transmission. information theory in source coding.				

TEXT BOOKS:

- 1. T. Cover and J. Thomas, "Elements of Information Theory", Second Edition. Wiley-Interscience, 2006.
- 2. Simon Haykin, "Communication Systems", 4th edition, Wiley Publications, 2013.

- 1. Das, S.K.Mullick and P.K.Chatterjee, "Principles of Digital Communication", Wiley Eastern Limited, 1986.
- 2. K.Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley and Sons, 1985.
- 3. A.J.Viterbi and J.K.Omura, "Principles of Digital Communication and Coding", McGraw Hill, 1979.

GE18051	INTELLECTUAL PROPERTY RIGHTS (Common to all Branches Except BT)	L	Т	Р	С
	(Common to an Branches Except B1)	3	0	0	3
OBJECTIV	ES:	U	v	v	U
	nderstand the process and need for protecting technology innovati	ons	th	oug	h
Intelle	ectual Property Rights				
UNIT I	TECHNOLOGICAL INNOVATIONS				10
	of technological innovation - factors contributing to successful				
	the need for creativity and innovation - problem solving and creativity				
-	fferent techniques - Selection criteria - screening ideas for new produc Protection of IP as a factor in R&D and few case studies.	ts -	eva	lluati	ion
techniques. r	Totection of IF as a factor in K&D and few case studies.				
UNIT II	INTRODUCTION TO IPR & RELATED AGREEMENTS				8
	AND TREATIES				U
Types of IP:	Patents, Trademarks, Copyright & Related Rights, Industrial Desig	gn, '	Tra	ditio	nal
	Geographical Indications. History of GATT & TRIPS Agreen				
	Hague Agreement; WIPO Treaties; Budapest Treaty; PCT; Indian Pater				
recent amend	lments.				
UNIT III	I DASHASANE DATENTS AND ATAND FOUND ADDAD ADT				
T 1 1	BASICS OF PATENTS AND CONCEPT OF PRIOR ART	q			10
Introduction	to Patents; Types of patent applications: Ordinary, PCT,				nal,
Divisional an	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo	orm	s ar	nd fo	nal, ees
Divisional and Invention	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching	orm In	s ai iterr	nd fo natio:	nal, ees nal
Divisional an Invention Databases; C	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo	orm In	s ai iterr	nd fo natio:	nal, ees
Divisional and Invention	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching	orm In	s ai iterr	nd fo natio:	nal, ees nal
Divisional an Invention Databases; C	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching	orm In	s ai iterr	nd fo natio:	nal, ees nal
Divisional an Invention in Databases; C etc.) UNIT IV	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W	orma In /IP(s an iterri O),	nd fo atio IF	nal, ees nal PO, 9
Divisional at Invention i Databases; C etc.) UNIT IV National & I Precautions	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for	orma In VIP(lica or p	s an iterr (C), (C), (C), (C), (C), (C), (C), (C),	nd fo ation IF s fil- nting	nal, ees nal PO, 9 ed; g -
Divisional at Invention i Databases; C etc.) UNIT IV National & I Precautions introduction	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem	orma In VIP(lica or p	s an iterr (C), (C), (C), (C), (C), (C), (C), (C),	nd fo ation IF s fil- nting	nal, ees nal PO, 9 ed; g -
Divisional at Invention i Databases; C etc.) UNIT IV National & I Precautions introduction	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for	orma In VIP(lica or p	s an iterr (C), (C), (C), (C), (C), (C), (C), (C),	nd fo ation IF s fil- nting	nal, ees nal PO, 9 ed; g -
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies	orma In VIP(lica or p	s an iterr (C), (C), (C), (C), (C), (C), (C), (C),	nd fo ation IF s fil- nting	nal, ees nal PO, 9 ed; g - ng,
Divisional at Invention i Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR	Drma In VIP lica Dr p aent	s an tterr O), tion pate - m	nd fo lation IF s fil nting eanin	nal, nal PO, 9 ed; g - ng, 8
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigation UNIT V Scope of Pat	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching country-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent apply while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR tent Rights. Licensing and transfer of technology. Patent information a	In VIPO lica or paent	s an tterr O), tion pate - m	nd fo lation IF s fil nting eanin	nal, nal PO, 9 ed; g - ng, 8
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigation UNIT V Scope of Pat	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR ent Rights. Licensing and transfer of technology. Patent information a Indications. New Developments in IPR: Administration of Patent System	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigation UNIT V Scope of Pat	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching country-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent apply while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR tent Rights. Licensing and transfer of technology. Patent information a	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention i Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance fo to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR cent Rights. Licensing and transfer of technology. Patent information a Indications. New Developments in IPR: Administration of Patent Syste TOTAL: (L: 45):	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance fo to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR cent Rights. Licensing and transfer of technology. Patent information a Indications. New Developments in IPR: Administration of Patent Syste TOTAL: (L: 45):	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention i Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR ent Rights. Licensing and transfer of technology. Patent information a Indications. New Developments in IPR: Administration of Patent Syste S: the course, learners will be able to	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of • Interp	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance fo to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR ent Rights. Licensing and transfer of technology. Patent information a Indications. New Developments in IPR: Administration of Patent Syste S:	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of • Interp • Infer	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR rent Rights. Licensing and transfer of technology. Patent information and Indications. New Developments in IPR: Administration of Patent System S: The course, learners will be able to prote the process of problem solving through technological innovations.	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, nal PO, 9 ed; g - ng, 8 es.
Divisional an Invention i Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of Interp Infer Illust	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; Fo in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance fo to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR rent Rights. Licensing and transfer of technology. Patent information a I Indications. New Developments in IPR: Administration of Patent Syste S: The course, learners will be able to pret the process of problem solving through technological innovations. the appropriate IPR elements for protecting intellectual property.	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention i Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of Interp Infer Illustr Summ	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR tent Rights. Licensing and transfer of technology. Patent information and Indications. New Developments in IPR: Administration of Patent System S: The course, learners will be able to pret the process of problem solving through technological innovations. the appropriate IPR elements for protecting intellectual property. rate the concept of prior art search and performing it.	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.
Divisional an Invention in Databases; C etc.) UNIT IV National & I Precautions introduction scope, litigati UNIT V Scope of Pat Geographical OUTCOME At the end of Interp Infer Illustr Summ	to Patents; Types of patent applications: Ordinary, PCT, nd Patent of Addition; Specifications: Provisional and complete; For in context of "prior art"; Patent databases; Searching ountry-wise patent searches, USPTO, EPO, PATENTScope (W PATENT FILING PROCEDURES PCT filing procedure; Time frame and cost; Status of the patent appl while patenting – disclosure/non-disclosure; Financial assistance for to existing schemes Patent licensing and agreement Patent infringem ion, case studies PATENT RIGTS AND NEW DEVELOPMENTS IN IPR Tent Rights. Licensing and transfer of technology. Patent information and Indications. New Developments in IPR: Administration of Patent System S: The course, learners will be able to bret the process of problem solving through technological innovations. the appropriate IPR elements for protecting intellectual property. rate the concept of prior art search and performing it. narize the procedure for filing patent. ne the scope of patent rights for licensing and transfer of technology.	Drma In /IP(lica Dr p eent and em.	s an tterr D), tion bate - m dat	nd featio: IF s fil nting abas	nal, ees nal PO, 9 ed; g - ng, ng, 8 es.

- 1. Ramappa, T. "Intellectual Property Rights Under WTO", S. Chand, 2008
- 2. BAREACT, Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., 2007
- 3. Adair, J. "Effective Innovation", 1st Ed., Macmillan Publishing, 2003

- 1. Robert P. Merges, Peter S. Menell and Mark A. Lemley, "Intellectual Property in New Technological Age", Aspen Publishers, 2016.
- 2. Kankanala C., Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd., 2007
- 3. Nystrom, H. Creativity and Innovation, 2nd Ed., John Wiley & Sons, 1996.

EC18016	MACHINE LEARNING	L	Т	P	С
		3	0	0	3
OBJECTIVI	ES:				
	troduce students to theoretical concepts and practical issues associated	with	n pa	tterr	l
-	nition				
	arn about supervised and unsupervised pattern classifiers.				
	miliarize about parametric and non parametric approaches.				
	splore the role of linear discriminant and ANN in pattern recognition.				
• 10 ui	nderstand the application of graphical models for pattern classifier.				
UNIT I	INTRODUCTION TO PATTERN RECOGNITION				9
	nition (PR) – Overview – Relationship with other areas – Applications –	Cla	ssif	icati	
	– Patterns and Features – Training and Learning – PR approaches	Cit	.5511	icut	on
	-Introduction – Gaussian distribution - Bayes decision theory and Class	ifier	s - N	Norr	nal
	scriminant functions - Decision surfaces - Risks and errors		5 1		141
UNIT II	SUPERVISED LEARNING - PARAMETRIC& NON PARAMETRIC APPROACHES				9
Supervised 1	earning - Parametric estimation– Maximum Likelihood estimation	n –	Ba	ives	ian
parameter est	-		20	ij es	
-	c estimation – Parzen Window – K Nearest Neighbour method.				
1					
UNIT III	UNSUPERVISED LEARNING METHODS				9
Component A	nalysis and Dimension Reduction: Concept of feature extraction and d	ime	nsic	nali	ty,
	ensionality, Dimension reduction methods - Fisher discriminant anal				
Component A	nalysis - Hidden Markov Models (HMM) basic concepts				
	Criterion for clustering - Clustering Algorithms: K-Means	- E	xpe	ctati	on
Maximization	, Classifier Ensembles - Bagging - Boosting - Adaboost	-			
					0
UNIT IV	LINEAR DISCRIMINANTS & ANN				9
	iminant based algorithm: Perceptron - Support Vector Machines Back Propagation algorithm - Artificial Neural networks	-	Mu	ltila	yer
perceptions	Back Propagation algorithm - Anthena Neural networks				
UNIT V	GRAPHICAL MODELS				9
	ideas and relations- Bayesian Networks - Sequential Models: State-S	pace	M	odel	
	ov Models - Dynamic Bayesian Networks	L			
					DO
	TOTAL: (L: 45):	45]	PEF	RIO	DS
		45]	PEF	RIO	05
OUTCOME	TOTAL: (L: 45):	45]	PEF	RIO	DS
	TOTAL: (L: 45):	45]	PEF	RIO:	US_
At the end of	TOTAL: (L: 45): S:	45]	PER	<u>RIO</u>	
At the end of • Distin	TOTAL: (L: 45): S: the course, learners will be able to	45]	PER	RIO	<u>US</u>
At the end of Distin Categy Illustr	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers prize the data and identify the patterns. ate methods for automatic training of classification systems				<u>US</u>
At the end of • Distin • Catego • Illustr • Exami	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers orize the data and identify the patterns. ate methods for automatic training of classification systems ne classification problems probabilistically and estimate classifier performance.	orma	ance		
At the end of Distin Catego Illustr Examination Use the	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers orize the data and identify the patterns. ate methods for automatic training of classification systems ne classification problems probabilistically and estimate classifier perfe e principles of Bayesian parameter estimation and apply them in relativ	orma	ance		
At the end of Distin Catego Illustr Examination Use the	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers orize the data and identify the patterns. ate methods for automatic training of classification systems ne classification problems probabilistically and estimate classifier performance.	orma	ance		
At the end of Distin Catego Illustr Exami Use th probal	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers orize the data and identify the patterns. ate methods for automatic training of classification systems ne classification problems probabilistically and estimate classifier performent e principles of Bayesian parameter estimation and apply them in relative bilistic models	orma	ance		
At the end of Distin Categy Illustr Exami Use th probal	TOTAL: (L: 45): S: the course, learners will be able to guish between supervised and unsupervised classifiers orize the data and identify the patterns. ate methods for automatic training of classification systems ne classification problems probabilistically and estimate classifier performent e principles of Bayesian parameter estimation and apply them in relative bilistic models	orma	ance		

2. Duda, R.O., Hart, P.E., and Stork, D.G. "Pattern Classification" Wiley-Interscience , 2nd Edition 2001.

- 1. Robert J.Schalkoff, Pattern Recognition Statistical, Structural and Neural Approaches, John Wiley & Sons Inc., New York, 1992.
- 2. Marsland, S. "Machine Learning: An Algorithmic Perspective" CRC Press. 2009 (Also uses Python.)
- 3. S. Theodoridis and K. Koutroumbas, "Pattern Recognition", 4/e, Academic Press, 2009
- 4. Russell, S. and Norvig, N. "Artificial Intelligence: A Modern Approach" Prentice Hall Series in Artificial Intelligence. 2003.
- 5. Morton Nadier and Eric Smith P., "Pattern Recognition Engineering", John Wiley & Sons, New York, 1993.

EE18024	NANOELECTRONICS (Common to EE and EC)	L	Т	Р	С
		3	0	0	3
OBJECTIV	ES:	U	v	v	U
• To pr	ovide a good understanding of the nano electronics and its advancement	nt			
	ovide a good understanding of the carrier transport in MOS				
• To de	velop MOS devices using the concepts mentioned above.				
• To de	velop models and characterize MOS devices				
UNIT I	INTRODUCTION TO NANOELECTRONICS	r		1	9
MOS transist	–Node technology, Basic CMOS Process flow- MOS Scaling theory, I cors: Short channel effects, Description of a typical 65 nm CMOS te ess scaling trend, SiO2 vs High-k gate dielectrics				
		_			
UNIT II	ELECTRON TRANSPORT	the	<u></u>	tuon	9
	sport in semiconductors and nanostructures- Time and length scales of tics of the electrons in solids and nanostructures- Density of states				
	es- Electron transport in nanostructures-Electrons in traditional lo				
	ectrons in quantum wells- Electrons in quantum wires- Electrons in qu				
UNIT III	MOS CAPACITOR				9
C-V characte	ristics; Effect of metal work function, oxide and interface trapped cha	rges	. Th	resh	old
voltage. Tuni	nelling current.				
	MORDER				0
UNIT IV	MOSFET	field	ماما	d	9
	sed models of static I-V characteristics: Channel length modulation, ort channel and narrow width effects; Subthreshold current. Quant				
	itances, concept of non-reciprocal capacitances.	GIII	mee	iiuiii	cui
UNIT V	MOSFET MODELING				9
-	naviour under small and large signals. Surface potential and charge				els.
Model param	eters and their extraction. SOI MOSFETs, Double Gate MOSFETs and				
	TOTAL: (L: 45)	: 45	PE	RIO	DS
OUTCOM					
	f the course, learners will be able to				
	erstand the fundamentals of nanoelectronics.				
• Und	erstand the transport phenomenon at the nanoscale.				
	erstand the functionality of MOS capacitors.				
• Anal	yze the Characteristics of MOSFET.				
• Mod	el and characterize various MOS devices.				
TEXT BOO			_	_	
	sGupta and A. DasGupta, "Semiconductor Devices Modelling and Te	echn	olog	gy, P	ΗI
Learn	ing Pvt.Ltd."	. P		11 7	
Learn 2. Lesso	ns from Nanoelectronics A New Perspective on Transport, Suprive tific Publishing Co. Pte. Ltd., 2012	o Da	atta,	Wo	orlo

- 1.
- Streetman and Banerjee, "Solid State Electronic Devices", Prentice-Hall Paolo Antognetti, Giuseppe Massobrio, Semiconductor Device Modeling with Spice 2.

EC18018	NEXT GENERATION NETWORKS – 5G	LT	P	С
	29.	3 0	0	3
• To int				
	roduce the next generation networks and their need overview of 5G networks			
-	ow the architecture of 5G mobile networks			
	by the architecture of 5G moone networks			
1	ow the security issues related to 5G networks			
UNIT I	DRIVERS FOR 5G			9
	Evolution of LTE Technology to Beyond 4G, 5G Roadmap, 10 Pillar North America, 5G in Asia, 5G Architecture	rs of 50	G, 5G	in
UNIT II	THE 5G INTERNET			9
	Internet of Things and Context-Awareness; Networking Recon	 figurati	on a	-
	Support; Mobility; Quality of Service Control, Emerging Approach			
UNIT III	SMALL CELLS FOR 5G MOBILE NETWORKS			9
	What are Small Cells?; Capacity Limits and Achievable Gains with	Densif	icati	on;
	Demand; Demand vs Capacity; Small-Cell Challenges			,
UNIT IV	UNIFIED 5G BROADCAST - BROADCAST			9
011221	ARCHITECTURE			-
FEFs for L	lular Broadcasting in the TV Spectrum, Hybrid Network Approach – TE Transmission, Next Generation Common Broadcasting Sy Options, Large-Scale Simulation and Assessment of BC-BB Convergen	stem;	BC-J	
UNIT V	EVOLUTION OF SON AND SECURITY FOR 5G NETWORKS			9
Security Issu	SON in UMTS and LTE; The Need for SON in 5G, New SON Archi les and Challenges in 5G Communications Systems- User Equip obile Operator's Core Network, External IP Networks			
	TOTAL: (L: 45):	45 PE	RIO	DS
 Know t Differe Construction Design Analys TEXT BOOM 1. Jonatha	the course, learners will be able to the driving force for 5G networks ntiate the internet used in 5G and the previous generations act small cell architecture for 5G mobile networks an architecture for 5G networks e the self organisation networks and security issues related to 5G networks KS: n Rodriguez, "Fundamentals of 5G Mobile Networks", Wiley 2015			
	eng Chen and Tao Zhang, "IP-Based Next-GenerationWireless Network ctures, and Protocols," John Wiley & Sons, Publication, 2006	ks Syste	ems,	

- 1. Zhang, Yin, Chen, Min, "Cloud Based 5G Wireless Networks", Springer, 2016
- 2. http://ieeexplore.ieee.org/document/7414384/
- 3. http://ieeexplore.ieee.org/document/7794586/

EC18020	PARALLEL ARCHITECTURE	L	r P	
		3 (0	3
OBJECTIV				
	nderstand the micro-architectural design of processors.			
	earn about the various techniques used to obtain performance improvement	ent ar	id po	wei
	vings in current processors.			
	nderstand the memory performance and peripheral devices.			
	xpose the different types of multicore architectures.			
• Ex	xpose the RISC - V architecture.			
UNIT I	INSTRUCTION LEVEL PARALLELISM			(
		acha	4.12.	
	epts and challenges – Hardware and software approaches – Dynamic - Branch prediction – Multiple Instruction issue – Limitations of ILP.	sche		ig –
				-
UNIT II	DATA LEVEL PARALLELISM AND THREAD LEVEL PARALLELISM			9
	itecture – Loop level parallelism- Symmetric and distributed sha -Synchronization – Models of memory consistency - Multithreading	ared	men	lory
UNIT III	MEMORY AND I/O			Ģ
Cache perfor	mance – Reducing cache miss penalty and miss rate – Reducing hit	time	_ N	
-	mance – Reducing cache miss penalty and miss rate – Reducing hit performance – Memory technology Types of storage devices – Bus			
memory and	mance – Reducing cache miss penalty and miss rate – Reducing hit performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures.			
memory and Reliability, av	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures.			
memory and Reliability, av UNIT IV SMT and CM	performance - Memory technology. Types of storage devices - Bus	es –	RAI	D – 9
memory and Reliability, av UNIT IV SMT and CM	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor.	es –	RAI	D – 9
memory and Reliability, av UNIT IV SMT and CM heterogenous UNIT V RISC-V inst	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and	es – archi Inst	RAI	D – 9 re – 9
memory and Reliability, av UNIT IV SMT and CM heterogenous UNIT V RISC-V inst	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92	es – archi Inst).	RAI	D - 9 re - 9 ons:
memory and Reliability, av UNIT IV SMT and CM heterogenous UNIT V RISC-V inst	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92 TOTAL: (L: 45): 4	es – archi Inst).	RAI	D - 9 re - 9 ons:
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92 TOTAL: (L: 45): 4	es – archi Inst).	RAI	D - 9 re - 9 ons:
memory and Reliability, av UNIT IV SMT and CM heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92/ TOTAL: (L: 45): 4 S:	es – archi Inst D. 5 PE	RAI	D - g re - g ons
memory and Reliability, av UNIT IV SMT and CM heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 920 TOTAL: (L: 45): 4 S: the course, the students will be able to	es – archi Inst D. 5 PE. sm.	RAI tectu	D - <u> </u> <u> </u>
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the • Underst	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 920 TOTAL: (L: 45): 4 S: the course, the students will be able to hardware and software approaches to achieve Instruction Level Paralleli	es – archi Inst D. 5 PE. sm.	RAI tectu	D -
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the • Underst Level Pa	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92/ TOTAL: (L: 45): 4 S: the course, the students will be able to hardware and software approaches to achieve Instruction Level Parallelism and architectures and memory models to achieve Data Level Parallelism	es – archi Inst D. 5 PE. sm.	RAI tectu	D - <u> </u> <u> </u>
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the • Underst Level Pa • Determi	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 920 TOTAL: (L: 45): 4 S: The course, the students will be able to hardware and software approaches to achieve Instruction Level Parallelism and architectures and memory models to achieve Data Level Parallelism arallelism.	es – archi Inst D. 5 PE. sm.	RAI tectu	D - <u> </u> <u> </u>
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the • Underst Level Pa • Determi • Analyze	performance – Memory technology. Types of storage devices – Busvailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92/ TOTAL: (L: 45): 4 S: the course, the students will be able to hardware and software approaches to achieve Instruction Level Parallelism arallelism. ine cache performance and measure I/O performance.	es – archi Inst D. 5 PE. sm.	RAI tectu	D – 9 rre - 9 ons: DS
memory and Reliability, av UNIT IV SMT and Ch heterogenous UNIT V RISC-V inst Synchronizat OUTCOME At the end of • Use the • Underst Level Pa • Determi • Analyze TEXT BOO	performance – Memory technology. Types of storage devices – Bus vailability and dependability – I/O performance measures. MULTI-CORE ARCHITECTURES MP architectures – Design issues – Case studies – Intel Multi-core multi-core processors – Case study: IBM Cell Processor. RISC - V ARCHITECTURE truction set architecture - Addressing modes - Parallelism and ion - Local and Global Optimizations - Case study: The Intel Core i7 92/ TOTAL: (L: 45): 4 S: The course, the students will be able to hardware and software approaches to achieve Instruction Level Parallelism and architectures and memory models to achieve Data Level Parallelism arallelism. ine cache performance and measure I/O performance. e the various multicore architectures. e RISC-V architecture.	es – archi Inst D. 5 PE sm. and	RAI tectu ructi RIO	D -

- 1. David E. Culler, Jaswinder Pal Singh, "Parallel computing architecture: A hardware/software approach", Morgan Kaufmann /Elsevier Publishers, 1999.
- 2. Kai Hwang and Faye Briggs, "Computer Architecture and Parallel Processing", McGraw-Hill International Edition, 2000.
- 3. Kai Hwang and Zhi.Wei Xu, "Scalable Parallel Computing", Tata McGraw-Hill, New Delhi, 2003.
- 4. Sima D, Fountain T and Kacsuk P, "Advanced Computer Architectures: A Design Space Approach", Addison Wesley, 2000.

CE19054	PROFESSIONAL ETHICS	L	Т	P	С
GE18054	(Common to CE, CS, IT, EE, EC and MR)	3	0	0	3
OBJECTIVI	ES:				
• To en	able the students to create an awareness on Engineering Ethics and Hur	nan	Val	ues,	to
instill	Moral and Social Values and Loyalty and to appreciate the rights of oth	ners			
UNIT I	HUMAN VALUES				10
Morals, value	s and Ethics – Integrity – Work ethic – Service learning – Civic virtue	- F	Resp	ect	for
others - Livir	ng peacefully - Caring - Sharing - Honesty - Courage - Valuing time -	Cod	oper	atio	1 —
Commitment	$- \ Empathy - Self \ confidence - Character - Spirituality - Introduction$	n to	Yo	ga a	nd
meditation fo	r professional excellence and stress management				
UNIT II	ENGINEERING ETHICS				9
Senses of 'En	ngineering Ethics' - Variety of moral issues - Types of inquiry - Mor	al d	ilen	nma	s –
Moral Autono	omy – Kohlberg's theory – Gilligan's theory – Consensus and Controvers	sy –	Mo	dels	of
professional a	oles - Theories about right action - Self-interest - Customs and Relig	gion	– U	Jses	of
Ethical Theor	ies.				
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION				9
Engineering a	as Experimentation – Engineers as responsible Experimenters – Codes	of	Ethi	cs –	Α
Balanced Out					
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS				9
Safety and R	isk – Assessment of Safety and Risk – Risk Benefit Analysis and Re	educ	ing	Ris	K -
Respect for	Authority – Collective Bargaining – Confidentiality – Conflicts	of	Inte	erest	_
-	Crime – Professional Rights – Employee Rights – Intellectual Property				
Discriminatio	n.				
UNIT V	GLOBAL ISSUES				8
Multinational	Corporations – Environmental Ethics – Computer Ethics – Weapons I	Deve	elop	men	t –
Engineers as	Managers - Consulting Engineers - Engineers as Expert Witnesses as	nd 4	Adv	isor	s —
Moral Leader	ship –Code of Conduct – Corporate Social Responsibility.				
	TOTAL:	45]	PER	RIO	DS
OUTCOME	S:				
On completin	g this course, the students will be able to				
• Summari	ze the importance of core values that shape the ethical behaviour of a pr	rofe	ssio	nal.	
• Apply e	thical theories in controversial issues while playing the role o	f e	ngir	neeri	ng
					0
Professio	nals.				
		oy e	estal		ed
• Solve m	onals. oral and ethical problems through exploration and assessment bents and relate the code of ethics to social experimentation.	y e	estal		ed

•	Explain the ethical attributes of engineers in various roles and in different domains of
	engineering in the global context.
TE	XT BOOKS:
1.	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2015.
2.	Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of
	India, New Delhi, 2004.
RE	FERENCES:
1.	Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2012.
2.	Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics –
	Concepts and Cases", Cengage Learning, 2012
3.	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2017
4.	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2008.
5.	Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
6.	World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.
Wel	o sources:
1.	www.onlineethics.org
2.	www.nspe.org
3.	www.globalethics.org
4.	www.ethics.org

EC18024	SOFT COMPUTING	L	Τ	P	C
		3	0	0	3
OBJECTIVE	\S:				
• To be	familiar with basic and constituents of soft computing				
 To lear 	rn basic concepts and advancements in artificial neural networks archite	ectu	res		
• To be	exposed to fuzzy logic systems				
• To be	exposed to genetic algorithm for optimization problems				
• To be	exposed to hybrid soft computing systems and applications				
UNIT I	INTRODUCTION TO SOFT COMPUTING CONSTITUENTS				9
Introduction	to Soft Computing – Requirement, Usefulness and Applications-Ha	ard	com	nput	ing
versus Soft co	mputing. Introduction to Artificial Neural Network - ANN Characterist	tics	– Le	earn	ing
methods - Ta	xonomy – Basic models – McCulloch–Pitts neuron – Linear separabilit	y –	Perc	ept	ron
networks - A	daptive linear neuron, Multiple adaptive linear neuron. Introduction to	Fuz	zzy	logi	c –
	l sets – Fuzzy sets. Introduction to Genetic algorithm – Biological back				
	traditional optimization and search techniques - Genetic algorithm -	Ne	ed –	- Ba	sic
concepts – Iss	ues – Benefits.				
UNIT II	ARTIFICIAL NEURAL NETWORKS				9
	arning networks – Backpropagation Network – Architecture, Learnin				
	Function Network. Unsupervised learning networks - Kohonen s				
	Learning Vector Quantization, ART1 network - Architecture, Alg				
-	onvolutional Neural Network – Introduction – Architecture overview – I			-	
	al networks architectures – LeNet, AlexNet, GoogLeNet, VGGNet (Bri	ief c	omp	paris	son
only).					
UNIT III	FUZZY LOGIC				
					9
	functions – Features, Fuzzification, Methods of membership value				s –
	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations	s – 1	Fuzz	zy r	s – ule
base and app	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A	s – : Aggi	Fuzz rega	zy r tion	s – ule of
base and app fuzzy rules, F	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations roximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar	s – : Aggi	Fuzz rega	zy r tion	s – ule of
base and app fuzzy rules, F	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A	s – : Aggi	Fuzz rega	zy r tion	s – ule of
base and app fuzzy rules, F Fuzzy decisio	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations roximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system.	s – : Aggi	Fuzz rega	zy r tion	s – ule of s –
base and app fuzzy rules, F Fuzzy decisio UNIT IV	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM	s – I Aggi mot	Fuzz rega o mo	zy r tion odel	s – ule of s – 9
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM athm and search space – Simple genetic algorithm modeling – Operator 	s – 1 Aggi mote	Fuzz rega o mo	zy r tion odel	s – ule of s – 9 ver,
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM thm and search space – Simple genetic algorithm modeling – Operator refering and deletion, Mutation – Generational cycle – Convergenc	s – 1 Aggr mote s –	Fuzz rega o mo Cros ondi	zy r tion odel ssov	s – ule of s – 9 ver,
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op	 Functions – Features, Fuzzification, Methods of membership value Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM The and search space – Simple genetic algorithm modeling – Operator rdering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in	s – 1 Aggr mote s –	Fuzz rega o mo Cros ondi	zy r tion odel ssov	s – ule of s – 9 ver,
base and app fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM thm and search space – Simple genetic algorithm modeling – Operator refering and deletion, Mutation – Generational cycle – Convergenc	s – 1 Aggr mote s –	Fuzz rega o mo Cros ondi	zy r tion odel ssov	s – ule of s – 9 ver,
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM The and search space – Simple genetic algorithm modeling – Operator rdering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm.	s – 1 Aggr mote s –	Fuzz rega o mo Cros ondi	zy r tion odel ssov	s - ule of s - 9 <i>y</i> er, 1 - etic
base and app fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM Ithm and search space – Simple genetic algorithm modeling – Operator rdering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND	s – 1 Aggr mote s –	Fuzz rega o mo Cros ondi	zy r tion odel ssov	s – ule of s – 9 ver,
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM Athm and search space – Simple genetic algorithm modeling – Operator redering and deletion, Mutation – Generational cycle – Convergence timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS	s – Aggi moti ss – c cs – c GA	Fuz: rega o mo Croo ondi	zy r tion odel ssov itior	$\frac{s - ule}{of}$ $\frac{s - ver}{9}$
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM The main and search space – Simple genetic algorithm modeling – Operator Terring and deletion, Mutation – Generational cycle – Convergence timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-Ferring	s – Aggr mote s – GA GA	Fuz: rega o mo Croo ondi – C	zy r tion odel ssov itior Gene	$\frac{s - ule}{of}$ $\frac{s - ver}{s}$ $\frac{9}{ver}$ $\frac{9}{s}$ $\frac{9}{s}$ $\frac{9}{s}$
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM Ithm and search space – Simple genetic algorithm modeling – Operator Idering and deletion, Mutation – Generational cycle – Convergenc Itimization – Example Problem: Maximizing a function – Advances in Versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-F c hybrids, Fuzzy-Genetic hybrids – Genetic algorithm in Fuzzy logic co	s – Aggr mot s – S f s – GA	Fuz: rega o mo Croo ondi - C	zy r tion odel ssov itior Gene	s - ule of s - 9 y er, n - etic 9 ds, ign
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti – Fuzzy logi	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM The mathematical system of the mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system of the mathematical system. GENETIC ALGORITHM The mathematical system. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-Fector system. Computing Techniques – Overview on hybrid systems – Neuro-Fector system. Computing Techniques – Overview on hybrid systems – Neuro-Fector system. Computing Genetic hybrids – Genetic algorithm in Fuzzy logic conducted GA based optimization – Adaptive Neuro-Fuzzy Inference system.	s – Aggr mot rs – GA Fuzz ntro	Fuzz rega o mo Croo ondi C	zy r tion odel ssov itior Gene ybri des vster	$\frac{s - ule}{of}$ $\frac{s - ver}{g}$ $\frac{g}{g}$ $\frac{g}{g}$ $\frac{g}{g}$ $\frac{g}{g}$ $\frac{g}{g}$ $\frac{g}{g}$ $\frac{g}{g}$
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti – Fuzzy logi Applications -	 Functions – Features, Fuzzification, Methods of membership value functions – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM The analysis of the system of the system of the system of the system of the system. GENETIC ALGORITHM The analysis of the system of the system of the system. GENETIC ALGORITHM The system of the system of the system. GENETIC ALGORITHM The system of the system of the system. GENETIC ALGORITHM The system of the system of the system. GENETIC ALGORITHM The system of the system. GENETIC ALGORITHM GENETIC ALGORITHM HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-Fic hybrids, Fuzzy-Genetic hybrids – Genetic algorithm in Fuzzy logic construled GA based optimization – Adaptive Neuro-Fu	S – Aggr moto TS – GA Fuzz ntrce ence s, op	Fuzz rega o mo Croa ondi - C y h iller e Sy ottim	zy r tion odel ssow itior Gene ybri des yster izat	s – ule of s – 9 ver, n – etic 9 ds, ign ns.
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti – Fuzzy logi Applications - of traveling sa	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM athm and search space – Simple genetic algorithm modeling – Operator dering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-F c hybrids, Fuzzy-Genetic hybrids – Genetic algorithm in Fuzzy logic co c controlled GA based optimization – Adaptive Neuro-Fuzzy Infere - Soft computing-based fusion of multispectral images with SAR images alesman problem using genetic algorithm approach, Fuzzy logic based a	S – Aggr moto TS – GA Fuzz ntrce ence s, op	Fuzz rega o mo Croa ondi - C y h iller e Sy ottim	zy r tion odel ssow itior Gene ybri des yster izat	s – ule of s – 9 ver, n – etic 9 ds, ign ns.
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti – Fuzzy logi Applications - of traveling sa	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM ithm and search space – Simple genetic algorithm modeling – Operator dering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-F c hybrids, Fuzzy-Genetic hybrids – Genetic algorithm in Fuzzy logic co c controlled GA based optimization – Adaptive Neuro-Fuzzy Inferd - Soft computing-based fusion of multispectral images with SAR images ilesman problem using genetic algorithm approach, Fuzzy logic based a mparison of ANN, Fuzzy logic and GA.	s – Aggr mot rs – GA Fuzz ntro ence s, op	Fuzz rega o mo Croo ondi C	zy r tion odel ssov itior Gene ybri des vster izat	s – ule of s – 9 ver, 1 – etic 9 ds, ign ns. ion ner
base and appr fuzzy rules, F Fuzzy decisio UNIT IV Genetic algor Inversion/reor Multilevel op Programming UNIT V Hybrid Soft Neuro-Geneti – Fuzzy logi Applications - of traveling sa	functions – Features, Fuzzification, Methods of membership value on – Lambda cuts, Methods – Extension principle – Fuzzy relations coximate reasoning – Formation of rules – Decomposition of rules, A uzzy reasoning – Fuzzy inference systems – Mamdani, Sugeno, TSukar n making – Overview of fuzzy expert system. GENETIC ALGORITHM athm and search space – Simple genetic algorithm modeling – Operator dering and deletion, Mutation – Generational cycle – Convergenc timization – Example Problem: Maximizing a function – Advances in versus Genetic Algorithm. HYBRID SOFT COMPUTING TECHNIQUES AND APPLICATIONS Computing Techniques – Overview on hybrid systems – Neuro-F c hybrids, Fuzzy-Genetic hybrids – Genetic algorithm in Fuzzy logic co c controlled GA based optimization – Adaptive Neuro-Fuzzy Infere - Soft computing-based fusion of multispectral images with SAR images alesman problem using genetic algorithm approach, Fuzzy logic based a	s – Aggr mot rs – GA Fuzz ntro ence s, op	Fuzz rega o mo Croo ondi C	zy r tion odel ssov itior Gene ybri des vster izat	s – ule of s – 9 ver, 1 – etic 9 ds, ign ns. ion ner

OUTCOMES:

At the end of the course, learners will be able to

- Select appropriate soft computing constituents for certain applications.
- Use suitable artificial neural networks for simple applications.
- Use fuzzy logic concepts for specific applications.
- Use genetic algorithm for optimization.
- Extend knowledge on hybrid soft computing systems.

TEXT BOOKS:

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence", Pearson Education, 2015.
- 2. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2017.

- 1. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 2. S.N.Sivanandam, S.N.Deepa, "Introduction to Genetic Algorithms", Springer, 2008.
- 3. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.
- 4. S.N.Sivanandam, S.Sumathi and S.N.Deepa "Introduction to Fuzzy Logic using MATLAB", Springer, 2007.
- 5. https://ieeexplore.ieee.org/
- 6. http://www.iitp.ac.in/~shad.pcs15/data/NN-DL.pdf.

EC18026	STATISTICAL THEORY OF SIGNAL PROCESSING	L	T	P	C
		3	0	0	3
OBJECTIVE					
	ing out the concepts related to stationary and non-stationary random sig	nals			
	phasize the importance of true estimation of power spectral density				
	roduce the design of linear optimum filtering and linear prediction				
	roduce the design of adaptive systems for filtering and their application				
To int	roduce the concept of wavelet transforms in the context of image proce	essin	g		
UNIT I	DISCRETE-TIME RANDOM SIGNALS				9
	om process - Ensemble averages, Stationary and ergodic processes, A				
and Autocova	ariance properties and matrices, White noise, Wiener Khintchine re	elati	on,	Pov	ve
Spectral Dens	sity, Spectral Factorization, Innovations Representation and Process, Fil	lteri	ng	rand	on
processes, AR	RMA, AR and MA processes.				
UNIT II	SPECTRUM ESTIMATION				9
	nsistency, Periodogram, Modified periodogram, Blackman-Tukey m	neth	od,	We	lcł
method, Paran	metric methods of spectral estimation, Levinson-Durbin recursion				
UNIT III	OPTIMUM DIGITAL FILTERS				9
Digital wiene	er filter-Forward and Backward linear prediction, FIR Wiener filter-	- Fil	ter	ing a	anc
linear predicti	ion, IIR Wiener filters- Filtering, Smoothing, Prediction and Deconvol	lutic	n-l	Discr	ete
Kalman filter.					
Rumun meet					
UNIT IV	ADAPTIVE FILTERS				
UNIT IV	ADAPTIVE FILTERS adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo	oritl	nm	– L1	9 MS
UNIT IV Principles of					MS
UNIT IV Principles of	adaptive filter - FIR adaptive filter - Newton"s Steepest descent alg				MS
UNIT IV Principles of algorithm – A Algorithm UNIT V	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo canc MULTIRATE FIR FILTER DESIGN	celle	ers.	- R	MS LS
UNIT IV Principles of algorithm – A Algorithm UNIT V	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo canc	celle	ers.	- R	MS LS
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo canc MULTIRATE FIR FILTER DESIGN	celle nd i	ers.	- R	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank	 adaptive filter – FIR adaptive filter – Newton"s Steepest descent algorithm Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancellation MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator are implementation –Two channel filter banks-QMF filter banks-Displication of wavelet transform, Cepstrum and Homomorphic filtering. 	celle nd i	ers. nte te	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis	celle nd i	ers. nte te	- R rpola wave	MS LS ito: ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap	 adaptive filter – FIR adaptive filter – Newton"s Steepest descent algorithm Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancellation MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator are implementation –Two channel filter banks-QMF filter banks-Displication of wavelet transform, Cepstrum and Homomorphic filtering. 	celle nd i	ers. nte te	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to	celle nd i	ers. nte te	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancellation filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Displication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45):	celle nd i	ers. nte te	- R rpola wave	MS LS ito: ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to	celle nd i	ers. nte te	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation	celle nd i	ers. nte te	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation	nd i scret	nte te	- R rpola wave	MS LS ito ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancellation for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Discoplication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system	nd i scret	nte te	- R rpola wave	MS LS ito ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering techniques using LMS and RLS algorithm and the	nd i scret 45	nte te	- R rpola wave	MS LS ito ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig	adaptive filter – FIR adaptive filter – Newton"s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cance MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms	nd i scret 45	nte te	- R rpola wave	MS LS ito ele
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig	adaptive filter – FIR adaptive filter – Newton''s Steepest descent alge Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cance MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator are implementation –Two channel filter banks-QMF filter banks-Dis plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS:	app app s	ers. nte PE	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig TEXT BOOI 1. Monso	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellation, Adaptive equalizer, Adaptive echo cancel MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to ain parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system ain adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: on H, Hayes, "Statistical Digital Signal Processing and Modeling", Jo	app app s	ers. nte PE	- R rpola wave	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig TEXT BOOI 1. Monso Sons I	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cand MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dis- plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system ain adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: on H, Hayes, "Statistical Digital Signal Processing and Modeling", Jo Inc., New York, Indian Reprint, 2007.	app s ohn	ers. nte te PE	- R rpola wave RIO	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig • Expla of ada • Desig • Expla 0 data • Desig	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cand MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator and implementation –Two channel filter banks-QMF filter banks-Dise plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: on H, Hayes, "Statistical Digital Signal Processing and Modeling", Jo Inc., New York, Indian Reprint, 2007. G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson.	app s ohn	ers. nte te PE	- R rpola wave RIO	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig TEXT BOOI 1. Monso Sons I 2. John G 3. Dwigh	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cand MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator ar implementation –Two channel filter banks-QMF filter banks-Dis plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: On H, Hayes, "Statistical Digital Signal Processing and Modeling", Jc Inc., New York, Indian Reprint, 2007. G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson, ht F. Mix, "Random Signal Processing", Prentice Hall, 1995.	app s ohn	ers. nte te PE	- R rpola wave RIO	
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig TEXT BOOI 1. Monso Sons I 2. John C 3. Dwigh REFERENC	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cand MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator ar implementation –Two channel filter banks-QMF filter banks-Dis plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to adaptive filtering, smoothing and Prediction system adaptive filtering. gn optimum digital filtering, smoothing and Prediction system adaptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: on H, Hayes, "Statistical Digital Signal Processing and Modeling", Jc Inc., New York, Indian Reprint, 2007. G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson, ht F. Mix, "Random Signal Processing", Prentice Hall, 1995.	app s ohn s c c c c c c c c c c c c c c c c c c	PE	- R rpola wave RIO ation	MS LS
UNIT IV Principles of algorithm – A Algorithm UNIT V Design of FIR –Filter bank transform-Ap OUTCOMES • Expla • Apply • Desig • Expla of ada • Desig TEXT BOOI 1. Monso Sons I 2. John C 3. Dwigh REFERENC	adaptive filter – FIR adaptive filter – Newton''s Steepest descent algo Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cand MULTIRATE FIR FILTER DESIGN R filters for sampling rate conversion –Multistage design of decimator ar implementation –Two channel filter banks-QMF filter banks-Dis plication of wavelet transform, Cepstrum and Homomorphic filtering. TOTAL: (L: 45): S: At the end of the course, learners will be able to an parametric methods for power spectrum estimation y parametric and Non parametric methods for Spectral estimation gn optimum digital filtering, smoothing and Prediction system an adaptive filtering techniques using LMS and RLS algorithm and the aptive filtering. gn multi rate FIR filter and explain the application of wavelet transforms KS: On H, Hayes, "Statistical Digital Signal Processing and Modeling", Jc Inc., New York, Indian Reprint, 2007. G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson, ht F. Mix, "Random Signal Processing", Prentice Hall, 1995.	app s ohn s c c c c c c c c c c c c c c c c c c	PE	- R rpola wave RIO ation	

EC18028	TESTING OF VLSI CIRCUITS	L	Т	Р	С
		3	0	0	3
OBJECTIV	ES:				
• To	how the various types of faults.				
• To	study about fault detection and fault dominance.				
	learn the design of testable combinational circuits and sequential circu	iits.			
	know the concepts of DFT and BIST.				
• To	understand the fault diagnosis methods.				
UNIT I	TESTING AND FAULT MODELLING			1 5	9
Models-Faul	uction to testing – Faults in Digital Circuits – Modelling of faults – detection – Fault Location – Fault dominance – Logic simulatio Delay models – Gate Level Event – driven simulation.				
					0
UNIT II	TEST GENERATION	110	aia		<u>9</u>
	generation for combinational logic circuits – Testable combinationa generation for sequential circuits – design of testable sequential circuits		gic	CIFC	un
uesigii – rest	generation for sequential encurs – design of testable sequential encurs). 			
UNIT III	DESIGN FOR TESTABILITY				9
	n for Testability – Ad-hoc design – generic scan-based design – classi	cal	scar	n-bas	
	em level DFT approaches.				
<u> </u>					
UNIT IV	SELF – TEST AND TEST ALGORITHMS				9
	In self Test – test pattern generation for BIST – Circular BIST – BIST mory Design – Test Algorithms – Test generation for Embedded RAM		chit	ectu	res
UNIT V	FAULT DIAGNOSIS				9
	al Level Diagnosis – Diagnosis by UUT reduction – Fault	Dia	ano	ric	-
	al Circuits – Self-checking design – System Level Diagnosis.	Dia	51101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101
	TOTAL: (L:45):	45	PEF	RIO	DS
OUTCOME	5:				
	the course, learners will be able to				
	faults and delay in digital circuits.				
	ate tests for combinational and sequential circuits.				
	op design for testability (DFT) approaches.				
	op self test methods and test algorithms for memories.				
Devel	op fault diagnosis for combinational circuits and system level circuits.				
TEXT BOO	XS:				
TEXT BOO	XS: bramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal	ble]	Desi	ign"	,
TEXTBOO1.M.AlJaico	KS: pramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal Publishing House, 2002.	ble]	Desi	ign"	,
TEXT BOO1.M.AlJaico2.P.K.	KS: pramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal Publishing House, 2002. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002.	ble]	Desi	ign"	,
TEXT BOO 1. M.Al Jaico 2. P.K. REFERENCE	KS: pramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal Publishing House, 2002. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002. ES:				
TEXT BOO 1. M.Al Jaico Jaico 2. P.K. REFERENCE D.L.E	KS: pramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal Publishing House, 2002. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002. ES: pushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital				
TEXT BOO 1. M.A Jaico 2. P.K. REFERENC 1. M.L.E Mixed	KS: pramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testal Publishing House, 2002. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002. ES:	l, M	emo	ory a	und

GE18052	TOTAL QUALITY MANAGEMENT (COMMON TO ME, AE, CS, EC and MR)	L 3	<u>Т</u> 0	P 0	C 3
OBJECTIVE		5	U	U	5
	litate the understanding of Quality Management principles and proces	ses.			
	n TQM & process monitoring techniques	. ~			
	w about various quality management system implemented in industrie	es			
UNIT I	INTRODUCTION				8
	of TQM – Historical developments – important philosophies- (Demin				
•	awa) and their impact of quality – Quality planning, Quality statement	t – (Jual	ity	
policy.					
UNIT II	TQM PRINCIPLES			1.	9
	s - Customer satisfaction – customer perception of quality, custom				
	olvement – Empowerment and Team work- Recognition and Reward				
	upplier Quality Management – Supplier Rating – Supplier rating	by	An	alyt	ical
Hierarchical Pr					
UNIT III	PROCESS MONITORING				9
	quality, New Seven management tools, Statistical fundamentals – Norr				
for variables an	nd attributes, TPM – Concepts, Process Capability analysis, PDSA cy	cle,	5S, 1	Kaiz	zen.
UNIT IV	TQM TECHNIQUES				10
		Da			
	ons Deployment (QFD) – house of Quality, QFD process and benefits.				
	chi Quality Loss function, FMEA – concept, Industrial case studies of	n L	FIN	EA	and
	ix Sigma –concepts- Methodologies				
UNIT V	QUALITY MANAGEMENT SYSTEMS				9
	- ISO 9001: 2015 – Elements, Implementation, Documentation and Au				
/ 15 16949 - 15	SO14000 and OSHAS 18000 – Concept requirements and benefits – C	ase	stuc	lies.	
	TOTAL	: 45	PEI	RIO	DS
OUTCOMES					
Student	ts will be able to describe the evolution and concepts of quality and Q	uali	ty		
Manage			5		
0	ts will be able to Practice the Principles of TQM in work environment				
	dustrial examples, student will be able to illustrate the process monitor		, too	ls	
	ts will apply the quality techniques of TQM in industries.			101	
	ppropriate case studies, students will deploy the need of Quality Mana	aem	ont	weta	ame
in indu		gum		sysu	
in maa	50165.				
TEXT BOOK	S.				
	. Besterfiled, et at., "Total quality Management", Third Edition, Pears	on F	Educ	atio	
	idian Reprint, 2006.		June	ano	.1
,	na M. Charantimath, Total Quality Management, Pearson education, (3rd	diti	on	
2. Foorini 2017.	na m. Charanninani, rotar Quanty Management, rearson cuteation,	JIU	Juill	оп ,	
REFERENCE	28 :				
	R. Evans and William M. Lindsay, "The Management and Control of	0119	litv"	8tł	
	, First Indian Edition, Cengage Learning, 2012.	Zud	iiiy	, ou	
	aman. B and Gopal .R.K., "Total Quality Management - Text and Cas	ee"	Dro	ntice	د
	ndia) Pvt. Ltd., 2006.	s ,	110		-
	Iuia) Fvi. Liu., 2000.				

- 3. Shridhara Bhat, "TQM Text and Cases", Himalaya Publishing House, 2002.
- 4. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd.,

2006.

- WEB RESOURCES:

 1. https://nptel.ac.in/courses/110/104/110104080/

 2. https://nptel.ac.in/courses/110/104/110104085/

EC18030	WIRELESS LANs AND PANs	L	T	Р	С
		3	0	0	3
OBJECTIVE	ES:				
 To le To an To un 802. 	nalyze the industrial applications of low rate WPAN and future trends i	s nd V .15.3	WPA 3 and	l IE	
UNIT I	WIRELESS LOCAL AREA NETWORKS (WLANs)				9
MAC layer M	N standards, architectures, modulation schemes, MAC layer, media ac Management, hidden nodes, collision avoidance, Data and voice trar Ns, WLAN Technologies: Infrared technology, UHF narrowband technology	ısmi	issio	n o	ver
UNIT II	WIRELESS PERSONAL AREA NETWORKS (WPANs)				9
UNIT III Co-existence WIFI traffic	on, GTS allocation and Management. HETEROGENEOUS WIRELESS NETWORKS of wired and wireless networks, collocated, co-existed wireless networ on WPANs, Wireless co-existence between WLANs and WPANs, rformance analysis of high density wireless networks.		-		
iniugation, pe		1			
UNIT IV	THE IEEE 802.15 WORKING GROUP FOR WPANs				9
topologies, Tl	2.15.3, The IEEE 802.15.4, ZigBee Technology, ZigBee component he IEEE 802.15.4 LR-WPAN Device architecture: Physical Layer, Da Layer, Applications; IEEE 802.15.3a Ultra wideband.				
UNIT V	CASE STUDY OF WLANS AND WPANS				9
	4 LR-WPAN for Industrial Applications, Future trends in WLANs and	l WI	PAN	s.	
	TOTAL: (L:45):				DS
AnalyExplain	S: the course, learners will be able to ze the basic protocols and technologies in WLAN in the architecture and topologies of Wireless PAN elate the co-existence of wired and wireless networks				

- Categorize the IEEE 802.15.3 and IEEE 802.15.4 standards
 Identify the future trends in WLANs, WPANs and industrial applications of low rate

	WPANs.						
TE	EXT BOO	KS:					
1.		Morais Cordeiro and Dharma Prakash Agrawal, "Ad Hoc and Sensor Ecientific, 2011.	Networks",				
2.	Vijay K. 2009.	Garg, "Wireless Communications and Networking", Morgan Kaufmanr	n Publishers,				
RF	EFERENC	ES:					
1.	Kaveh Pa	hlavan, Prashant Krishnamurthy, "Wireless Networks", PHI, 2002.					

2. Marks Ciampor, Jeorge Olenewa, "Wireless Communication", Cengage Learning, 2007.

OPEN ELECTIVES

To unde To ident To learn To unde To learn To unde UNIT I Electronic Engi PID Control Adaptive Contro UNIT II S Introduction - T Anemometer - Concentration S Sensor - Mass Angular Positio Detonation Se	the application of electronics in automotive industry. arstand the different control systems in automotives and their control. tify, formulate and solve real time Engineering problems. a digitization of the conventional control systems in automotives. brstand the fundamentals of different instrumentation systems in automotives. EVNDAMENTALS OF AUTOMOTIVE ELECTRONICS ne Management System – Components – Open and Closed Loop Com Look Up Tables – Introduction – Modern Control Strategies Like Fuz ol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – Ge Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – Tom – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Motensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	s. brategogic of W Oxy Posit le P	9 Vire gen ion late
To learn To unde To ident To ident To learn To learn To unde To unde UNIT I Electronic Engi PID Control Adaptive Contro UNIT II S Introduction – T Anemometer Concentration S Sensor – Mass Angular Positio – Detonation Se	a the application of electronics in automotive industry. erstand the different control systems in automotives and their control. tify, formulate and solve real time Engineering problems. a digitization of the conventional control systems in automotives. erstand the fundamentals of different instrumentation systems in automotives. EVINDAMENTALS OF AUTOMOTIVE ELECTRONICS ne Management System – Components – Open and Closed Loop Content - Look Up Tables – Introduction – Modern Control Strategies Like Fuz- ol – Controlled Parameters – SI and CI Engines. ENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G - Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Motensor ensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 Vire gen ion late ays
To unde To ident To learn To unde To learn To unde UNIT I Electronic Engi PID Control Adaptive Contro UNIT II S Introduction - T Anemometer - Concentration S Sensor - Mass Angular Positio Detonation Se	erstand the different control systems in automotives and their control. tify, formulate and solve real time Engineering problems. a digitization of the conventional control systems in automotives. Erstand the fundamentals of different instrumentation systems in automotive s	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 Vire gen ion late ays
To ident To learn To unde To unde UNIT I Electronic Engi PID Control Adaptive Contro UNIT II S Introduction – Concentration S Sensor – Mass Angular Positio – Detonation Se	tify, formulate and solve real time Engineering problems. a digitization of the conventional control systems in automotives. Extrand the fundamentals of different instrumentation systems in automotives. EVNDAMENTALS OF AUTOMOTIVE ELECTRONICS In Management System – Components – Open and Closed Loop Cont- Look Up Tables – Introduction – Modern Control Strategies Like Fuz- ol – Controlled Parameters – SI and CI Engines. EXENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To m – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo- ensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 Vire gen ion late ays
To learn To under To under	a digitization of the conventional control systems in automotives. Existand the fundamentals of different instrumentation systems in automotives. EVINDAMENTALS OF AUTOMOTIVE ELECTRONICS In Management System – Components – Open and Closed Loop Control- Look Up Tables – Introduction – Modern Control Strategies Like Fuz- ol – Controlled Parameters – SI and CI Engines. ENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Motensor ensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 Vire gen ion late ays
To under To under To under To under	FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS Ine Management System – Components – Open and Closed Loop Contender of Look Up Tables – Introduction – Modern Control Strategies Like Fuziol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – Ge Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – Tom – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Motensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 Vire gen ion late ays
UNIT IHElectronic Engi– PID ControlAdaptive ControlMaptive ControlUNIT IISIntroductionAnemometer–ConcentrationSensorMassAngular Positio– DetonationSensor	FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS ne Management System – Components – Open and Closed Loop Content - Look Up Tables – Introduction – Modern Control Strategies Like Fuziol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G - Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – T - Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Motensor – Emission Sensors.	trol S zzy L or – H rs – Cam Throt	ot W Oxy Posit	gies and 9 7 ire gen ion late ays
Electronic Engi – PID Control – Adaptive Contro UNIT II S Introduction – Concentration S Sensor – Mass Angular Positio – Detonation Se	ne Management System – Components – Open and Closed Loop Cont - Look Up Tables – Introduction – Modern Control Strategies Like Fuz ol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	zzy L or – H cs – Cam Throt	ogic ot W Oxy Posit	gies and 9 7 ire gen ion late ays
Electronic Engi – PID Control – Adaptive Contro UNIT II S Introduction – Concentration S Sensor – Mass Angular Positio – Detonation Se	ne Management System – Components – Open and Closed Loop Cont - Look Up Tables – Introduction – Modern Control Strategies Like Fuz ol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	zzy L or – H cs – Cam Throt	ogic ot W Oxy Posit	9 7 ire gen ion late ays
 PID Control – Adaptive Control UNIT II Introduction – Anemometer – Concentration S Sensor – Mass Angular Positio – Detonation Se 	- Look Up Tables – Introduction – Modern Control Strategies Like Fuz ol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G - Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – T on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	zzy L or – H cs – Cam Throt	ogic ot W Oxy Posit	9 7 ire gen ion late ays
Adaptive Contra UNIT II S Introduction – Concentration S Sensor – Mass Angular Positio – Detonation Se	ol – Controlled Parameters – SI and CI Engines. SENSORS AND ACTUATORS Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – To on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	or – H rs – Cam Throt	ot W Oxy Posit le P	9 Vire gen ion late ays
Introduction – Anemometer – Concentration S Sensor – Mass Angular Positio – Detonation Se	Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – T on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	rs – Cam Throt	Oxy Posit le P	Vire gen ion late ays
Introduction – Anemometer – Concentration S Sensor – Mass Angular Positio – Detonation Se	Basic Sensor Arrangement – Types Of Sensors – Hall Effect Sensor - Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – G Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – T on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	rs – Cam Throt	Oxy Posit le P	Vire gen ion late ays
Anemometer – Concentration S Sensor – Mass Angular Positio – Detonation Se	- Thermistor – Piezo-Electric Sensor – Piezo-Resistive Sensor Sensor – Lambda Sensor – Crankshaft Angular Position Sensor – (Air Flow (MAF) Rate – Manifold Absolute Pressure (MAP) – 7 on – Engine Oil Pressure Sensor – Vehicle Speed Sensor – Stepper Mo ensor – Emission Sensors.	rs – Cam Throt	Oxy Posit le P	gen ion late ays
				0
	ND A DIZ TONIJETONI ENICINE NA ANA OENZENIE			0
	SPARK IGNITION ENGINE MANAGEMENT			-
Injection System Converter – Con Fuel System C	uretor System – Throttle Body Injection – Multi Point Fuel Inject m Controls –Advantage of Electronic Ignition Systems – Three V nversion Efficiency Versus Lambda – Group and Sequential Injection Components – Advantages of Electronic Ignition Systems –Solid S ciple Of Operation – Types – Contact Less Electronic Ignition System Control.	Vay (Tech State	Cataly nique Ignit	ytic es – ion
	COMPRESSION IGNITION ENGINE MANAGEMENT			9
Pilot, Main, Ac Unit Injection S Pump – Rail F	System – Parameters Affecting Combustion – Noise and Emissions in dvanced – Post Injection and Retarded Post Injection – Electronical System – Layout of the Common Rail Fuel Injection System – Fuel In Pressure Limiter – Flow Limiter – Working Principle – EGR Valv Controlled Systems.	lly Co njecto	ntrol r – F	led Juel
				-
	DIGITAL ENGINE CONTROL SYSTEM	r ,	1 1	9
	d Closed Loop Control System – Engine Cooling and Warm Up C			
-	- Acceleration and Full Load Enrichment - Deceleration Fuel C			
	 Open Loop Control of Fuel Injection – Closed Loop Lambda Control – On Board Diagnostics: Diagnostics – Future Automotive Electron 			
	Board Instruments – Onboard Diagnosis System.	ine s	51011	15 —
	TOTAL: (L: 45): 4	45 PF	RIO	DS
				-~

OUTCOMES:

At the end of the course, learners will be able to

- Understand the different control systems in automotives and their control.
- Understand the different types of sensors and actuators
- Principle of operation of Spark ignition management system
- Principle of operation of compression ignition management system
- Understand the fundamentals of different instrumentation systems in automotives.

TEXT BOOKS:

- 1. Arthur Primrose Young, Leonard Griffiths, "Automobile Electrical and Electronic Equipment: Theory and Practice for Students, Designers, Automobile Electricians and Motorists", London Butterworths, Ninth Edition, 1986.
- 2. William Ribbens, "Understanding Automotive Electronics: An Engineering Perspective", Butterworth-Heinemann, Seventh Edition, 2013.

- 1. Allan Bonnick, "Automotive Computer Controlled Systems" Taylor & Francis, Fifth Edition, 2001.
- 2. Tom Denton, "Automobile Electrical and Electronics Systems", Butterworth- Heinemann, Fourth Edition, 2004.
- 3. Robert Bosch GmbH, "Diesel-Engine Management", John Wiley & Sons, Fourth Edition, 2006.
- 4. Robert Bosch GmbH and Horst Bauer, "Gasoline-Engine Management", Bentley Publishers, Second Edition, 2006.
- 5. Robert. N, Brady, "Automotive Computers and Digital Instrumentation", Prentice Hall, First Edition, 1988.
- 6. Hillier V.A.W, "Fundamentals of Automotive Electronics", Nelson Thornes Limited, Sixth Edition, 2012.

	SENSING TECHNIQUES	L	Т	P	С
		3	0	0	3
OBJECTIVE					
 sensor To und To und To und 	nderstand the underlying principles and performance characteristics rs. derstand the use of optical components and interface electronics. derstand the concept of different types of motion sensors. derstand the various light and radiation sensors. derstand the essential theory of temperature and chemical sensors.	of	im	port	ant
UNIT I	PRINCIPLES OF SENSING				9
Data Acquisi magnetism –	tion – sensor characteristics – electric charges, fields, potentials inductance – resistance – piezoelectric – pyroelectric – Hall effect id waves – heat transfer – light – dynamic models of sensors.		-		nce
UNIT II	OPTICAL COMPONENTS AND INTERFACE ELECTRONICS				9
–amplifiers –	 Photometry – mirrors – lenses – fibre optics – concentrators – Int light-to-voltage – excitation circuits – ADC – Digitization – Capacita its – data transmission – noise in sensors and circuits – calibration – low 	nce	-to-	volt	age
LINIT III	MOTION DEL ATED SENSODS				0
-Optoelectror	MOTION RELATED SENSORS nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers	s V	eloc	ity a	ric
Occupancy at -Optoelectror acceleration a accelerometer	nd motion detectors: ultrasonic - microwave - capacitive detectors	rs Vo –Pi	eloc ezoe	ity a elec	und tric
Occupancy at -Optoelectror acceleration a accelerometer piezoelectric o	nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers rs – piezoresistive accelerometers – thermal accelerometers – cables – gravitational sensors.	rs Vo –Pi	eloc ezoe	ity a elec	ric ind
Occupancy an -Optoelectron acceleration a accelerometer piezoelectric o UNIT IV Light Detector CMOS image	nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers rs – piezoresistive accelerometers – thermal accelerometers –	rs Vo –Pi Gyro rs –	eloc ezoc osco	ity a elec opes	and 9
Occupancy at -Optoelectror acceleration a accelerometer piezoelectric of UNIT IV Light Detector CMOS image Detectors: sci	nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers rs – piezoresistive accelerometers – thermal accelerometers – cables – gravitational sensors. LIGHT AND RADIATION DETECTORS ors: Photo diodes – photo transistor – photo resistor – cooled detecto e sensors – thermal detectors – optical design – gas flame detect ntillating detectors – ionization detectors – cloud and bubble chambers	rs Vo –Pi Gyro rs –	eloc ezoc osco	ity a elec opes	tric and tric 9 and ion
Occupancy an -Optoelectron acceleration a accelerometer piezoelectric of UNIT IV Light Detector CMOS image Detectors: sci UNIT V Temperature sensors – ther sensors-Chem	nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers rs – piezoresistive accelerometers – thermal accelerometers – cables – gravitational sensors. LIGHT AND RADIATION DETECTORS ors: Photo diodes – photo transistor – photo resistor – cooled detecto e sensors – thermal detectors – optical design – gas flame detect ntillating detectors – ionization detectors – cloud and bubble chambers TEMPERATURE AND CHEMICAL SENSORS Sensors: coupling with objects – temperature reference points – th moelectric contact sensors – semiconductor sensors – acoustic sensors nical sensors: characteristics – classes of chemical sensors – biochem	rs Ve -Pi Gyre rs - tors erm -pi	eloc ezoo osco - CC Ra o re	ity a electoppes	ric ric - - - - - - - - - - - - - - - - - - -
Occupancy an -Optoelectron acceleration a accelerometer piezoelectric of UNIT IV Light Detector CMOS image Detectors: sci UNIT V Temperature sensors – ther sensors-Chem	nd motion detectors: ultrasonic – microwave – capacitive detectors nic motion sensors – optical presence sensor – Pressure Gradient sensor sensors: Accelerometer characteristics – capacitive accelerometers rs – piezoresistive accelerometers – thermal accelerometers – cables – gravitational sensors. LIGHT AND RADIATION DETECTORS ors: Photo diodes – photo transistor – photo resistor – cooled detecto e sensors – thermal detectors – optical design – gas flame detect ntillating detectors – ionization detectors – cloud and bubble chambers TEMPERATURE AND CHEMICAL SENSORS Sensors: coupling with objects – temperature reference points – th rmoelectric contact sensors – semiconductor sensors – acoustic sensors	rs Va -Pi Gyra rs - tors erm -pi nical	eloc ezoo oscc - CC Ra o re ezoo	ity a elec opes CD a diat essist elec nsor	g and ion 9 ive ric s –

TEXT BOOKS: 1. Pallas-Areny Ramon, John G. Webster. Sensors and signal conditioning. New York: Wiley, 2001. 2. Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs, and Applications", Fourth Edition, Springer, 2010. REFERENCES: 1. De Silva, Clarence W. Sensors and actuators: Engineering system instrumentation. CRC Press, 2015.

- 2. Ripka, Pavel, Alois Tipek, eds. Modern sensors handbook. John Wiley & Sons, 2013.
- 3. Khazan, Alexander D. Transducers and their elements: design and application. Prentice Hall, 1994.

OE18705	SYSTEM DESIGN USING MICROCONTROLLERS	L	T	P	C
OBJECTIVI	28.	3	0	0	3
	pose the students to the fundamentals of microcontroller-based system	n desi	gn		
	dy the Architecture, addressing modes & instruction set of PIC Micro		0	r and	b
develo	op skills in writing simple programs.				
	derstand the concepts of Interrupts, timer and Serial ports				
	roduce commonly used peripheral interfacing ICs.				
• To stu	dy and understand the typical applications of micro-controllers				
UNIT I	INTRODUCTION TO PIC MICROCONTROLLER				Ģ
Overview of I	PIC microcontroller-Architecture – Program Memory considerations	– Reg	iste	r Fil	e
Structure - In operations	struction Set - Addressing modes – Assembly language Programming	g-Simj	ole		
UNIT II	PIC PROGRAMMING IN C				9
	d time delays in C - I/O programming -Logical Operations-Data Serie	alizati	on		
• •	M allocation -Data RAM allocation				
UNIT III	PORTS, INTERRUPTS AND TIMER				Ģ
	I/O ports, Serial port Programming - Timers -Timer and Counter Pr	ogram	mir	ig, P	-
	ler Interrupts- External Interrupts and Interrupt Programming				
UNIT IV	PERIPHERALS AND INTERFACING				9
	unication – USART, SPI, I2C, ADC, DAC and Sensor Interfacing, emories for data storage- CCP Modules	Using	Fla	ish a	nc
UNIT V	SYSTEM DESIGN – CASE STUDY				9
Inverters - M	CD Display – Keypad Interfacing - Generation of Gate signals for contor Control – Controlling DC/ AC appliances – Measurement of free				
alone Data A	cquisition System. TOTAL: (L: 45). 45	DFI		nc
	101AL. (L. 43	<u>). 45 </u>			DC
OUTCOME	S:				
	the course, learners will be able to				
-	ret the PIC architecture and its assembly language programming				
	late the embedded C concepts to apply it for PIC microcontroller bas				
	nine the feasibility of employing the PIC microcontroller's I/O jupts in real time applications.	ports,	Tin	ners	8
	fy the best commonly used interfaces of PIC microcontroller such as L	JSAR	Г, S	PI, I	20
	d to develop applications based on DAC, ADC, CCP and EEPROM			,	
• Exam	ine the available case studies based onPIC microcontroller to des	ign a	em	bedd	lec
system	n				
TEVT DOOL	Z C .				
TEXT BOO		tmc11-		1	
	mmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Microcon dded Systems using Assembly and C for PIC18', Pearson Education 2		anc	I	
	an,J.B., "Design with PIC Micro Controllers" Pearson Education, 3 rd E		. 20	04.	
	, , <u>6</u>		, _0		

- 1. Tim Wilmshurst, "Designing Embedded Systems with PIC Microcontrollers Principles and Applications", Newnes Publication, 2007
- 2. John Iovine, 'PIC Microcontroller Project Book', McGraw Hill 2000
- 3. Julio Sanchez Maria P. Canton, "Microcontroller Programming: The microchip PIC", CRC Press, Taylor & Francis Group, 2007.

OE18707	FUNDAMENTALS OF WIRELESS COMMUNICATION	L	Т	P	С
		3	0	0	3
OBJECTIVE	ES:				
• To intro	duce various generation of wireless systems.				
• To acqu	aint fundamentals of cellular systems design.				
• To fami	liarize with various multiple access schemes used in wireless communi	cati	on.		
• To prov	ide knowledge with the latest 3G/4G networks and beyond.				
UNIT I	WIRELESS COMMUNICATION SYSTEMS				9
	wireless communication systems: 1G, 2G, 2.5G, 3G, 3.5G, 4G. Examp	-			
•	dless, Paging Systems. Cellular Telephone System, Comparison of wi	reles	ss sy	/ster	ns,
reisonal Con	munication Systems, Call establishment in cellular systems.				
UNIT II	FUNDAMENTALS OF CELLULAR COMMUNICATION				9
	use, Handoff, Channel Assignment, Interference and system capac	itv.	imr	brov	-
	capacity in cellular systems: cell splitting, sectoring, repeaters for ran				
microcell zon	e concept.				
UNIT III	MULTIPLE ACCESS TECHNIQUES				9
	ods: TDMA, FDMA, CDMA, CSMA, Packet Radio Services, Pure Al	LOF	[A,	Slot	ted
ALOHA, Cap	pacity of CDMA and SDMA Systems, Basics of OFDM.				
UNIT IV	WIRELESS NETWORKS				9
	sonal area network: Bluetooth - protocol stack, security, netwo	rk	con	nect	-
	, error correction and network topology; wireless sensor network: usa				
	ology; IEEE 802.15.3a - Ultra Wideband; Wireless Local area net				
	opologies and Technologies; IEEE 802.11 WLAN -architecture, secu				
management;	IEEE 802.16 -WiMAX				
UNIT V	LATEST TRENDS IN WIRELESS NETWORKS				9
	-4G vision $-4G$ features and challenges - Applications of $4G - 4G$				
5G Key Tech	Modulation, Smart antenna techniques, Software defined radio, Concerning	ogni	tive	rac	10,
JU Key Tech	TOTAL: (L:45 + T:0):	45	PFI	210	ns
	101AL. (L.+3 + 1.0).			<u>uo</u> .	00
OUTCOME	S:				
	the course, learners will be able to				
• Distin	guish and understand the major cellular communication	on	sta	ında	rds
(1G/2	G/3G/4G/5G/6G systems) and wireless communications networks.				
• Gain i	nsights cellular architecture.				
U	n and implement various access mechanisms.				
-	n and implement wireless network environment for any application	on u	sing	; lat	est
	ess protocols and standards.				
Distin	guish the features of 4G, 5G techniques and 6G Enablers.	1			
TEXT BOO		1			
	NS: port. T.S., "Wireless communications", Pearson Education, 7th impress	sion	201	12	
	Garg, —Wireless Communications and networking, First Edition, Else				
2. vijay v	Surg, whereas communications and networking, this Edition, Else	101	200	<i>'</i> •	

- 1. Jochen Schiller, "Mobile communications", PHI/Pearson Education, 2nd Edition (2003).
- 2. Simon Haykin & Michael Moher, "Modern wireless Communication", Pearson Education, 2007.
- 3. Andreas. F.Molisch, Wireless Communication", John Wiley, 2006.
- 4. T. S. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. M. Murdock, Millimeter Wave Wireless Communication., Pearson Education, 2015.
- 5. M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access techniques for 5G Wireless Networks and Beyond., Springer Nature, Switzerland, 2019.

OE18702	CONSUMER ELECTRONICS	L	Т	P	С
		3	0	0	3
fundam	erstand the working principles of various consumer electronic device entals. The and describe operating principles of different types of microphone				
systems).	,u	1321	uy	
• To desc Home e	a various technology involved in Smart home. ribe working of Washing machine, Digital Camera system, Microwa enablement systems with their block diagram.	ave	ove	ns a	nd
• To acqu	aint with various devices related to telecommunication system.				
UNIT I	CONSUMER ELECTRONICS FUNDAMENTALS				9
Law, Semicondu	of Electronic Devices- Vacuum Tubes, Transistors, Integrated Cin ctor Devices, Diodes, Rectifiers, Transistors, Logic Gates, Combina Microprocessors, Microcontrollers in consumer electronics, Energy ing Perspective.	tion	al C	lircu	iits,
UNIT II	ENTERTAINMENT ELECTRONICS				9
FM receiver, ste	stems: Construction and working principle of : Microphone, Loud sp reo, 2.1 home theatre, 5.1 home theatre . Display systems: CRT, L s Video Players : DVD and Blue RAY. Recording Systems: Digita	CD), Ll	ED	and
UNIT III	SMART HOME				9
Home Security S	gy involved in Smart home, Home Virtual Assistants- Alexa and Systems - Intruder Detection, Automated blinds, Motion Sensors, Thors, PIR, IR and Water Level Sensors.				
UNIT IV	HOME APPLIANCES				9
Washing Machi	nablement Systems: RFID Home, Lighting control, Automatic Cleanes, Kitchen Electronics- Microwave, Dishwasher, Induction nart alarms, Smart floor, Smart locks.				
UNIT V	COMMUNICATION SYSTEMS				9
Cordless Introduction to S	Telephones, Fax Machines, PDAs- Tablets, Smart Phones and S mart OS- Android and iOS. Video Conferencing Systems- Web/IP (Enabled Systems, Wi-Fi, IoT, Li-Fi, GPS and Tracking Systems.				nes.
	TOTAL: (L:45):	45	PE	RIO	DS
InterpretInfer techIdentify a	course, learners will be able to the fundamentals of Electronic Devices. mical specification of electronics Audio system, display and recordin and explain working of technology involved in Smart home. rate various functions of Home appliances like Washing machine, M	•	•		

TEXT	BOOKS:		
1.	Thomas L	- Floyd "Electronic Devices" 10th Edition Pearson Education Asia 2	018.
2.	Philp Hof	f "Consumer Electronics for Engineers" - Cambridge University Pro	ess.1998.
3.	Jordan Fr	ith, " Smartphones as Locative Media ", Wiley. 2014.	
4.	Dennis C	Brewer, "Home Automation", Que Publishing 2013.	
5.	Thomas N	A. Coughlin, "Digital Storage in Consumer Electronics", Elsevier ar	nd Newness
	2012.		
REFE	RENCES	:	
1.	M.L.Bush	nnell and V.D.Agrawal, "Essentials of Electronic Testing for Digita	l, Memory and
	Mixed-Si	gnal VLSI Circuits", Kluwer Academic Publishers, 2002.	
2.	A.L.Crou	ch, "Design Test for Digital IC's and Embedded Core Systems",	, Prentice Hall
	Internatio	nal, 2002.	

Г

OE18704	INTRODUCTION TO COMMUNICATION SYSTEMS	L	Τ	P	C
		3	0	0	3
OBJECTIVI	CS:				
• To un	derstand analog communication techniques				
• To un	derstand digital communication techniques.				
• To lea	rn pulse communication techniques.				
• To be	familiarized with satellite/wireless communication.				
• To un	derstand latest applications of different communication systems.				
UNIT I	ANALOG COMMUNICATION				(
	o Communication Systems – Modulation – Types – Need for Modulati				
	odulation – Evolution and Description of SSB Techniques – Theory of		luen	cy a	n
Phase Modula	tion – Comparison of Analog Communication Systems (AM – FM – P	'M).			
UNIT II	PULSE COMMUNICATION				(
	to Pulse Communication- Pulse Amplitude Modulation (PAM) -	_ D	1160	ті	_
	(FAM) – Pulse code Modulation (PCM) – Comparison of various Pulse C				
	I - PTM - PCM).	,011II	iiuil	icat	.01
~ j = = = = = = = = = = = = = = = = = = =					
UNIT III	DIGITAL COMMUNICATION				(
Introduction	o Digital Communication Amplitude Shift Keying (ASK) – Frequency	y Sh	ift I	Keyi	n
	Shift Keying (PSK) – BPSK – QPSK – Quadrature Amplitude Modula				
Comparison of	f various Digital Communication System (ASK – FSK – PSK – QAM)).			
UNIT IV	SATELLITE COMMUNICATION				(
	location for satellite; Types of orbits-GEO, LEO, MEO; Kepler's				
	ellite launching procedures – launch vehicles and propulsion; Sp		-	-	nt
Transponder	sub-system, TT&C sub-system, Satellite Applications-INTELSAT, INN	MAF	<u>KSA</u>	Τ.	
	WIDELESS COMMUNICATION				-
	WIRELESS COMMUNICATION	100 -	Imn	rovi	
Cellular conc	ept - Frequency reuse - Channel assignment strategies - Hand off strateg				n
Cellular conc coverage and	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con	mmı	inic	atio	ng 1 -
Cellular conc coverage and FDMA, TD	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell	mmu ular	inica ne	atio etwo	n orl
Cellular conc coverage and FDMA, TE standards/tecl	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con	mmu ular	inica ne	atio etwo	n 1 - orl
Cellular conc coverage and FDMA, TE standards/tecl	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth	mmu ular n, N	inic no /Iod	ation etwo ulati	n 1 - 01
Cellular conc coverage and FDMA, TE standards/tecl techniques, F	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45):	mmu ular n, N	inic no /Iod	ation etwo ulati	n 1 - 01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell anologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45):	mmu ular n, N	inic no /Iod	ation etwo ulati	n n - or] .01
Cellular conc coverage and FDMA, TE standards/tecl techniques, F OUTCOME At the end of	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able	mmu ular n, N	inic no /Iod	ation etwo ulati	n n - or] .01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of • Identi	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able by various analog communication techniques. based on its application.	mmu ular n, N	inic no /Iod	ation etwo ulati	n n - or] .01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of • Identi • Identi	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell anologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able by various analog communication techniques. based on its application. by various digital communication techniques. based on its application.	mmu ular n, N	inic no /Iod	ation etwo ulati	n 1 - 01
coverage and FDMA, TE standards/tecl techniques, F OUTCOME At the end of • Identi • Identi • Identi	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able Sy various analog communication techniques. based on its application. Sy various digital communication techniques. based on its application. Sy various digital communication techniques.	mmu ular n, N	inic no /Iod	ation etwo ulati	n 1 - 01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of • Identi • Identi • Identi • Identi • Utiliz	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell anologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able Cy various analog communication techniques. based on its application. Cy various digital communication techniques. based on its application. Cy the usage of pulse communication techniques	mmu ular n, N <u>45 l</u>	inica nd Aodi	ation etwo ulati	n; n or] .01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of • Identi • Identi • Identi • Identi • Utilize	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able Sy various analog communication techniques. based on its application. Sy various digital communication techniques. based on its application. Sy various digital communication techniques.	mmu ular n, N <u>45 l</u>	inica nd Aodi	ation etwo ulati	n or or D
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of Identi Identi Identi Utilize Interp	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able Cy various analog communication techniques. based on its application. Cy various digital communication techniques. based on its application. Sy the usage of pulse communication techniques. Total: (Differentiation), wireless communication, ret wireless communication and cellular network standards through lates	mmu ular n, N <u>45 l</u>	inica nd Aodi	ation etwo ulati	ng n orl .01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of Identi Identi Identi Utiliz Interp	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able fy various analog communication techniques. based on its application. fy various digital communication techniques based on its application. fy the usage of pulse communication techniques e the concepts of satellite communication, ret wireless communication and cellular network standards through lates KS:	mmu ular n, N <u>45 l</u>	inica nd Aodi	ation etwo ulati	n; n or] .01
Cellular conc coverage and FDMA, TD standards/tecl techniques, F OUTCOME At the end of Identi Identi Identi Utilize Interp TEXT BOO 1. Simor	ept - Frequency reuse - Channel assignment strategies - Hand off strateg capacity in cellular system; Multiple access techniques for wireless con MA, CDMA; Overview and Comparison of various cell mologies-2G, 2.5G, 3G, 3.5G, 4G, 5G (in terms of Bandwidth requency band, Data rate, Applications), WLAN and Wi-Fi TOTAL: (L: 45): S: the course, learners will be able Cy various analog communication techniques. based on its application. Cy various digital communication techniques. based on its application. Sy the usage of pulse communication techniques. Total: (Differentiation), wireless communication, ret wireless communication and cellular network standards through lates	mmu ular n, M 45 l	nic: nd Aod PER	ation etwo ulati	n; n - or] .oi

3. Theodore S. Rappaport —wireless communications - principles and practicell, PEARSON,

Second edition.

- 1. J.G.Proakis, M,Salehi,: Fundamentals of Communication Systems", Pearson Education 2006.
- 2. B.P.Lathi, "Modern Digital and Analog communication Systems:,3rd Edition, Oxford University Press,2007
- 3. Simon Haykin," Digital Communications" John Wiley & Sons, 2010
- 4. T. Pratt and C.W. Boastian, "Satellite Communication", 2nd edition, John Wiley & Sons, 2002.
- 5. Jochen Schiller, "Mobile Communication", Pearson Education, 2012

OE18706	ROBOTICS SYSTEMS	L	Т	P	С
		3	0	0	3
OBJECTIVI	ES:				
The student s	nould be exposed to:				
 Robot 	ics, automation and control technologies				
• Vario	is types of robotic sensors				
 Robot 	ic vision and machine learning				
 Actua 	tors and robot programming				
Vario	as applications of robotics and its system in industry	-			
UNIT I	OVERVIEW ON ROBOTICS AND AUTOMATION				9
	finition, Origin, Different types, Various generations, Degrees of freed				
	Classification of robots - Cartesian, Cylindrical, Spherical, Articula	ated,	SC	CAR	A
	obot movements – Accuracy, Resolution, Repeatability.				
	Basic elements of an automated system – Level of automation; Overview	w on	COI	ntrol	lei
and its types -	- FI,FD,FID.				
UNIT II	SENSORS FOR ROBOTIC APPLICATIONS				9
	cteristics, Types of sensors – Tactile sensors, Touch sensors; Positi	tion	cor	aore	-
	, Encoder, LVDT, Resolvers; Proximity sensors–Magnetic, Optica				
	pacitive, Eddy current; Speed sensors– Velocity/motion sensors; Forc	,			
torque sensor		0/11	0000	110 U	.110
torque sensor					
UNIT III	ROBOTIC VISION SYSTEM				9
	n systems – Image processing and analysis, Segmentation, Feature extra	racti	on,	Obj	ect
	Overview on Artificial Intelligence/Machine Learning for robotic visio		,	5	
UNIT IV	ACTUATORS AND ROBOT PROGRAMMING				9
Actuators – E	lectric - Hydraulic - Pneumatic; End effectors - Grippers and Tools -	Тур	es, i	Desi	gn
consideration	s in gripper selection; Robot programming, Introduction to robot langua	ages	•		
UNIT V	ROBOTIC SYSTEMS IN INDUSTRY				9
	lications - Material transfers, Machine loading and unloading, Autom				
	spection, Flexible Manufacturing Systems; Introduction to Micro robo	otics	and	1 Na	nc
robotics.		45.3			
	TOTAL: (L: 45) :	45 I	'EF		DS
	7.				
OUTCOMES	the course, learners will be able to				
	fy robotics system, automation and control technologies.				
	appropriate sensors for certain applications				
	appropriate sensors for certain appreations a various stages involved in computer vision for robotics				
	required actuators, end effectors, robot programming languages for any	u aix	ion		
	ations.	y giv	CII		
	ate recent industrial robotics and their applications.				
- musu	are recent industrial robotics and then applications.				
TEXT BOO	Χδ:				
	P. Groover, Mitchell Weiss, Roger N. Nagel and Nicholas G. Odr				

1. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel and Nicholas G. Odrey, "Industrial Robotics", Tata Mc Graw Hill, 2010.

2. Mittal R K, Nagrath I J, "Robotics and control", Tata McGraw Hill, 2010.

REFERENCES:

- 1. Saeed B. Niku, "An Introduction to Robotics: Analysis, systems and applications", Pearson Education, 2009.
- 2. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.
- 3. Mikell P. Groover, "Automation, Production systems and Computer Integrated Manufacturing", Prentice Hall India Pvt. Ltd., 2011.
- 4. Richard D Klafter, and Michael Negin, "Robotics Engineering", Prentice Hall, 2009.

MC1800	MANDATORY COURSE	L	Т	Р	C
WIC1000	(Common to all Branches Except MR)		0	0	
OBJECT		5	U	U	U
	know about Indian constitution and fundamental rights.				
	know about indian constitution and fundamental rights. know about central and state government functionalities in India.				
	know about central and state government functionanties in india. know about Judicial system and Election commission of India.				
• 10					
UNIT I	INTRODUCTION				11
	Background – Philosophical foundations of the Indian Constitution -	- Pr	ear	nble	
	– Amendments.		cui		
UNIT II	FUNDAMENTAL RIGHTS AND FUNDAMENTAL DUTIES OF THE CITIZEN				8
Union and	Territories - Citizenship - Fundamental Rights - Directive Principles of	State	e P	olic	у -
Fundamen	tal Duties – Directive Principles of state policy.				
UNIT III	STRUCTURE AND FUNCTION OF CENTRAL				8
	GOVERNMENT			• 1	
	vernment – Structures of the Union Government and Functions – Powers	OI .	Pre	eside	ent
vice Presi	dent, Prime Minister – Cabinet ministers – Parliament.				
UNIT IV	STRUCTURE AND FUNCTION OF STATE GOVERNMENT				
	ernment – Structure and Functions – Powers of Governor, Chief Min	ister	· (Cabi	
	- State Legislature.		,		
UNIT V	STRUCTURE OF JUDICIAL SYSTEM AND MAJOR FUNCTIONARIES				1(
Supreme C	Court of India - Judicial System in States – High Courts and other Subordin	ate (Coi	ırts -	_
	eview – Case studies. Election Commission of India and its functions.				
	TOTAL: (L: 45):	45 P	EI	RIO	DS
OUTCON	IES: At the end of the course, learners will be able to				
CO	CO statement		W	veigl	ht
				age	
CO – 1	Enhance human values, create awareness about law enactment and			10 %	ó
<u> </u>	importance of Constitution			2001	
CO – 2	To Understand the Fundamental Rights and Fundamental Duties of the Ind	lan		30%)
	Citizen to instill morality, social values, honesty, dignity of life and their				
CO – 3	social Responsibilities. To Understand the powers and functions of Central Government.			20%	
CO-3 CO-4				<u>20%</u> 20%	
CO-4 CO-5	To Understand the powers and functions of State Government. To Understand the powers and functions of Judicial systems and Election			20% 20%	
0-5	commission of India.			2070	,
TEXT BC	POKS:				

Delhi.

- 2. R.C.Agarwal, (1997) "Indian Political System", S.Chand and Company, New Delhi.
- 3. Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.
- 4. K.L.Sharma, (1997) "Social Stratification in India: Issues and Themes", Jawaharlal Nehru University, New Delhi.

REFERENCES:

- 1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.
- 2. U.R.Gahai, "Indian Political System ", New Academic Publishing House, Jalaendhar.
- 3. R.N. Sharma, "Indian Social Problems", Media Promoters and Publishers Pvt. Ltd.

VALUE ADDED COURSES

VD18701	PCB DESIGN USING EDA TOOL	L	Т	Р	C
1210/01		1	0	2	2
OBJECTIVE	ES:				
To leaTo unoTo fat	roduce the basic electronics components. rn the design rules for PCB circuits. derstand the need for PCB Design and steps involved in PCB Designiliarize Schematic and layout design flow using Electronic D) Tools.				tion
UNIT I	Introduction to Printed Circuit Board				6
	of Electronic Components - Basic Electronic Circuits - Basics of Pr ut Planning, general rules and parameters.	inted	Circı	iit Bo	ard
UNIT II	Design rules for PCB				6
Design rules f electronic app	for Digital circuit PCBs - Analog circuit PCBs - high frequency applications.	plicati	ons ·	- Pow	'er
UNIT III	PCB Technology Trends				6
	CBs - Multiwire PCB - Flexible PCBs - Surface mount PCBs - Refl	ow so	lderi	ng.	
UNIT IV	Description of PCB Design and EDA tools				6
Introduction t	o PCB Design using EDA tool – Flowchart – PCB layers – Study og Electronics Circuits (IPC) standards.	of Inte	ercon	necti	ng
UNIT V	Practical Training on PCB Design				6
Amplifier or S	d Layout Design: Full-wave Rectifier, Regulator circuit using 7805 Summing Amplifier using op-amp, Astable or Monostable multivitising half-adders.				55,
		AL: 3	60 PH	ERIO	DS
UnderClassiAppreDescrit	the course, learners will be able to stand the steps involved in schematic, layout and assembly process fy the design rules of Digital and analog circuit PCBs ciate the necessity and evolution of PCB, types and classes of PCB ibe the PCB design and EDA tool. n (schematic and layout) PCB for analog circuits, digital circuits ar	5.		U	
TEXT BOOI	Z •				
1. R.S. K Editio 2. Walter REFERENC 1. Clyde 2016	Chandpur, Printed Circuit Board –Design, Fabrication, Assembly & n, 2017. r C. Bosshart, Printed circuit Board – Design & Technology, TMH	. Repi aw-Hi	rint 2	2 <u>008.</u> lucati	ion,
0	n Using OrCAD Capture and PCB Editor, 2 nd Edition 2009.	er, Co	ompi	ete P	CB

	SIGNAL PROCESSING USING SIMULATION TOOL	L 1	T	P 2	C 2
OBJECTIVI	78.	I	0	2	2
 To proof signature To entroperation To stute To introperation 	ovide background and fundamentals of MATLAB tool for the analy	chniqu			
UNIT I	Introduction to MATLAB				(
operations-M	to MATLAB-Use of MATLAB-Key features of ssigning variables-Operations with variables-Arrays and atrix operations-Writing user defined functions-Built in F n Value- GUI using MATLAB,		rs-Ai		eti
UNIT II	Signal Processing using MATLAB				(
region of inte Introduction (spectral featu	to Image Processing: Importing and Visualizing & displaying in rest-Image enhancement, Image Segmentation, Image Registration. to audio and speech processing: Speech production model-Extraction res from audio signal- Implementation of different types of filters. Imple NN using MATLAB. Neural Networks and its applications,				
UNIT III	Applications of Signal Processing using MATLAB				(
	of Image Processing: Object Detection and Tracking, Real-World A processing: Speech recognition, Isolated word recognition -Dimen arrning models				ioi
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I	•	cation	ithm , Pa	lm p	el ng rin
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I signal monito	estem Design with MATLAB - Transmission Over 5G netric Cryptography-Implementation of encryption and decryption thentication and its applications- Multimodal biometric authentic ystem, Forensic and commercial applications. OT platform with MATLAB analytics, humudity, dewpoint calc ring using thingspeak.	algor	ithm , Pa	ıs usi lm p	el ng rin
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I signal monito UNIT IV Brief Introduc tuples, and di	estem Design with MATLAB - Transmission Over 5G netric Cryptography-Implementation of encryption and decryption thentication and its applications- Multimodal biometric authenti- ystem, Forensic and commercial applications. OT platform with MATLAB analytics, humudity, dewpoint calc	algor cation ulatio	ithm , Pa n an	ıs usi lm p d tra	el ng rin
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I signal monito UNIT IV Brief Introduc tuples, and di assignments-a	 Astem Design with MATLAB - Transmission Over 5G netric Cryptography-Implementation of encryption and decryption thentication and its applications- Multimodal biometric authentic system, Forensic and commercial applications. OT platform with MATLAB analytics, humudity, dewpoint calcoring using thingspeak. Introduction to Python ction-Functions and variables in Python-Importing packages-Nump ctionaries- Design with functions- The concept of data types, variables	algor cation ulatio	ithm , Pa n an	ıs usi lm p d tra	el ng rin
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I signal monito UNIT IV Brief Introduc tuples, and di assignments-a UNIT V Computer vis –Neural netw	 Astem Design with MATLAB - Transmission Over 5G netric Cryptography-Implementation of encryption and decryption thentication and its applications- Multimodal biometric authentic system, Forensic and commercial applications. OT platform with MATLAB analytics, humudity, dewpoint calcoring using thingspeak. Introduction to Python cition-Functions and variables in Python-Importing packages-Nump citionaries- Design with functions- The concept of data types, variable arithmetic operators and expressions- Visualization plots Machine learning algorithms using Python ion using Python-Different types of classifiers –Building a simple cloork architectures-Speech recognition algorithms-Audio signal Classifiers to CNN-Application of CNN for image classification using keras. 	algor cation ulatio y, Par oles, lassifi	n an ndas- catic	ns usi lm p d tra - List on mo	del ng ffi (s,
Wireless Sy model, Symn MATLAB Biometric au recognition sy Thinkspeak I signal monito UNIT IV Brief Introduc tuples, and di assignments-a UNIT V Computer vis –Neural netw	Astem Design with MATLAB - Transmission Over 5G netric Cryptography-Implementation of encryption and decryption thentication and its applications- Multimodal biometric authentic stem, Forensic and commercial applications. OT platform with MATLAB analytics, humudity, dewpoint calcoring using thingspeak. Introduction to Python Ction-Functions and variables in Python-Importing packages-Nump ctionaries- Design with functions- The concept of data types, variate arithmetic operators and expressions- Visualization plots Machine learning algorithms using Python ion using Python-Different types of classifiers –Building a simple clored architectures-Speech recognition algorithms-Audio signal Classifiers	algor cation ulatio y, Par oles, lassifi	n an ndas- catic	ns usi lm p d tra - List on mo	ffi

At the end of the course, learners will be able to

- Understand the fundamentals of MATLAB tool for analysis and processing of signals
- Simulate the basic operations of signal processing using MATLAB
- Implement various signal processing applications.
- Understand the basics of Python.
- Utilize MATLAB tool for analysis and processing of signals.

REFERENCES:

- 1. Digital Signal Processing using MATLAB, 3rd Edition, Vinay K Ingle, John G Proakis
- 2. Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction to Programming, Kindle Edition by Eric Matthes
- 3. MATLAB: An Introduction With Applications, 5th Edition by Amos Gilat, John Wiley
- Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code (Zed Shaw's Hard Way Series) Paperback – 10 October 2013 by Zed Shaw

VD18703	HARDWARE MODELLING AND ANALYSIS USING EDA TOOL	L	Т	Р	C
		1	0	2	2
OBJECTIVE	ES:				
• To in	ntroduce the Verilog Hardware Description Language				
• To le	earn various Issues in Digital Circuit Modeling using Verilog				
	earn functional verification of the Hardware Model by writing test l	bench	es		
• To an	nalyze the area, power and delay of the hardware model using EDA	A tool			
UNIT I	Hierarchical Modeling Concepts				(
Overview of	Digital Design with Verilog HDL, Evolution of Computer Aid	ed Di	igital	Desi	gn
Emergence of	f HDLs, Typical Design Flow, Importance of HDLs, Popularity	of V	/erilo	og Hl	DL
Trends in HD	Ls, Design Methodologies - Example: 4-bit Ripple Carry Counter, N	Modu	les, Iı	nstand	ces
Components of	of a Simulation, Design Block, Stimulus Block, Example- Ripple Ca	arry C	Count	er, Ba	asi
Concepts, Lez	xical Conventions, Data Types, System Tasks and Compiler Direct	ives			
UNIT II	Components of Verilog Module and Gate-Level Modeling				
	Ports, Modules- Components of Verilog Module, Example: S-R L				
ports – Port D	Declaration - Port Connection Rules- Connecting Ports to External S	Signal	s, Ga	te-Le	ve
Modeling -	Gate Types- AND/OR Gates, BUF/NOT Gates, Array of ins	tance	s, Ez	xamp	les
Gate-level mu	ultiplexer, 4- bit ripple carry full adder, Gate Delays- Rise, Fall, an	d Tui	m-off	f Dela	iys
	x Values, Delay Example;				
Min/Typ/Max	values, Delay Example,				-
Min/Typ/Max	x values, Delay Example,				-
UNIT III	Dataflow and Behavioral Modeling				
UNIT III		ors, a	nd O	perar	ds
UNIT III Dataflow Mo	Dataflow and Behavioral Modeling				ds
UNIT III Dataflow Mo Operator Typ	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operato	ounte	r; Be	ehavio	lds ora
UNIT III Dataflow Mo Operator Typ Modeling, St	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operato pes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Co	ounte	r; Be its, N	ehavio Aultiv	ids ora vay
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operato bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Co tructured Procedures, Procedural Assignments, Conditional Stat	ounte	r; Be its, N	ehavio Aultiv	ids ora vay
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operato oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Co tructured Procedures, Procedural Assignments, Conditional Stat oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design;	ounte	r; Be its, N	ehavio Aultiv	ids ora vay
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Statoops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplel Controller –FSM design;Switch-Level Modeling and User-Defined Primitives	ounte temen xer, 4	r; Be its, N 1-bit	ehavio Aultiv Coun	ids ora vay ter
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Controltructured Procedures, Procedural Assignments, Conditional Statoops, Sequential and Parallel Blocks, Examples: 4-to-1 MultipleI Controller –FSM design;Switch-Level Modeling and User-Defined PrimitivesModeling, Switch-Modeling Elements- MOS switches,	ounte temen xer, ² CMC	r; Be ats, M 4-bit	ehavio Aultiv Coun	ids ora va <u>v</u> tei
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Statoops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplel Controller –FSM design;Switch-Level Modeling and User-Defined PrimitivesModeling, Switch-Modeling Elements- MOS switches,l switches, Power and Ground, Resistive Switches, Delay Specific	counte cemen xer, ² CMC cation	r; Be tts, M 4-bit OS s on S	ehavie Aultiv Coun switch	ids pra va <u>v</u> tei nes
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Stateoops, Sequential and Parallel Blocks, Examples: 4-to-1 MultipleI Controller –FSM design;Switch-Level Modeling and User-Defined PrimitivesModeling, Switch-Modeling Elements- MOS switches,I switches, Power and Ground, Resistive Switches, Delay SpecificCMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa	counte temen xer, ² CMC cation s-on	r; Be tts, M 4-bit OS s on S with	ehavie Aultiv Coun switch Switch FPC	ids ora vay tei nes nes
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Stateoops, Sequential and Parallel Blocks, Examples: 4-to-1 MultipleI Controller –FSM design;Switch-Level Modeling and User-Defined PrimitivesModeling, Switch-Modeling Elements- MOS switches,I switches, Power and Ground, Resistive Switches, Delay SpecificCMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, HandaPrimitives - UDP basics, Combinational UDPs, Sequential UDP	counte temen xer, ² CMC cation s-on	r; Be tts, M 4-bit OS s on S with	ehavie Aultiv Coun switch Switch FPC	ids pra vaj tei nes nes
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined	Dataflow and Behavioral Modelingodeling - Continuous Assignments, Delays, Expressions, Operatooes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Stateoops, Sequential and Parallel Blocks, Examples: 4-to-1 MultipleI Controller –FSM design;Switch-Level Modeling and User-Defined PrimitivesModeling, Switch-Modeling Elements- MOS switches,I switches, Power and Ground, Resistive Switches, Delay SpecificCMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, HandaPrimitives - UDP basics, Combinational UDPs, Sequential UDP	counte temen xer, ² CMC cation s-on	r; Be tts, M 4-bit OS s on S with	ehavie Aultiv Coun switch Switch FPC	ids pra vaj tei nes nes
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential UDPs	counte temen xer, ² CMC cation s-on	r; Be tts, M 4-bit OS s on S with	ehavie Aultiv Coun switch Switch FPC	ids ora vay tei nes nes
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operatores, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific 2MOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential UDPs Hands-on with CADENCE software Tool	ounte temen xer, ² CMC cation s-on JDPs,	r; Be tts, M 4-bit OS s on S with , UD	ehavio Aultiv Coun switch Switch FPC P Ta	ids ora vaj ter nes SA bl
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential UDPs Models Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of the subsystems of	ounte temen xer, ² CMC cation s-on JDPs,	r; Be tts, M 4-bit OS s on S with , UD	ehavio Aultiv Coun switch Switch FPC P Ta	ids ora vaj ter nes SA bl
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operatorses, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Controutered Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific 2MOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Hands- Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of yzing the same for Area, Power and Delay	ounter temen xer, 2 CMC cation s-on JDPs, using	r; Be its, M 4-bit OS s on S with , UD CAE	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vay ter ness SA bli E
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential UDPs Models Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of the subsystems of	ounter temen xer, 2 CMC cation s-on JDPs, using	r; Be its, M 4-bit OS s on S with , UD CAE	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vay ter ness SA bli E
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operatorses, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Controutered Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific 2MOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Hands- Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of yzing the same for Area, Power and Delay	cmen xer, 2 CMC cation s-on JDPs, using	r; Be its, M 4-bit OS s on S with , UD CAE	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids pra vay ter ness BA blo E
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operatorses, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Controutered Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific 2MOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Hands- Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of yzing the same for Area, Power and Delay	cmen xer, 2 CMC cation s-on JDPs, using	r; Be its, M 4-bit OS s on S with , UD CAE	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids pra vay ter ness BA blo E
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operatorses, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple I Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific 2MOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Hands- Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems to yzing the same for Area, Power and Delay	ounte temen xer, 2 CMC cation s-on JDPs, using AL: 3	r; Be tts, M 4-bit DS s on S with , UD CAE 30 PH	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vay ter ness SA bli E
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy OUTCOMES • Determin	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oses, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Statoops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, 1 switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems of yzing the same for Area, Power and Delay TOT S: At the end of the course, learners will be able to	ounte temen xer, 2 CMC cation s-on JDPs, using AL: 3	r; Be tts, M 4-bit DS s on S with , UD CAE 30 PH	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vaj ter nes SA bl
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy OUTCOMES • Determin • Develop	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems to yzing the same for Area, Power and Delay TOT S: At the end of the course, learners will be able to the hierarchical hardware modeling techniques suitable for a digital of Gate Level Modeling for digital designs	ounte temen xer, 2 CMC cation s-on JDPs, using AL: 3	r; Be tts, M 4-bit DS s on S with , UD CAE 30 PH	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vaj ter nes SA bl
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy OUTCOMES Determin Develop	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operato bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional Stato oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, 1 switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Hands Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems to yzing the same for Area, Power and Delay TOT S: At the end of the course, learners will be able to are hierarchical hardware modeling techniques suitable for a digital of Gate Level Modeling for digital designs Dataflow Modeling and Behavioral Modeling for digital designs	ounte aemen xer, 4 CMC ation s-on JDPs, using AL: 3 design	r; Be tts, M I-bit DS s on S with UD CAE 30 PH ns	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids ora vaj ter nes SA bl
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, L Traffic Signal UNIT IV Switch-Level Bi-directional Examples: C User-Defined Shorthand Sy UNIT V Design, Funct tool and analy OUTCOMES Determin Develop	Dataflow and Behavioral Modeling odeling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiple 1 Controller –FSM design; Switch-Level Modeling and User-Defined Primitives Modeling, Switch-Modeling Elements- MOS switches, I switches, Power and Ground, Resistive Switches, Delay Specific CMOS Nor Gate, 2-to-1 Multiplexer, CMOS Inverter, Handa Primitives - UDP basics, Combinational UDPs, Sequential Umbols Hands-on with CADENCE software Tool tional verification and Synthesis of ALU or any given subsystems to yzing the same for Area, Power and Delay TOT S: At the end of the course, learners will be able to the hierarchical hardware modeling techniques suitable for a digital of Gate Level Modeling for digital designs	ounter temen xer, 2 CMC cation s-on JDPs, using AL: 3 design	r; Be its, N 4-bit DS s on S with , UD CAD 30 PH ns	ehavio Aultiv Coun switch Switch FPC P Ta DENC	ids pra va ter nes 3A bl

Synthesize and Analyse - Area, Power and Delay

TEXT BOOK:

- 1. Samir Palnitkar "Verilog HDL: A Guide to Digital Design and Synthesis", Second Edition.
- 2. Zainalabedin Navabi "Verilog Digital System Design".

REFERENCES:

- 1. Simon Monk "Programming FPGAs: Getting Started with Verilog".
- 2. Jayaram Bhasker "A Verilog HDL primer".

Web Resource:

https://www.udemy.com/course/system-design-using-verilog/

VD18704	RF CIRCUIT DESIGN – THEORY AND SIMULATION USING EM SIMULATION TOOLS	L	Τ	Р	C
		1	0	2	2
OBJECTIVI					
0	t insights about RF circuit design.				
	vestigate the design of Microwave Circuits.				
	familiar with the most popular antenna design.				
	sign special antenna using simulation tool.				
UNIT I	roduce the design and its simulation of Microstrip Antenna Overview of RF circuits	T			6
	of the course, including an overview of applications and trends.	Daccia	ia mi	orow	-
	ring transmission-line based circuits including impedance matching		e m	ciów	ave
circuits, cove	ring transmission-line based encuits meruding impedance matering	<u> </u>			
UNIT II	Design and Simulation of Microwave Components				6
	mulation of Microwave amplifiers, oscillators, filters, couplers and	divid	lers.		
2 001811 0110 01					
UNIT III	Antenna Theory and Simulation				6
	of antennas concepts. Antenna characteristics (radiation pattern, dir	ectivi	tv. g	ain.	
	andwidth, and polarization). Wire Antennas theory and simulation.				ory
and simulatio	n.			5	
UNIT IV	Design and Simulation of Special Antennas				(
Visualization	of dipole, loop, parabolic reflector, Yagi-Uda and horn antennas usi	ing si	mula	tion to	ool
UNIT V	Implementation of Microstrip Patch Antennas				
	atch antenna fundamental and design. Design and simulation of mi	crosti	in na	tch	
	array using simulation tool. Implementation of specific microstrip a				
	· · · · · · · · · · · · · · · · ·				
	ТОТ	AL: 3	30 PF	ERIO	DS
OUTCOME	S: At the end of the course, learners will be able to				
	nd the fundamentals of RF circuits.				
• Utilize co	ommercial simulation software to design and analyze the RF and M	licrow	vave	circui	its.
Articulat	e the principles of electromagnetic energy radiation in free space by	y ante	ennas	•	
	nd simulate the special antennas.				
• Impleme	nt the microstrip patch antennas for specific applications.				
TEXT BOO					
	Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and App	licati	ons",	Pear	SOI
Educatio	n Inc., 2011.				
2. Constant	ine.A.Balanis "Antenna Theory Analysis and Design", 4th Edition V	Wiley	Stuc	lent	
Edition, 2	2016.				
3. Ramesh	Garg, <u>Prakash Bhartia, Inder J. Bahl</u> , A. Ittipiboon, "Microstrip Ant	tenna	Desi	gn	
	ok, 2001, Artech House.				
REFERENC					
	. Pozar, "Microwave Engineering", 4 th Edition, Wiley India (P) Ltd	. Nev	v Del	hi. 20)13
	Kraus," Antennas for all Applications", 5 th Edition, Mc Graw Hill, 2		_ •	, _0	-0

2. John D.Kraus," Antennas for all Applications", 5th Edition, Mc Graw Hill, 2017.

	EMBEDDED PROGRAMMING USING PIC		T	n	a
	MICROCONTROLLERS	L	Т	Р	С
		1	0	2	2
OBJECTIVES	S:				
• To de	sign and manufacture embedded system products of the future	re	for	bet	ter
emplo	yability.				
• To vis	ualize the requirement of an embedded system and then to design it e	effic	ien	tly.	
To intr	roduce various interfacing techniques for popular input devices inclu	ıdin	ig so	ensc	ors,
output	t devices and communication protocols.				
UNIT I	Fundamentals on Microcontrollers				6
Introduction to	microcontrollers, Salient Features of Modern Microcontrollers, Mod	lula	r ap	proa	ich
to embedded sy	stem design, Importance of the controllers in real world, Use of micro	ocor	ntro	llers	s in
industry for veh	nicle manufacturing.				
UNIT II	CPU Architecture of PIC Microcontroller				6
Architecture of	PIC Microcontroller, Memory Organization, General purpose Regist	ters	(G	PR'	s),
Interrupt Sourc	es in microcontrollers, I/O Ports, A/D, Serial Communication, Timer	rs /C	Cou	nter	s,
Reset Function	S.				
UNIT III	Hand's on session using PIC Microcontroller				6
PIC based Digi	tal Alarm Clock,4X4 matrix keypad interfacing with PIC, Heart be	at r	non	itori	ing
using PIC and p	oulse sensor, PIC to PIC communication using RF module, Interfacing	g Dl	HT1	1 w	ith
PIC16F877A f	for Temperature and Humidity Measurement, IoT based web-con	itro	lled	ho	me
automation usin	ng PIC microcontroller.				
UNIT IV	Introduction to MSP 430				6
MOD 400 4	hite strength MCD also a strength of the strength in MCD 420	0 7			
	hitectures, MSP clock system and reset, Interrupts in MSP 430) , 1	lim	er a	ina
Counters, A/D,	D/A, Serial Communication Protocols.	0, 1	l'im	er a	ina
Counters, A/D, UNIT V	D/A, Serial Communication Protocols. Hand's on session using MSP 430	-			6
Counters, A/D, UNIT V	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of	dete	ector	r usi	6 ing
Counters, A/D, UNIT V Interfacing LCI MSP430 and P	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle	dete e tra	ector acki	r usi ng a	6 ing ind
Counters, A/D, UNIT V I Interfacing LCI MSP430 and P accident alert s	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of	dete e tra	ector acki	r usi ng a	6 ing ind
Counters, A/D, UNIT V Interfacing LCI MSP430 and P	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V Interfacing LCI MSP430 and Pl accident alert s launch pad.	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES:	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES:	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V I Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V Interfacing LCI MSP430 and Pl accident alert s launch pad. OUTCOMES: At the end of th • Use the feat	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 the course, learners will be able to	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th • Use the fea • Interpret th	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 the course, learners will be able to atures of Microcontrollers in real world applications	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the feat Interpret th Program P	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 The course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V Interfacing LCD MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the fea Interpret th Program P Interpret th	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 TOTAL : 3 The course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V I Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the feat Interpret th Program P Interpret th Program N	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 TOTAL : 3 TOTAL : 0 TOTAL : 0 TOTAL : 3 TOTAL : 4 TOTAL : 4	dete e tra sing	ector acki g M	r usi ng a SP4	6 ing and 30
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the feat Interpret th Program P Interpret th Program M TEXT BOOK	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 TOTAL : 3 The course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture ASP-430 microcontroller with interfaces for various applications S:	dete e tra sing 30 P	ector acki g M PER	r usi ng a SP4	6 ing ind 30 DS
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the fea Interpret th Program P Interpret th Program M TEXT BOOK	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 TOTAL : 3 TOTAL : 0 TOTAL : 0	dete e tra sing 30 P	ector acki g M PER	r usi ng a SP4	6 ing ind 30 DS
Counters, A/D, UNIT V Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the feat Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL: 3 the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: htroller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755.	dete e tra sing 30 P	ector acki g M PER	r usi ng a SP4	6 ing ind 30 DS
Counters, A/D, UNIT V Interfacing LCI MSP430 and Pl accident alert s launch pad. OUTCOMES: At the end of th Use the fea Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL : 3 TOTAL : 3 The course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture ASP-430 microcontroller with interfaces for various applications S: atroller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S:	dete e tra sing 30 P ham	ector acki g M PER	r usi ng z SP4 IOI	6 ing ind 30 DS
Counters, A/D, UNIT V Interfacing LCI MSP430 and Pl accident alert s launch pad. OUTCOMES: At the end of th Use the fea Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE 1. Designing H	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL: 3 the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: Introller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S: Embedded Hardware, John Catsoulis, 2nd edition. Shroff Pub-	dete e tra sing 30 P ham	ector acki g M PER	r usi ng z SP4 IOI	6 ing ind 30 DS
Counters, A/D, UNIT V Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th Use the feat Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE 1. Designing H Distributors.	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of IR sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT using the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: Introller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S: Embedded Hardware, John Catsoulis, 2nd edition. Shroff Pub- ISBN-10: 9788184042597.	dete e tra sing 30 P harr	PER	r usi ng a SP4 IOI d A	6 ing ind 30 DS
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th OUSE the feat Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE 1. Designing H Distributors. 2. Embedded S	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL: 3 the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: ntroller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S: Embedded Hardware, John Catsoulis, 2nd edition. Shroff Pub ISBN-10: 9788184042597. ystem Design: A Unified Hardware / Software Introduction. Tony C	dete e tra sing 30 P harr	PER	r usi ng a SP4 IOI d A	6 ing ind 30 DS
Counters, A/D, UNIT V 1 Interfacing LCI MSP430 and Pl accident alert s launch pad. OUTCOMES: At the end of th Use the fea Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE 1. Designing H Distributors. 2. Embedded S Frank Vahid	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL: 3 the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: Introller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S: Embedded Hardware, John Catsoulis, 2nd edition. Shroff Pub ISBN-10: 9788184042597. ystem Design: A Unified Hardware / Software Introduction. Tony C . Wiley. ISBN-10: 812650837X	dete e tra sing 30 P ham blish	ector acki g M PER	r usi ng a SP4 IOI d A an s an	6 ing ind 30 DS
Counters, A/D, UNIT V Interfacing LCI MSP430 and P accident alert s launch pad. OUTCOMES: At the end of th OUTCOMES: At the end of th Use the feat Interpret th Program P Interpret th Program M TEXT BOOK 1. Pic Microcon Mazidi, Roli REFERENCE 1. Designing H Distributors. 2. Embedded S Frank Vahid 3. MSP430 M	D/A, Serial Communication Protocols. Hand's on session using MSP 430 D with MSP 430, Interfacing stepper motor with MSP 430, Motion of R sensor, Interfacing HC05 bluetooth module with MSP 430, Vehicle system using MSP 430 and GPS module, Line follower ROBOT us TOTAL: 3 the course, learners will be able to atures of Microcontrollers in real world applications the PIC architecture PIC microcontroller with interfaces for various applications the MSP-430 architecture MSP-430 microcontroller with interfaces for various applications S: ntroller And Embedded Systems: Using Assembly and C for Pic Mul- nd D.Mckinlay, Danny Causey18 ISBN:9788131716755. S: Embedded Hardware, John Catsoulis, 2nd edition. Shroff Pub ISBN-10: 9788184042597. ystem Design: A Unified Hardware / Software Introduction. Tony C	detee e tra sing 30 P blish Giva	PER PER mers argi	r usi ng a SP4 IOI d A an s an 1857	6 ing ind 30 DS

Web Resource: https://onlinecourses.nptel.ac.in/noc20_ee98/course

VD18706	SYSTEM DESIGN FOR IOT APPLICATIONS	[]	T P	С
		1	0 2	2
OBJECTIVES				
To visualizeTo introduce	mbedded system products of the future. e the requirement of an embedded system and to design it efficiently. e various interfacing techniques for popular input devices including sen communication protocols.	.SO1	rs, ou	tput
UNIT I	INTRODUCTION TO IOT			6
	ervices - IOT Architecture -Communication Technologies used organization -Terminologies similar to IoT	in	IoT-	IoT
UNIT II	NETWORKING TECHNOLOGIES FOR IOT			6
Wired vs Zigbee-Bluetoo	Wireless-Wireless Network Classification-Cellular Network-RFID-NFC	/or	ks-W	ïFi-
UNIT III	INTRODUCTION TO ARDUINO			6
	ors of Arduino - Arduino Add on -Rear Eye - A wearable additional E rized Camera Base.	ye	- Mo	tion
UNIT IV	PERIPHERAL CONTROL			6
Stepper Motor	ch screen - ADC, DAC and, Motor - DC Motor Control using PWN interfacing. g of sensors with SBC.	I R	lelay	and
UNIT V	PREPARING IOT PROJECTS			6
platform – GPI Home temperat	Hardware Components - Raspberry Pi for Project Development: R IO – Establishment and setting of Raspberry Pi software – LAMP In ure monitoring system – Webcam and Raspberry Pi camera project - V Robot Using Firebird V.	nst	allatio	on -
	TOTAL : 30	P	ERIC	DDS
OUTCOMES:				
	te course, learners will be able to knowledge about features of modern microcontrollers.			
1	and the concept of CPU architectures of microcontrollers Arduino and	D,	anha	rrt 7
	ifying the Customer and Business model.	ιτα	ispue	пу
Acquire	knowledge on interfacing microcontrollers Arduino and Raspberry PI plications.	fo	r Rea	1
11	and integrate projects using Raspberry Pi with Temperature Sensor, We	h	om	
TEXT BOOKS			am	
	r-Beginners.pdf (makerspaces.com)			
2. Donald Nor Raspberry F	rris —The Internet of Things: Do-It-Yourself at Home Projects for Pi and Beagle Bone Black, 1st Edition, McGraw Hill, 2015 .pdf (iitb.ac.in)	or	Ardu	ino,
REFERENCE				
	urse for Absolute Beginners eBook Info - Programming Electronics A	cac	lemy	
Web Resource				

VC18005	Basics of Entrepreneurship Development	L	Τ	Р	С
		1	0	2	2

OBJECTIVES:

- To provide Knowledge on Self-discovery and Problem identification.
- To provide Skill set on Identifying customer segment and Practice on Business Model.

• To understand the Market, Sales and support.

UNIT I Self-Discovery & Problem Identification

Orientation of Entrepreneurship – Case Study – activity – Effectuation – Principles of Effectuation – Identifying Entrepreneur skill.

Problem Identification – Design thinking – look for solution – activity – Brain storming.

UNIT II Customer & Business Model

Identifying customer segment, understanding the market – Product selection –activity – value proposition canvas.

Identify the Problem, Solution and Risk identification – Activity – Business model.

UNIT III Validation and Resources

Build a Minimum Viable Product (MVP) – validation and launching of MVP –activity – MVP Interview.

Cost – Revenue – Pricing – Profitability – Sources of finance – activity – Bootstrap Finance – Leadership – Identifying Co-founders and Hiring a Team – activity –Pitching about a venture

UNIT IV Market and sales

Positioning and branding – network and channels – sales planning – activity – selling skill.UNIT VSupport

Project Management – Project tracking – Basics of Business regulations – Activity – capstone

project.

TOTAL: 30 PERIODS

6

6

6

6

6

OUTCOMES

- CO1: Acquire knowledge and Practice on Self Discovery and Problem identification.
- CO2: Understand the concept of Identifying the Customer and Business model.
- CO3: Acquire knowledge on various Resource and Practice on validation.
- CO4: Acquire knowledge on marketing and sales.
- CO5: Practice on Project management.

TEXT BOOKS:

- 1. S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th edition, Cengage Learning 2014

REFERENCES :

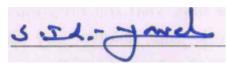
- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Entrepreneurship Theory at Cross Roads: paradigms and Praxis", 2nd Edition Dream Tech, 2005.

Web Resource:

https://learnwise.wfglobal.org/#/IN/en/courses

Checklist :-

	The basic fundamentals have been covered in the syllabus	Yes / NO
2.	The unit wise hours are distributed according to the contents	Yes / NO
3.	Whether the credit allotted for this subject is sufficient	Yes / No
4.	Whether two to three recent edition textbooks are available for the subject	Yes / NO
5.	Whether this subject requires any prerequisites	Yes / No
б.	Whether the recent trends are mentioned in this subject	Yes / NO
7.	Whether the prerequisites for this subject is correctly mentioned	Yes / NO
8.	Atleast five to six reference books are mentioned in the syllabus	Yes/ NO
9.	Web content / URL address for the recent topics are given in the references	Yes / NO
10	Internal Faculty Members involved in preparing the syllabus	List the name, Designation, address and signature
5.	Dr.Amutha Charu Sheela, Assistant Professor, Dept. of H	ISS, SVCE.
All (Fo	the faculty member have been trained by EDII-TN and Nation course and advanced courses).	EN for conducting the courses
All (Fo	the faculty member have been trained by EDII-TN and N	
All (Fo	the faculty member have been trained by EDII-TN and Normality of the faculty member have been trained by EDII-TN and Normality of the faculty expert Members involved in preparing	EN for conducting the courses List the name, Designation,
All	the faculty member have been trained by EDII-TN and Normalitation course and advanced courses). External faculty Expert Members involved in preparing the syllabus.	EN for conducting the courses List the name, Designation, address and signature List the name, Designation, address and signature
All (Fo	the faculty member have been trained by EDII-TN and Neoundation course and advanced courses). External faculty Expert Members involved in preparing the syllabus. Industry expert members involved in the preparing the syllabus. Supported by Entrepreneurship Development and Innovational Entrepreneurship Network (Interpretent)	EN for conducting the courses List the name, Designation, address and signature List the name, Designation, address and signature


1. Rajeev Roy, "Entrepreneurship" 2nd edition, Oxford University Press, 2011.

2. EDII "Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.
1.

15	Who reviewed the syllabus	List the name, Designation, address and signature
1.	Dr.S.Ilaiyavel, Associate Professor, Dept. of M SVCE-EPIC.	echanical Engineering & Manager,
16	Syllabus Approved by	List the name, Designation, address and signature

VC18006	Advance in Entrepreneurship Development	L	T	P	<u>(</u>
		1	0	2	2
<u>OBJECTIVI</u>			- 1	•	
	provide Knowledge on Business model, Business plan and a	nev	v t	ousin	les
	el/prototype.				
-	rovide Skill set on increasing revenue and funding.				
	nderstand the Team building, Measurement of progress and legal matt	ters	•		
UNIT I	Business Model & Product service				
	to the concept of pivoting –Business Model-Types of Business M				
	tion-Refining Business Model-Analyzing Business Model-Adding Ne	ew (cust	ome	r t
Business mod					
	w product development-New business model/Prototype				
UNIT II	Business Planning				
Business Plar	-Sales plan- People plan- Finance plan-understanding finance plannin	ng-l	Fore	ecast	in
template.					
Creating proc	urement plan-Negotiation role play-Activity.				
UNIT III	Increasing Revenue and Funding				
Understandin	g of primary revenue source-Customer life cycle-Exploring secor	nda	ry 1	reve	nu
source-Fundi	ng option.				
Exploring fur	ding option-Pitch deck.				
UNIT IV	Building a team and Brandings				
Introduction t	o building a team-pitching to attract team-Setting a team for success-st	tan	dard	lize	120
					ĸe
			of		
	ling-Definition of values-Positioning statement-Identification				
process-Bran channel-Digit	ling-Definition of values-Positioning statement-Identification				
process-Bran channel-Digit	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity.				igł
process-Brand channel-Digit Brand name a UNIT V	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters	1	of	ri	igł
process-Brand channel-Digit Brand name a UNIT V Metrics for	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and	1	of	ri	gł
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-J	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters	1	of	ri	gł
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-J	ding-Definitionofvalues-Positioningstatement-Identificational marketing.nd logo activity.Measurement of Progress and legal Matterscustomer retention and satisfaction-Metrics dash board-legal anddentify mentor and advisors.	n d o	of com	ri plia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-1 Project.	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3	n d o	of com	ri plia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project.	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3	n d d 30]	of com	ri plia	nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S cquire knowledge and Practice on Business model and Business plann	n d d 30]	of com	ri plia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding.	n d d 30]	of com	ri plia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S Cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding.	n d d 30]	of com	ri plia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters.	n d d 30]	of com	ri plia	igł
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pr	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S Cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. cactice on Project management.	n d d 30]	of com	ri plia	igł
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Project	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S TOTAL: 3 cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. actice on Project management. KS:	n d (ning	of com g.	ri pplia	nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pr TEXT BOO 1. S.S.Khar	ling-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S Cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. cactice on Project management.	n d (ning	of com g.	ri pplia	igh nc
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pi TEXT BOO 1. S.S.Khar 2013.	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 TOTAL: 3 S Cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. cactice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga	n d (30) ning ur, 1	of com g.	ri aplia RIO	
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pri TEXT BOO 1. S.S.Khar 2013. 2. Donald F	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S TOTAL: 3 cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. cactice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entrepreneurship – Theory, Process and Practice", 9th edited and state an	n d (30) ning ur, 1	of com g.	ri aplia RIO	
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pr TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S TOTAL: 3 cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. cactice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entreprenuership – Theory, Process and Practice", 9th edi 2014	n d (30) ning ur, 1	of com g.	ri aplia RIO	
process-Branc channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pi TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning REFERENC	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Course knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. catice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entreprenuership – Theory, Process and Practice", 9th edi 2014 ES:	n d (<u>30</u>] ning ur, 1 itio	of com g.	ri aplia RIO	
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pro TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning REFERENC 1. Hisrich F	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. ractice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entrepreneurship – Theory, Process and Practice", 9th edi 2014 ES: D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2	n d d 30 1 ning ur, 1 itio	of com <u>PEI</u> g. New n, C	ri nplia RIO 7 De	nc DS DI ag
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO5: Pr TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning REFERENC 1. Hisrich F 2. Mathew	ding-Definition of values-Positioning statement-Identification al marketing. Ind logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 Counter knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on Measurement of progress and legal matters. actice on Project management. KS: ka, "Entrepreneurship – Theory, Process and Practice", 9th edi 2014 ES: D, Peters M P, "Entrepreneurship Theory at Cross Roads: paradigms and	n d d 30 1 ning ur, 1 itio	of com <u>PEI</u> g. New n, C	ri nplia RIO 7 De	nc DS DI ag
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO2: U CO3: A CO4: A CO5: Pr TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning REFERENC 1. Hisrich F 2. Mathew	ding-Definition of values-Positioning statement-Identification al marketing. nd logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. ractice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entrepreneurship – Theory, Process and Practice", 9th edi 2014 ES: D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2	n d d 30 1 ning ur, 1 itio	of com <u>PEI</u> g. New n, C	ri nplia RIO 7 De	igl nc D: ilh ag
process-Brand channel-Digit Brand name a UNIT V Metrics for requirement-I Project. OUTCOME CO1: A CO2: U CO3: A CO4: A CO2: U CO3: A CO4: A CO5: Pr TEXT BOO 1. S.S.Khar 2013. 2. Donald F Learning REFERENC 1. Hisrich F 2. Mathew	ding-Definition of values-Positioning statement-Identification al marketing. Ind logo activity. Measurement of Progress and legal Matters customer retention and satisfaction-Metrics dash board-legal and dentify mentor and advisors. TOTAL: 3 S Cquire knowledge and Practice on Business model and Business plann nderstand the concept of increasing the revenue and funding. cquire knowledge on building a team and branding. cquire knowledge on Measurement of progress and legal matters. ractice on Project management. KS: ka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Naga Kuratko, "Entrepreneurship – Theory, Process and Practice", 9th edi 2014 ES: D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2 Manimala, "Entrepreneurship Theory at Cross Roads: paradigms and Dream Tech, 2005.	n d d 30 1 ning ur, 1 itio	of com <u>PEI</u> g. New n, C	ri nplia RIO 7 De	igl nc Di ilh ag

https://lms.learnwise.wfglobal.org/IN/en/home

Dr.S.Ilaiyavel

Signature of the EDC Coordinator

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

LTPC 0063

OBJECTIVES:

XXXX

- To empower students with overall Professional and Technical skills required to solve a real world problem.
- To mentor the students to approach a solution through various stages of Ideation, Research, Design Thinking, workflows, architecture and building a prototype in keeping with the end-user and client needs.
- To provide experiential learning to enhance the Entrepreneurship and employability skills of the students.

This course is a four months immersive program to keep up with the industry demand and to have critical thinking, team based project experience and timely delivery of modules in a project that solves world problems using emerging technologies.

To prepare the students with digital skills for the future, the Experiential Project Based Learning is introduced to give them hands-on experience using digital technologies on open-source platforms with an end-to-end journey to solve a problem. By the end of this course, the student understands the approach to solve a problem with team collaboration with mentoring from Industry and faculties. This is an EEC category course offered as an elective, under the type, "Experiential Project Based Learning".

Highlights of this course:

- Students undergo training on emerging technologies
- Students develop solutions for real-world use cases
- Students work with mentors to learn and use industry best practices
- Students access and use Self-Learning courses on various technologies, approaches and methodologies.
- Collaborate in teams with other students working on the same topic
- Have a dedicated mentor to guide

OUTCOMES:

On completion of the course, the students will be able to:

- Upskill in emerging technologies and apply to real industry-level use cases
- Understand agile development process
- Develop career readiness competencies, Team Skills / Leadership qualities
- Develop Time management, Project management skills and Communication Skills
- Use Critical Thinking for Innovative Problem Solving
- Develop entrepreneurship skills to independently work on products

The course will involve 40-50 hours of technical training, and 40-50 hours of project development. The activities involved in the project along with duration are given in Table 1.

TABLE 1: ACTIVITIES

Activity Name	Activity Description	Time (weeks)
Choosing a Project	Selecting a project from the list of projects categorized various technologies & business domains	2
Team Formation	Students shall form a team of 4 Members before enrolling to a project. Team members shall distribute the project activities among themselves.	1
Hands on Training	Students will be provided with hands-on training on selected technology in which they are going to develop the project.	2
Project Development	Project shall be developed in agile mode. The status of the project shall be updated to the mentors via appropriate platform	6
Code submission, Project Doc and Demo	Project deliverables must include the working code, project document and demonstration video. All the project deliverables are to be uploaded to cloud based repository such as GitHub.	3
Mentor Review and Approval	Mentor will be reviewing the project deliverables as per the milestone schedule and the feedback will be provided to the team.	1
Evaluation and scoring	Evaluators will be assigned to the team to evaluate the project deliverables, and the scoring will be provided based on the evaluation metrics	, 1
OTAL		16 WEEKS

Essentially, it involves 15 weeks of learning and doing, and one week for evaluation. The evaluation will be carried out to assess technical and soft skills as given in Table 2.

TABLE 2: EVALUATION SCHEMA

Technical Skills		Soft Skills	
Criteria	Welghtage	Criteria	Weightage
Project Design using Design Thinking	10	Teamwork	5
Innovation & Problem Solving	10	Time Management	10
Requirements Analysis using Critical Thinking	10	Attendance and Punctuality	5
Project Planning using Agile Methodologies	5	Project Documentation	5
Technology Stack (APIs, tools, Platforms)	5	Project Demonstration	5
Coding & Solutioning	15		
User Acceptance Testing	5		
Performance of Product / Application	5		
Technical Training & Assignments	5		
Total	70	Total	30
Total Weightage			100
Passing Requirement			50

123

AMENDMENT IN RESPECTIVE REGULATIONS:

- 1. Course is offered in the
 - > 6th/7th semesters of UG programmes
- 2. This is an EEC category course offered as an elective under the type, "Experiential Project Based Learning".
- 3. Evaluation of Experiential Project Based Learning:
 - Project Review & Scoring: Evaluator accesses the project deliverables, reviews the work done by the team and assigns the score for defined metrics.
 - Project Status Review: Mentor reviews the deliverables submitted by student teams and shares his/her comments. Mentor ensures the timely completion of project.
 - The evaluation shall be carried out as per the metrics given in Table 2.
- 4. If a student takes a break and rejoins the programme at a later point in time in a semester other than the prescribed semesters identified for the course, he/she is permitted to opt for a professional elective in lieu of this course.

Course Assessment scheme: Assessed through Continuous assessment mode

Passing Criteria:

The passing requirement for the courses of the type 'Experiential Project Based Learning' falling under the category of EEC is 50% of the continuous assessment marks only.
