ME18503 DESIGN OF MACHINE ELEMENTS

OBJECTIVES

•This course will impart the knowledge on various types of stress- selection of materials

- •This course will make acquainted design principles on shaft, fits and tolerances.
- •This course will familiarize the design principles of springs under dynamic and static conditions.
- •This course will enable to check strength of fasteners kind of both rivet and welding.
- •This course will facilitate to select and examine the rolling and sliding contact bearings.

OUTCOMES

- 1. Able to depict the design process, material selection, calculation of stresses under static and variable loading conditions with the effect of stress concentrations.
- 2. Adept the design of solid, hollow shafts keys and couplings. Also having knowledge of fits and tolerance.
- 3. Examining the close coil helical springs under variable loading . Acquiring the knowledge of leaf, disc and torsion springs.
- 4. Proficient in Design of riveted joint and welding joints under eccentric loading.
- 5. Have design knowledge on sliding and rolling contact bearing. EHD Journal Bearing

TEXT BOOKS:

- 1. Bhandari, V.B ,"Design of Machine Element", 3rd edition, TMH Publications.New Delhi,2017.
- 2. Khurmi R.S., and Gupta J.K., "*Machine Design*", 14 th Edition, S Chand&Co NewDelhi, 2005.
- 3. Sundararajamoorthy, T.V. and Shanmugam, N., "*Machine Design*", Anuradha Agencies, Chennai, 2003.

REFERENCES :

- 1. Bhandari V.B., "Design of Machine Elements", 4 th edition TATA McGraw HillNew delhi,2017.
- 2. Khurmi R.S., and Gupta J.K., "Machine Design", 14th Edition, S Chand and Co NewDelhi,2005.
- 3. Lingaiah K., "Machine Design Data Book", 2 nd Edition Tata McGraw Hill.New delhi,2010.
- 4. Robort.L.Norton," Machine Design", 5th Edition, Pearson Publisher, New delhi,2018.
- 5. Sharma, P.C and Agarwal, D.K, "MachineDesign", Agrawal-Kataria and Sons Publication, NewDelhi, 2014.
- 6. Shigley, J.E., Charles, R.M. and Richard, G.B., "*Mechanical Engineering Design*", 10th ed., McGraw-Hill, New Delhi,2014.
- 7. Spotts M.F., "Design of Machine Elements", 8 th Edition, Pearson Education, NewDelhi, 2019.
- <u>•</u>

GENERAL DISCUSSION

PRE REQUISITE

Knowledge on

- 1. Strength of Material
- 2. Theory of Machines
- 3. Materials science/Metallurgy

SOME Questions for you

STRESS?	σ = load/Area N/mm ²
STRAIN?	ε = change in dimension/Original dimension no units
TYPES of STRESSES	Tensile stress , compressive stress ,shear stress
Principle stress	Stress acting on principle plane
Principle plane	Plane in which shear is zero

Types of Loads

Point load
 UD load
 UV load

Others

- 1. Dead load
- 2. Transverse load
- 3. Axial load
- 4. Tangential load

Name the load

Point load --- transverse load

Tangential load

Ľ

Last session 22-06-2020 -discussed

Objectives

Outcomes

types of simple stresses

Types of loads

Diagrams for different type of simple stresses

What is design?

Creating/innovate of an idea

Modify the existing

With the application of scientific principles and mathematical approaches

Types of Design

1. Adaptive design

2. Modifying design

3. New design--/ -- Innovation

Examples to understand the types of Design

Discussion – forum for some examples towards the types of design

Assignment to find the other types of design

Industrial design, Experimental design, Aesthetic, Ergnomics design

Syllabus

UNIT I BASICS OF DESIGN PRINCIPLES

UNIT II DESIGN SHAFT, KEYS AND FITS AND TOLERANCE AND COUPLINGS

UNIT III DESIGN FOR SPRINGS

UNIT IV DESIGN FOR RIVETED AND WELDING JOINTS, FASTNERS

UNIT V DESIGN OF BEARINGS

UNIT I BASICS OF DESIGN PRINCIPLES

Design Process-

Types of Stress,

Cyclic stresses,

Factor of Safety,

Stress concentration factor in tension, bending and torsion,

Theories of failures.

Notch sensitivity,

Design for variable and repeated loadings,

Fatigue stress concentration factor,

Endurance diagrams, Introduction to fracture mechanics

What is Design process?

It is also known as design cycle

Mechanical properties

Learn some mechanical properties

□strength	□Resilience
□hardness	□Toughness
	□Creep

Cyclic stress

Reversed stress cycle

Repeated stress cycle

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2} \qquad \sigma_r = \sigma_{\max} - \sigma_{\min}$$
$$\sigma_s = \frac{\sigma_r}{2} = \frac{\sigma_{\max} - \sigma_{\min}}{2}$$

Random stress cycle

Cyclic stresses

Last session topics

Types of simple stresses,

cyclic stresses

Design processes/cycle

Types of design – adaptive, modified, & new design and others

Some important mechanical properties

Failures

Eccentric load concept

Eccentric load concept

What is the stress?-compressive or direct stress

What is the load?--- Axial load

W-- original loadW1- introducedW2 introduced opposite

How the member will fail---??? ???? due to which stress

How to g et resolution for the effect

 $\sigma_{d=}$ Direct load/area $\sigma_{b} = M/z$

Solving the problem

Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram , to have combined stress

Step3: Calculate Direct stress (by axial load)

 $\sigma_{d=}$ load/area

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$\sigma_{\rm b} = M/z$$

where M = moment due to external load= w x e

z= section modulus

Step5: Calculate combined stress ' σ_{com} '

$$\sigma_{\rm com=} \sigma_{\rm d} \pm \sigma_{\rm b}$$

Problem :

A circular member of diameter 40 mm is subject to a load of 50 N, eccentrically 25 mm from the axis as shown in figure. Determine the stresses induced in the member.

	Data					
	diameter	40	mm			
	Load	50	N			
	e	25	mm			
	area					
	Pi	3.14				
	Α	1256	sq.mm			
1	Direct stress					
	Stress	0.04	N/sq.mm			
2	Bending					
	σb=	M/Z				
	м	Load >				
	IVI		N-mm			
		1250	N-mm			
	z =	l/y				
		I=	π*d^4/64			
		Y=	d/2			

		=	125640	mm^4
		γ =	20	mm
	therfore	z =	6282	mm^3
	Now	σb=	0.198981	N/sa mm
	1100	00-	0.150501	музанни
	Combined	d stress		
	σcom=	σd + σ	max	0.24 Tensile
		or		
		σd - σl	min	-0.16 compresive
				•

Some applications with the eccentric loading concepts

Problem 2

Determine the max and min stresses induced at Section XX, for the member shown in the figure.. Take the diameter of the member is 50 mm

Combined stress

Bending stress

Shear stress

Prediction of failure of the member

Solving the problem

Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram , to have combined stress

Step3: Calculate Direct stress (by axial load)

σd load/area

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$\sigma_{\rm b} = M/z$$

where M = moment due to external load= w x e

z= section modulus

Step 5 Calculate Shear stess, $T = \pi/16 \times T \times d^3$

Step5: Calculate combined stress ' σ_{com} '

$$\sigma_{\text{com}=} \sigma_{\text{d}} \pm \sigma_{\text{b}}$$
 / = $\tau \pm \sigma_{\text{b}}$

50	mm							
50	N							
400	mm	(Horizzontal to original load)						
500	mm	(Verti	cal to	introd	uced lo	ad fro	om the	base
3.141								
	50 400 500	50 mm 50 N 400 mm 500 mm	50 N 400 mm (Horiz 500 mm (Verti	50 N 400 mm (Horizzonta 500 mm (Vertical to	50 N400 mm(Horizzontal to ori500 mm(Vertical to introd	50 N 400 mm (Horizzontal to original le 500 mm (Vertical to introduced le	50 N 400 mm (Horizzontal to original load) 500 mm (Vertical to introduced load from the second se	50 N400 mm(Horizzontal to original load)500 mm(Vertical to introduced load from the

	1	Direct str	ess	
Α		Stress	0	N/sq.mm

1	Direct stre	ess		
	Stress	0	N/sq.mm	

2	Bending			
	σb=	M/Z		
	M	Load x e		
		25000	N-mm	
	z =	I/y		
		I=	π*d^4/64	1
		Y=	d/2	
		I =	306738	mm^4
		y =	25	mm
			40060 5	
· · · · · · · · · · · · · · · · · · ·	therfore	z =	12269.5	mm^3

1	Now	σb=	2.03757	N/sq.ı	mm

Shear stress	T x16/(pi x d*d*d) refer Pg.No 7.1/DDB
T=	20000 N mm
	(eccentrical distance is vertical distance from base)
Shear stress	0.81503 N/sq.mm

4	Combined	stress			
	σcom=	shear stress+ σb	max	2.85	Tensile
		or			
		σb-shear stress	min	1.22	Tensile

 $\therefore 3t^3 \times \sigma_R = Pt + 2Pe$

Factor of safety

n =

allowable stress working stress

Allowable stress = design stress

Soft material $[\sigma_v]$, y = yield

Brittle material $[\sigma_u]$, u = ultimate

Directional assignment of stresses under combined load

 $\sigma_d = \sigma_x$ Direct/ axial load

 $\sigma_b = \sigma_y$ Transverse load

T_{xy=} T_{yx =}T Shear stress/load

- The directional assignments of stresses will be useful to find the 'principal stresses'
- □ Principal stresses are nothing but stresses acting on principal plane
- **Quite applicable for finding the stress intensities in the form of**
- \Box **'o1** 'maximum and **'o2** minimum
- □ When the members subjected to combined stresses and simple shear stress

In general, Under strained material all the stress will be mutually perpendicular in three planes xy,xz,yz.

Out of the three one is max and the other is minimum

Now the combined stress problem is advancing with approach of principal stresses

Now refer the data book page : 7.2 two dimensional stresses

$$\sigma_1, \sigma_2$$
 and T

Three Dimensional Stresses

 $\begin{vmatrix} (\sigma_x - \sigma) & \tau_{xy} & \tau_{yy} \\ \tau_{yx} & (\sigma_y - \sigma) & \tau_{yy} \\ \tau_{xx} & \tau_{xy} & (\sigma_x - \sigma) \end{vmatrix} = 0$

The roots of this cubic equation in o are the principal stresses.

DESIGN

Sh

00

7.2

Now The objectives of solving problems

n =
$$\frac{allowable\ stress}{working\ stress}$$

Finding dimension of the member

Checking design for safety

Induced stress < Design Stress

[]] > J

Problem 3

A circular member of diameter 40 mm is subject to a load of 50 N, eccentrically 25 mm from the axis as shown in figure. Determine the stresses induced in the member. If the allowable stress for the member material is 2 N/mm² Also determine the factor of safety

Solving the problem

Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram , to have combined stress

Step3: Calculate Direct stress (by axial load)

σd_{\perp} load/area

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$\sigma_{\rm b} = M/z$$

where M = moment due to external load= w x e

z= section modulus

Step 5 Calculate Shear stess, $T = \pi/16 \times T \times d^3$

Step5: Calculate combined stress ' σ_{com} ' Principal stresses

σ1&σ2, τ

How to g et resolution for the effect

 $\sigma_{d=}$ Direct load/area $\sigma_{b} = M/z$

Step3: Calculate Direct stress (by axial load)

 $\sigma_{d=}$ load/area

 $\sigma_{d} = \sigma_{x = ???}$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$\sigma_{\rm b} = M/z$$

where M = moment due to external load= w x e

z= section modulus

 $\sigma_{b} = \sigma_{y} = ???$

Step3: Calculate Direct stress (by axial load)

 $\sigma_{d=}$ load/area

 $\sigma_{d} = \sigma_{x = 0.04 \text{ N/sq.mm}}$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$\sigma_{\rm b} = M/z$$

where M = moment due to external load= w x e

z= section modulus

 $\sigma_{b} = \sigma_{y} = 0.198 \text{ N/Sq.mm}$

Step6: Calculate σ_1 and σ_2

In this problem , shear stress is zero, T = 0

Data		
diameter	40	mm
Load	50	Ν
е	25	mm
area		
Pi	3.141	
Α	1256.4	sq.mm

1	Direct stress	5	
	Stress	0.0398	N/sq.mm
	σχ	0.0398	

2	Bending						
	σb=		M/Z				
	М		Load				
_			L	.250	N-mm		_
	z =		l/y				
			I=		π*d^4/	64	
		Y	=	d/	2		
		1 =	=		125640	mm^4	1
		У	=		20	mm	
t	herfore	Z	=		6282	mm^:	3
N	low	σ	b=	0.	1989812	N/sq.	mm
		σ	y =		0.198		

3	principal st	ress	-	
	σ1, σ2=	??		
	σx + σγ	0.2378	N/sq.mm	
	σx - σγ	-0.1582	N/sq.mm	
	$(\sigma x - \sigma y)^2$	0.0250		
	(σx + σy)/2	0.1189		
	(√ (σx − σy)2 +0)/2	0.0791		
	15 I. I	$=\frac{1}{2}\left[\left(\sigma_{x}\right)\right]$	- σ _*) ± √(σ _* -	σ _*) ² + 4 * , 2
	(σ:	$x + \sigma y$	$1/2\sqrt{(\sigma x - \tau)^2}$	$(\pi x)^2 + 4'$

σ1 =	0.198	N/sq.mm				
σ2 =	0.0398	N/sq.mm				
factor of safte	factor of saftey					
n=	10.1					

Maximum stress to be taken As working stress.

Problem 2

Determine the principal stresses induced at Section XX, for the member shown in the figure.. Take the diameter of the member is 50 mm.

Take allowable stress is 5 N/ sq. Mm Also find the factor of safety.

Combined stress

Bending stress

Shear stress

Data		
diameter	50mm	
Load	50N	
eh	400mm	(Horizontal to original load)
ev	500mm	(Vertical to introduced load from the base)
area		
Pi	3.141	
Α	1963.125sq.mm	
1Direct stress		
Stress		0N/sq.mm
σχ		0

2	Bending			
- 20	σb=	M/Z		
ļ	м	Load x e		
		25000	N-mm	
These in the second sec	z =	I/y		
]=	π*d^4/6	54
		Y=	d/2	
		I =	30673	88 mm^4
		y =	25	mm
	therfore	z =	12269.5	mm^3
	Now	σb=	2.03757	N/sq.mm
		σγ	2.037	

3 Shear stress		T x16/(pi x d*d*d)		refer Pg.No 7.1/[
							DDB
	T=	20000	N mn	า			
		(eccentric	al dist	ance i	s horiz	zontal	distar
T Shear stress		0.81503	N/sq.	mm			
	τ	0.815					

Principal stress

(ν (σx − σy)2 +4**Ҭ**2/2

σ1, σ2=	??	
σx + σγ		2.037N/sq.mm
σx - σγ		-2.037N/sq.mm
(σx – σy)²		4.1494
(σx + σy)/2		1.0185
τ		0.815
T ²		0.664

1.304

Problem 3

A cantilever circular member is subject to loads as shown in figure. Determine the diameter of it .If The allowable stress is 90 N/mm²

STEP1. Indentify the loads types and its effect on it

Step2: calculate the individual stresses 2 or 3

Step3 : Take into the Principal stress equations

Note: If the allowable stress given in the problem, then

That is design stress $[\sigma] = [\sigma_1]$,

Find the dimension of the member

ref. pg.No.7.2,/DDB

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 \left[xy^2\right]\right)}$$

Step1

Calculation of direct stress - $\sigma_{d=} \sigma_x$

 $\sigma_{d=}$ load/area= NO

Step2

Calculation of bending stress $\sigma_{b} = \sigma_{v}$

 $\sigma_{\rm b} = M/z$

where M = moment due to external load= w x e z= section modulus Step3: Calculate Shear stess,

Step 4 Take into the Principal stress equations

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 T_x y^2\right)}$$

 $[\sigma] = [\sigma_1],$

[σ₁]=[90] N/mm²

Step3

Using principal stress equation, Find diameter of The member

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 T_x y^2\right)}$$

σ_1 is to be tken as allowable stress

Data		
diameter	x mm	
bendingLoad	5000 N	
Distance for bending lo	1000 mm	
Turning moment	1200 mm	
area Pi	3.141	
[σ1]	90 N/sq.mm	
Α	0.78525 d^2	sq.mm

1 Direct stress Stress no axial load N/sq.mm σx 0

2 Bending				
σb=	M/Z			
Μ	Load x e			
	500000	N-mm		
z =	l/y			
		-*		
	I=	π*d^4/64		
	Y=	d/2	0.5*d	
	I =	0.049	* d\/1	mm^4
			u 4	

therfore	z =	0.098156 _{* d^3}	mm^3
Now	σb=	50939191 *(1/d^3)	N/sq.mm
	σγ	50939191 *(1/d^3)

3	Shear stress		T x16/(pi x	T x16/(pi x d*d*d)		
		T=	1200	N mm		-
	Ţ Shear stress		6112.703	*(1/d^3)	N/sq.	mm

Principal stress			
σ1, σ2=	??		
σx + σγ	50939191.34	*(1/d^3)	N/sq.mm
σχ - σγ	-50939191.34	*(1/d^3)	N/sq.mm
$(\sigma x - \sigma y)^2$	2594801214407510	*(1/d^3)^2	2
(σx + σy)/2	25469595.67	*(1/d^3)	

L2.703 *(1/d^3 87.487 *(1/d^3	
27 487 *(1/dA	3)^2
	5/2
96.404 *(1/d^	3)
9	6.404 *(1/d^

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 T x y^2\right)}$$

Asper principal stress		
[90]=	50939192.074	*(1/d^3)
90	50939192.074	*(1/d^3)

d 82.72 mm

Problem 4

Determine the diameter of the member at Section XX, for the member shown in the figure. Take the allowable stress of the member is 120 N/sq. mm

Combined stress

Bending stress

Shear stress

STEP1. Indentify the loads types and its effect on it

Step2: calculate the individual stresses 2 or 3

Step3 : Take into the Principal stress equations

Note: If the allowable stress given in the problem, then

That is design stress $[\sigma] = [\sigma_1]$,

Find the dimension of the member

ref. pg.No.7.2,/DDB

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 \left[xy^2\right]\right)}$$

Step1

Calculation of direct stress - $\sigma_{d=} \sigma_x$

 $\sigma_{d=}$ load/area= NO

Step2

Calculation of bending stress $\sigma_{b} = \sigma_{v}$

 $\sigma_{\rm b} = M/z$

where M = moment due to external load= w x e z= section modulus Step3: Calculate Shear stess,

Step 4 Take into the Principal stress equations

$$\sigma_{1,2} = \frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left(\left(\sigma x - \sigma y\right)^2 + 4 T_x y^2\right)}$$

[**σ**]= [**σ**₁],

[σ₁]=[120] N/mm²

Data								
diameter	d	mm						
Load	1500	N	(1.5 x 100)0)				
eh- turning effect	400	mm	(Horizon	tal to	o origin	al load)		
ev- bending	500	mm	(Vertical	to in	troduc	ed load	from t	he bas
area								
Pi	3.141							

1 Direct stress	
Stress	0 N/sq.mm
σχ	0

Due to no axial load

Bending		• • •		
σb=	M/Z	500		
М	Load x e	mm X		X
		750000 N-mm		
z =	Ι/γ			
	I=	π*d^4/64		
	Y=	d/2		
	I =	0.049	*d^4	mm^4
	γ =	0.5	d	mm
therfore	z =	0.0981563	mm^3	
Now	σb=	7640878.7 *	(1/d^3)	N/sq.mm
	σγ	7640878.7 *	(1/d^3)	

Shear stress		T x16/(pi x d*	d*d)	refer Pg.No 7.1/DDB
	T=	600000 N	mm	
		{ eccentrical d	listance	is horizontal distance from axis)
T Shear stress	τ=	3056351.5 *	(1/d^3)	N/sq.mm

??
7640878.701 N/sq.mm
-7640878.701 N/sq.mm
58383027324169.0000 *(1/d^3)^2
3820439.351 *(1/d^3)

			J
Τ		3056351.48	*(1/d^3)
T ²	93412	284371867.040	*(1/d^3)^2
(√ (σx − σy)2 +4Ţ2/2	2	4892549.561	*(1/d^3)
Asper principal str	$\sigma_{1,2}=$	$\frac{\sigma x + \sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma x - \sigma x)\right)^2 + \sigma^2 + \frac{1}{2} \sqrt{\left((\sigma x - \sigma x)\right)^2 + \sigma^2 + \frac{1}{2} \sqrt{(\sigma x - \sigma x)}}}$	$(y)^2 + 4T_xy^2)$
[90)]=	8712988.911	*(1/d^3)
120	90	8712988.911	*(1/d^3)
	d^3=	96810.9879	
	d	45.92	mm
		4	1.72

ODetermine the principal stresses in C - clamp at XX section resembles rectangular.

 Determine the thickness of the steel bracket loaded as shown in fig. taking allowable stress as 90 Mpa

STRESS CONCENTRATION FACTOR

Def:

The stress concentration factor, , is the ratio of the highest stress to a nominal stress of the gross cross-section

 $\begin{array}{ll} K_t = \sigma_{Max} / \sigma_{nominal} \\ where & \sigma_{Max} & is \\ & \sigma_{nominal} & is & the stress with respect to area of cross \\ & section of the member \end{array}$

Force flow lines in an abrupt changes in the cross section of the member

Methods of Reducing Stress Concentrations

Avoiding sharp corners and only **using rounded** corners with maximum radii.

Sanding and polishing surfaces to remove any notches or defects that occur during forming and processing.

Lowering the stiffness of straight load-bearing segments.

Placing notches and threads in low-stress areas.

To solve problems

refer design data book pages 7.8 to 7.16 pages for variou types of members and their loading condition.

P5. Find the maximum stress induced in the plate as shown in figure. All sizes are in mm T=15MM

Identify the Notations as per data book Refer pg.No 7.10/DDB

Stress	oncen	tration Fa	ctor	
DATA				
Load	р	1000	Ν	
Width	W	80	mm	
hole dia	a	24	mm	
Thuckn	ess	15	mm	
Area		(w-a)t		
		840	mm^2	
σmax		???		
1onomir		L/A		

1.19<mark>N/mm^2</mark>

P6. Find the maximum stress induced in the object as shown in figure. All sizes are in mm

Load is 1KN, Bigger dia is 80 mm and stepped dia is 40 mm. The radius of the fillet is 8 mm

Stress concentration Factor

Loadp1000 NDia(D)D80 mmsmalldia(d)d40 mmradius of fillet r8 mmArea1256.4 N/mm^2

σmax

DATA

???

7.1

0.58

6.78

3 σmax

Practice by yourself various components in stress concentration

7.1

1.Determine the stress concentration factor for the plate ubjected to load of 9KN As In figure.

THEORIES OF FAILURES

Why? Need to study

Under combined stress, it is difficult to predict by which stress the failure of member occurred.

Hence the stresses are accounted in terms of principal stresses

This involves the assessment of stresses in biaxial or tri axial stresses.

It is by nature all the engineering components subjcted to those systems stresses

TYPES OF THEORIES OF FAILURES

- 1. Maximum Principal Stress theory (RANKINE'S THEORY)—(Onormal)
- 2. Maximum Shear Stress theory (GUEST AND TRESCA'S THEORY)--- (T max)
- 3. Maximum Principal Strain theory (St. VENANT'S THEORY)---(e max)--- No reliable results- Not followed
- 4. Total Strain Energy theory (HAIGH'S THEORY)

5. Maximum Distortion Energy theory (VONMISES AND HENCKY'S THEORY)

How ? The Theories of failure to be defined

Condition is for same material

1.Max. Normal or principal stress Theory

Formula

Graphical study

Design check

' σ 1/ σ y" ratio to be calculated and it lies with in square region

Then the design is safe,

if it fall out side then the design is not safe, then rework to be done

2.Max. Shear stress Theory -- Tmax

Formula

 $(\sigma 1 - \sigma 2) / (\sigma 2 - \sigma 3) / (\sigma 3 - \sigma 1) \leq \sigma y / 2$, Chose max

 $(\sigma 1 - \sigma 2) / (\sigma 2 - \sigma 3) / (\sigma 3 - \sigma 1) \leq \sigma y / 2n$ Chose max

It is suitable for ductile material and shaft design always use it **Design check**

 \Box ' σ 1/ σ y" ratio to be calculated and $% \sigma$ it lies with in shaded/coloured region

□Then the design is safe,

□ if it fall out side then the design is not safe, then rework to be done

3.Max. Strain Theory – **e**max

Def:

Formula

Maximum strain theory (St. Venant's) $\sigma_1 - \nu \ (\sigma_2 + \sigma_3) \text{ or } \sigma_2 - \nu \ (\sigma_3 + \sigma_1)$ or $\sigma_3 - \nu \ (\sigma_1 + \sigma_2)$ whichever is maximum $\Big\} = \sigma$ As this theory is not providing Reliable results,

Not being/ recommended used in the design

4.Max. Strain EnergyTheory

Def:

Formula

It holds good results for ductile materials

Design check

' σ 1/ σ y" ratio to be calculated and it lies with in square region

Then the design is safe, if it fall out side then the design is not safe, then rework to be done

5.Max. Distortion Strain Energy Theory

Def:

Formula

.

Maximum strain energy theory
$$\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu \ (\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1) = \sigma_\gamma^2$$

It holds good results for ductile materials

Dist. Strain energy= strain energy- strain energy by stress

Design check

 $\sigma 1/\sigma y$ ratio to be calculated and it lies with in region

Then the design is safe, if it fall out side then the design is not safe, then rework to be done

Problems Objectives

1. Find the size of the member

2. Find the factor of safety

A member is having its principal stresses as follows $\sigma 1$ = 190 Mpa, $\sigma 2$ = 90Mpa and $\sigma 3$ =0 find the factor of safety for the member using theories of failures. Take material of C45 has 360 Mpa,

σ1 =	190
σ2 =	90
σγ	360
σ1-σ2	100
σ2-σ3	90
σ3-σ1	-190
1n	1.894
2n	1.8

5n^2	4.782288
	2.10
n	2.19

Max. Distoriton strain energy Theory

STEPS to solve for theories of failure

Step1: Identify the stresses available

Step2: Directional assignments the stresses available

Step3 : Calculate principal stresses

Step4: Applying theories of failures

& find the objective

Problem 2

Determine diameter at Section XX, for the member shown in the figure. Find the diameter of the member Using theories of failure. Take factor of safety n=2.5,

		50
		400 mm
2		
		·
DATA		
D ???		500 mm
D 111		
twisting moment		X
distance	400 mm	
Bending Moment	500 mm	
1874		
n-factor of safety	2.5	
in factor of safety	LIJ	

	First							
	calculate σ1, σ2	(It should be don	e bt directional ass	ignment of bendi	ng = σy,	T, but	σd = 0)	
	Apply to theories	of failure						
1	Caculation of $\sigma 1$	& σ2						
	Data							
	diameter	×	mm					
	Load	50	N					
	eh	400	mm	(Horizon	tal to o	riginal	oad)	
	ev	500	mm	(Vertical	to intro	oduced	load from t	he base
	area							
	Pi	3.141						
	A	0.78525	d^2	sq.mm				
	Direct stress							
1	Stress	0	N/sq.mm					
	σχ	0						

2	Bending				
	σb=	M/Z			
	м	Load x e			
		25000	N-mm		
	z =	l/y			
		I =	π*d^4/64		
		Y=	d/2		
		I =	0.0491	d^4	mm^4
		y =	0.5	d	mm
	therfore	z =	0.09815625	d^3	mm^3
	Now	σb=	2.547E+05	*(1/d^3)	N/sg.mm
		σγ	2.547E+05		

Shear stress		T x16 /(pi x d*d*d)			refer	Pg.No	7.1/DI	DB
	T=	20000	Nmm					
		(eccentrical distance is horizontal dist			tance from axis)			
Ţ Shear stress	Ţ	101878.3827	*(1/d^3)	N/sq.	mm			

with respect - 10 aris. Resolve it. > PH = (0345. P V= 5in 45. P > PM Only Bending OB=MH (1) Ga= Pr O 6 by= Mr 2 Scom: Obn + Oby + Od

Tutorial 2 week2 20 marks credit

Determine the maximum stress induced in the members, all dimensions are in mm

Tutorial 2 week2 20 marks credit

M=150 N-mm

Width = 100, a = 40, t = 20 in mm

Principal stress		
σ1, σ2=	??	
σx + σγ	2.547E+05	*(1/d^3)N/sq.mm
σx - σγ	-2.547E+05	*(1/d^3)N/sq.mm
(σx – σy) ²	64870030360.2	*(1/d^3)^2N/sq.mm
$l_{\alpha x \pm \alpha y}/2$	1 2735±05	*(1/dA3)N/ca.mm
(σx + σy)/2	1.2736+03	*(1/d^3)N/sq.mm
τ	101878.3827	*(1/d^3)
T ²	10379204857.6	*(1/d^3)^2
(√ (σx – σy)2 +4Ţ2/	163084.985	*(1/d^3)

σ2 =	-35737.007	*(1/d^3)N/sq.mm	
σ1=	2.9043296E+05	*(1/d^3)N/sq.mm	
		/ / ! * ~ ` * /	
Now			

n	2.5	
Select material C4	5 ref. Pg.1.9/DDB	(ASSUMED)
σy=	360	N/mm^2
Use the equation	1	
2.9043296E+05	360/2.5	
2.9043296E+05	144	
2.0168956E+03	.=	d^3
a	<mark>,=12.63mm</mark>	

Now to check the design safe

Theory used is Max .Normal Stress Theory

Check for safe

As the ratio point lie in the region, **Design is safe**

 $\sigma 2/\sigma y = -0.047$

2Max Shear Str Ref pg.7.3/DD σ 1- σ 2/ σ 2- σ 3/ =	0B σ3-σ1 <u>σγ/</u> 2	<mark>2n</mark> 360, n=2.5
	σ1-σ2=	3.2616997E+05*(1/d^3)
	σ2-σ3=	-35737.007*(1/d^3)
	σ3-σ1=	-2.9043296E+05*(1/d^3)
Chose max, σ	1-σ2	
_	261699x	70
10/	^5/d^3=	72
	d^3	4.5301385E+03
	d=	<mark>16.54</mark> mm

Similar way find the diameter by the other theories also check for the design safe

Dynamic Design

Fatigue & Endurance strength SN – Curve

Theories Gerber equation Goodman equation Soderberg Equation

Solving the problem

Cyclic stresses

What is fatigue?

When a member subject to cyclic stresses, it fails below its yield stress value known as "fatigue".

It is unpredictable, - its so dangerous. It occurs due to flaws in the member(under micro study), which initiates the crack formation, then propagation and finally fracture.

Endurance or fatigue limit?

A member will undergo n numbers of cycles. With out failure/fracture at a particular stress value. This stress is known as Endurance or fatigue limit.

S-N diagram – example to predict the stress values With respect to cycles

Fatigue stress concentration factor K_f

Def:

Experimental definition only available

Fatigue stress concentration factor,

 $K_f = \frac{\text{Endurance limit without stress concentration}}{\text{Endurance limit with stress concentration}}$

Notch sensitivity "q "

Def:

It is defined as the degree of attaining the Kt- theoretical stress concentration. q is estimated with some experimental curves. No extensive data available.

Ref. Pg.no:7.8/DDB

Notch sensitivity q index is defined by

$$q = \frac{K_f - 1}{K_t - 1}$$
 or $q_{shear} = \frac{K_{fs} - 1}{K_{ts} - 1}$ Kf=1+q(kt-1)

STRESS CONCENTRATION FACTORS

K , is always greater than K ,', therefore where information is lacking or doubtful. K , should be used, to be on the safe side

VALUES OF K , FOR REYWAYS

FROFILE KEYWAY

KEYWAY

an and some out

KIND OF	Anne	aled	Hardenco		
KEYWAY	Bending	Torsion	Bending	Torsion	
PROFILE	1.6	1.3	2.0	1.6	
SLED RUNNER	1.3	1.3	1.6	1,6	

DESIGN DATA - PSG TECH

Problem for finding "Kf"

Find the Kf of the member which is made of steel and annealed.

The equation,

Kf=1+q(kt-1) Ref. Pg.no:7.8/DDB

Ref. Pg.no:7.11/DDB

r/d=0.2, D/d = 2.33(2.0)

Kt=1.5

Ref. Pg.no:7.8/DDB

r = 6 (4.5), material steel & annealed q = 0.95

Now

Theories for Varying stresses

Refer pg.No.7.4 & 7.6 /DDB

SODERBERG Equation

$$\frac{1}{n} = \frac{\sigma m}{\sigma y} + \frac{\sigma a}{\sigma - 1} \qquad \qquad \frac{1}{n} = \frac{Tm}{Ty} + \frac{Ta}{\sigma - 1}$$

Goodman equation

$$\frac{1}{n} = \frac{\sigma m}{\sigma u} + \frac{\sigma a}{\sigma - 1} \qquad \qquad \frac{1}{n} = \frac{Tm}{Tu} + \frac{Ta}{\sigma - 1}$$

Problem Objectives

1. Find factor of safety "n"

2. Find size of the member

Steps to solve the problem

Step1 Find the mean and amplitude loads (Wmax+Wmin)/2= Wmean (Wm)

> (Wmax-Wmin)/2= Wampl or Wa (Amplitude or varying Load)

Step2 Find the mean and amplitude Stresses

omean= Wmean/ Area,

 $\sigma a or \sigma v = Wa or Wv / Area$

Step3 Use the theories for varying stress

Find the **Size** or factor of safety

which ever is applicable with respect to the problem

Pin Find d'al x-x ? 15 ma Solution concep Eccentric Loud 2. Resolve 0 F. wissing Fr Bcom 6,2 22

Tutorial 3 - Topic theories of failure

-		-	-			in the of	Territoria and		
							10- T		
200 2000-201	10.00.00.00	A.C. 4.11	10.55					-	
1000									
10 mm 10		an and							
							ALC: NO		
		44-94 (41) FT							
		_							
Lange State of									
			-						
an Co. 3*	ALC: NO.		177.20	-					
						1 mm			
A local of Taxa				1.000					

Pg. 1.13 /DDB, alloyed steel

Determine the factor of safety for the member having diameter 50 mm which is subjected to fluctuating load from -10 to +15 KN. The ultimate and yield stress values are 60 N/mm^2 and 40N/mm^2 respectively. Use the Good man and Soderberg theories

Data:

n= ? D= 50 mm Ultim Max .load= 15000N Min.load = -10000 N

Ultimate = σu = 60 N/mm² Yield = σy = 40 N/mm² Soderberg

$$\frac{1}{n} = \frac{\sigma m}{\sigma y} + \frac{\sigma a}{\sigma - 1}$$

Goodman

$$\frac{1}{n} = \frac{\sigma m}{\sigma u} + \frac{\sigma a}{\sigma - 1}$$

Steps to solve the problem

Step1 Find the mean and amplitude loads (Wmax+Wmin)/2= Wmean (Wm)

> (Wmax-Wmin)/2= Wampl or Wa (Amplitude or varying Load)

Wmax = 15000 N

Wmin = -10000 N

Wm	2500N	(15000-10000)/2=	Wmean (Wm)
Wa	12500N	(15000+10000)/2=	Wampl or Wa

Step2 Find the mean and amplitude Stresses

Step3 Use the theories for varying stress

 $1/n = (1.27348/40) + (6.3674/\sigma_1)$

Now to find σ_1

Refer pg.1.42/DDB

Take reversed cycle

Bending Load $\sigma_1 = 0.46\sigma u$

 $\sigma_1 = 27.6 \text{N/mm}^2$

- 1/n = 0.031836995 + 0.230703
- 1/n = 0.262539854

n 3.808945518

G&S Probm2

Determine the diameter of circular shaft subjected to axial load of range from - 300KN to 700 KN, Use factor of safety as 2.0.

NO yield, No Ultimate stress given, hence select suitable material Then find the both stress values

Material : C50, refer pg.1.9, σy= 380 N/mm² & σu = 730 N/mm²

G&S Prob2	
DATA	
n =	2
	0000N 0000N
σu	730N/mm^2
σγ	380N/mm^2
σ_1 ?	
Soderberg	$1 \sigma m \sigma a$

		σα
		<u>+ </u>
n	σy	$\sigma - 1$

Goodman	1_	σm	σα
	n^{-}	σи '	$\sigma - 1$

Step 1 Caculating Wm(mean) and amplitude Wa

Wa 500000N Wmax-Wmin)/2= Wampl or Wa

Step2 Find the mean and amplitude **Stresses**

σmean= Wmean/ Area

Area= 0.78525_{d^2} mm^2

<mark>σm = 254695.96_{/d^2} N/mm^2</mark>

 $\sigma a or \sigma v = Wa or Wv / Area$

<mark>σν =</mark>	636739.89/d^2	N/mm^2
	0007050705702	•••

Step3 Use the theories for varying stress

$1/2.0 = [254695.96/(d^2*380) + (636739.89/(d^2*\sigma_1)]$ Now to find σ_1

Refer pg.1.42/DDB

Take reversed cycle Load: Tension- compression

 σ 1 =

335.8N/mm^2

1/2.0 = 670.2525176 *(1/d^2) + 1896*(1/d^2)

1/2.0 = 2566.440403/d^2

d^2 5132.880805 d 71.6mm 72 mm (78.65) mm

Right answer: 78.65 mm = 79 mm

$$1/n = \left[\left(\frac{\sigma eq}{\sigma y} \right)^2 + \left(\frac{T eq}{T y} \right)^2 \right]^{1/2}$$

Required Task , to calculate $\sigma eq \& eq$,

Again refer Pg.7.6/DDB

Steps to solve the problem

Step1 Find the mean and amplitude Moments (bending & twisting)

$$\alpha_{eq} = \frac{\alpha_{p}}{n} = \alpha_{m} + K_{f} \frac{\alpha_{k} \alpha_{p}}{\alpha_{q}}$$

Step4 : Use of Soderberg equation, Find the size or factor of safety

Loading	Reversed cycle	Repeated cycle
Tension - compression	$\sigma_{-11} = 0.36 \sigma_u$	σ _{0t} = 0.5 σ _u ≤ σ _y
Bending	$\sigma_{-1b_i} = 0.46 \sigma_u$	$\sigma_{0b} = 0.6$ $\sigma_a \leq \sigma_y$
Torsion	$\tau = 1 = 0.22 \sigma_{\rm m}$	$\tau_0 = 0.3 \sigma_u \leq \sigma_v$

......

ALVE.

APPROXIMATE VALUES OF ENDURANCE

APPROXIMATE RELATIONSHIP BETWEEN ENDURANCE LIMITS FOR DIFFERENT MATERIALS

Material	Relations	hip
Steels (Generally)	$\sigma_{-1t} = (0.7 \text{ to } 0.8) \sigma_{-1b};$	$\tau_{.1} = (1.55 \text{ to } 0.58) \sigma_{.1b}$
Carbon Steels	$\sigma_{0b} = 1.5 \sigma_{.1b}; \qquad \sigma_{0t} = 1.6 \sigma_{-1}$	$\tau_0 = (1.8 \text{ to } 2) \tau_{.1}$
Alloy Steels	$\sigma_{-1t} = 0.95 \ \sigma_{-1b}; \sigma_{0b} = 1.6 \ \sigma_{-0t} = (1.5 \ to)$	
Copper Alloys	$\tau_{-1} = 0.58 \sigma_{-1b}; \tau_0 = (1.4 \text{ to } 2)$) τ.,
Aluminum Alloys	$\sigma_{0b} = 1.8 \sigma_{.1b};$ $\sigma_{.1t} = 0.7 \sigma_{.t}$ $\tau_0 = (1.4 \text{ to } 2)$	$\tau_{-1b}; \tau_{-1} = (0.55 \text{ to } 0.58) \sigma_{-1}$
Grey Cast Iron	[Market States : 2017] 2017] : 2017] · · · · · · · · · · · · · · · · · · ·	= (1.2 to 1.5) $\sigma_{.1bl}$ = (1.2 to 1.3) $\tau_{.1}$ $\frac{\sigma_{.1b}}{\sigma_{u}} \simeq 0$

DESIGN DATA - PSG TECH

1.42

DATA

D	???
---	-----

twisting moment	30000N-mm
twisting moment(-)	-20000N-mm
Bending load	1000N
Bending load	-700N
Bending load Distance	600mm

n-factor of safety 2

Step1: Cal. Mean & amplitude for bending Moment & Twisting Moment

	BM = F x Distance
Max.M	600000N-mm
Min.M	-420000N-mm
	90000
MMean	250000N-mm
Ма	<mark>95000</mark> 0N-mm
	510000
Twisting Moment directly given	
	5000
T mean	20000N-mm
Tamp 25000	40000N-mm

Step2 Cal. ob and	d T (mean and	amplitud	le)		
σb=	M/Z				
σbmean=	Mmean/Z				
Z=	I/y				
I=	π*d^4/64				
Y=	d/2				
I=	0.0491	d^4	mm^4		
Y =	0.5	d	mm		
z =	0.09816 90000	d^3	mm^3		
M mean =	390000	N-mm			
σbmean=	3973256.92	*(1/d^3)	N/mm/	2	
	916496.94	5 51934	82.688		
σbampl=	8252149	*(1/d^3)	N/mm	2	

Now, find Shea	r Stress			
Ţ Shear stress	T x16/(pi x d*d	*d)	N/mm^2	
Ţ mean	25469.59567	*(1/d^3)	(Tm	ean)
Ţ ampl	127347.9784	*(1/d^3)	(Tar	np)

Step3: Cal. oeq and	d Ted				
$\sigma_{++} = \frac{\sigma_{+}}{\pi} = \sigma_{+}$	$K_{I} = \frac{\sigma_{s} \sigma_{s}}{\sigma_{I}}$				
	Kf=1 (assumed)			
	σ_1 = ?				
	σγ=?				
To find $\sigma y, \sigma_1$					
Material	C45	refer pg.1	.9/DDB		
σγ		N/mm^2			
σu (630- 710) Now refer pg.1.42,		N/mm^2	(assum	ed)	
Load	Bending				
reverse cycle					
وروم وروز المرور المرور ال	σ_1 =0.46σu				
σ_1 =	308.2	N/mm^2			

σeq=σm+ kf*σa*σ	γ/σ_1			
RHS	916496.945			
σm	3973256.925	*(1/d^3)		
	1869653768			
kf*σa*σy	-297077363 9	*(1/d^3)		
σ_1:	308.2			
kf*σa*σy/σ_1	9639109.795	-*(1/d^3)	(LHS) of	equation
	6066365.243	3		
LHS	S RHS			
σeq :	= 13612366.72	*(1/d^3)		
		(-//		

6982862.188

Now , to find

Teq=Tm+ kf*Ta*Ty/T_1

τ_1= 147.4N/mm^2

STEP 4: CALCULATION OF "d" USING COMBINED VARYING STRESS EQUATION (REFR Pg.7.6 /DDB)

LHS of equation 0.5 **RHS of equation** (σeq/σy)^2 1429757158*((1/d^3))^2 376237379.1 (Teq/Ty)^2 **21714.7032***((1/d^3))^2 1010949.027 0.5 = 37812.4169*(1/d^3) 19422.882 d^3 75624.8338

38845.763 d 42.130mm 33.86

Some critical and important problem

Tutorial 4: Topic: combined varying stress

A hot rolled C60 steel shaft is subjected to torsion moment that varies from 330 N-m clockwise to 110N-m counter clockwise and an applied bending moment at a critical section varies from 440 N-m to -220N-m. The shaft is of uniform cross section and no keyway is present at the critical section. Determine the required diameter of shaft. Take factor of safety as 2, the size factor as 0.85 and surface finish factor as 0.62.

UNIT II

ME18503-Design Of Machine Elements

UNIT II DESIGN SHAFT, KEYS AND FITS AND TOLERANCE 12 AND COUPLINGS

Preferred Numbers- Standardization Design of shafts under static and fatigue loadings, Keys – types of keys, design of keys. Design of Rigid coupling, and Flexible coupling. Fits- types of Fits and Tolenrance- hole basis system Shaft basis problems.

Objective

•This course will make acquainted design principles on shaft, fits and tolerances. and couplings.

Outcome

Analysing and applying the design of solid, hollow shafts keys and couplings. Also Understanding knowledge of fits and tolerance and analysing it

ROAD MAP

SHAFT - DESIGN - static and fatigue loading

KEY Design

Couplings- Rigid coupling & Flexible coupling

Fits & Tolerance

Preferred Numbers & Standardization

SHAFT

What is shaft?

An element which is usually in circular or round bar to transmit the motion from one element to other

Types of Shaft

- 1. Shaft ---- cylindrical revolving member used in power transmission
- 2. Axle----- Non rotating element, acting as supporting for the rotational elements.
- 3. Spindle--- Short length shaft machine tools

Line shaft

Counter shaft Or Lay shaft

Sliding Mesh Gear Box

Spindle shaft

Axle

An axle is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. ... Sometimes, especially on bicycles, bikes. bullock cart wheels on shaft

Shaft manufacturing : hot Rolled or cold working methods

Shaft standard Size: 5 – 7 meters.

Shaft Design

- **1.** Strength Based :- theory of simple bending= $M/I = \sigma/Y$
- 2. Rigidity /stiffness based:- Theory of Torsion= T/J=T/y

Shaft generally subjected to

- **1. Torsion due to rotational action**
- 2. Bending due to pulleys mounted on it.
- 3. Both
- 4. axial loads in some specific application

For remembrances

types of beam:

- 1. Cantilever
- 2. Simply supported
- 3. Over hanging (right, Left, or Both sides)

Shafts may be solid or hollow

hollow shaft is better than solid for the same power transmission. due to saving of material.

Shaft design always prefers the Max Shear stress Theory

Refer the eqn. Pg.7.2/DDB. Tmax= $\pm \sqrt{\sigma^2 + 4.T^2}$

SHAFT DESIGN STEPS

Objective = Diameter finding

Step 1: Indentify the loads applied on shaft

```
Step2: Select material ( optional) List σu & σy
```

Step3: calculate T torque transmission

P= (2x π x NT) /60, N- rpm, P = power, T= ?

Step 4: Find the maxim bending moment (use of BMD- bending moment diagram)

Step5 : Apply the equation to Find "d " of the shaft – applying the loading both T & M use the equation in Pg. 7.21/DDB

$$d_{o}^{3} = \frac{16}{\pi \left[\tau \right] \left\{1 - \left(\frac{d_{i}}{d_{o}}\right)^{4}\right\}} \sqrt{\left[K_{b} M_{b} + \alpha \frac{P d_{o}}{8} \left(1 + \frac{d_{i}^{2}}{d_{o}^{2}}\right)\right]^{2} + \left(K_{t} M_{t}\right)^{2}}$$

• Hellow shaft subjected $T_{max} = \frac{16}{\pi (d)}$	to torsion out $M_{1} d_{2}$ $\frac{1}{2} - d_{1}^{4}$	· -E	
* Hollow shuft subjected is $\sigma_{humax} = \frac{32}{\pi} \left(d \right)$	2010 C 2010 C 2010 C P		
* Hollow shaft subjected to tersion and axial load $d_{\pi}^{3} = \frac{\pi[\tau]}{\pi[\tau]}$	ALDONO DA	<u>(</u> €Ę √[к.м	$\frac{Pd_{0}}{B} + \alpha \frac{Pd_{0}}{8} \left(1 + \frac{d_{1}^{2}}{d_{0}^{2}}\right)^{2} + (K, M_{1})^{2}$
* For solid shaft put d ,	= 0 Sh	aft sizes to	P axial load M ₄ twisting moment
Туре	K,	к,	M _b bending moment [τ] design shear stress K _b combined shock and fatigue
Gradually applied load	1	1	factor applied to M _b K _t combined shock and fatigue factor applied to M _t τ shear stress
Suddenly applied load	1.5 - 2	1.5 - 2	σ _b bending stress α column action factor
EVOLVING SHAFT			- 1 for tensile load
Gradual loading	1.5	1	$1 - 0.0044 \left(\frac{l}{r}\right) \qquad \text{for } \frac{l}{r} < 115$
	1.5 - 2	1 - 1.5	$= \frac{1}{1 - 0.0044 \left(\frac{l}{r}\right)} \qquad \text{for } \frac{l}{r} < 115$ $= \frac{\sigma_y}{\pi^2 n E} \left(\frac{l}{r}\right)^2 \qquad \text{for } \frac{l}{r} > 115$
Minor shock loads			E young's modulus
Minor shock loads leavy shock loads	2 - 3	1.5 - 3	σ _y yield stress

SIGN DATA - PSG TECH

7.21 🧲

1.1

andard Series	BASI	C STRIES OF PR	EFTHERD SUMBI	R.49
andard Series	- 8.4	= 10	10.00	g-r. 6.86
100 C	anta .	8 - 3.28	a = .1.13	1.001
		the second se	1.00	4.00
		10.00	110	1.12
		1.644	4.17	1.12
	1.00		1112	1.17 3.18 1.25 3.32
	Sector 1		1.25	1.52
	and the second se	1.25	6.40	1.40
and the second se	A Street of the second se			1.50
			6.65	1.60
	and the second se	1.80	1.07	1.70
		1.965	1.80	1.10
	140	-		2.00
	1.40		2.00	2.12
	27	2.00		2.12 2.24 2.36
			2.24	2.36
				2.30
			2.50	2.65
		2.30	2.80	2.100
	2.50			3.00
		1.15	3.15	3.15
				3.35
			3.55	3.55
			1.12	
			4.00 4.50	4.00
		100		4.25
		9.00		4.50
	1			4.73
	4.80		5.00	5.00
		5.00		\$.30
		10,002	1.10	5.60
			2.60	6.00
			10.000	6.30
		10000	6.35	6.70
		6.30	10.00	7.10
	23-		7,10	7.50
	6.30			8.00
		1267	8.00	8.50
		8.00		
			9.00	9.00
	10.00	10.00		9.50
-	10.00	10.00	10.00	10.00

DESIGN DATA - FSG TECH

7.20

Some task for finding the bending moment

Pg.6.4/DDB

Handley Memoral	Reating	CANTULEVER INFAMS	
M.,Pi M.,Pi	$X_{0} = \gamma$	Petrotae P = test [PU'-su'ara'] Part = PL' = ara	Nor of Landau
March 12	(Ay = 41)	T - The [at at a c]	
	$B_{\mathbf{k}} = P_{\mathbf{k}}$	$\begin{array}{l} T &= -\frac{P}{1+1} \cdot (L-u^2) \left[\frac{(L-u)}{2} + \frac{(u-u)}{2} \right] \cdot 0 + u < u \\ T &= -\frac{P}{4+1} \cdot \left[(h-u^2 \cdot (L-u^2) (L-h+u) \right] \cdot 0 + u < L \\ T &= -\frac{P((L-u)^2}{1+1} + u \left[\frac{P((L-u)^2)}{1+1} \right] \cdot u = u < 0. \end{array}$	·
$ \begin{vmatrix} M_{\pi} & = -\frac{w x^2}{6L} \\ M_{mm} & = -\frac{w L^2}{6L} \end{vmatrix} $	$R_{0}=\frac{w1}{2}$	$\begin{split} y &=& \frac{w}{120(27L)} - \left[x^2 \cdot 5L^2 y + \lambda L^2 \right] \\ y_{\rm Ham}^2 &=& \frac{w L^2}{30(27)} - at x \neq 0 \end{split}$	
$M_{s} = -\frac{w s^{1}}{0 L} (R + s)$ $M_{sm} = -\frac{w L^{1}}{3}$	$R_{A}=\frac{wL}{2}$	$\begin{split} y &= -\frac{w}{12001L} \left[(x^3) 15L^2 x + 5Lx^4 + 11L^2 \right] \\ y_{mm} &= \left[\frac{11}{12001} \right] wL^4 \text{if } x \neq 0 \end{split}$	T.
Ma + v III	$\tilde{R}_{jk} = 0$	$\gamma = \frac{n}{2\Sigma I} \left[\frac{1}{2} - 2 \ln x^{2} \right]$ $\gamma_{AB} = \frac{nL^{2}}{2\Sigma I} \text{at } x = 0$	

Pg.6.5/DDB

Bearing Measured STOPPLY STPAN Repution NULL INCO. 24 B-LX-4.5 Station Street, or 1110 11/ 4 - 11 200 \$11-a 盐 品作 14 i lin = 243 P м. · · Link R's = THE LA THAT A N 12 274 MG 井 1 - 7 1 . . . PARTINGAL 10 Mars-PA R. - 1 The Indian + s-14 int м, Walds E.A. ** R.C. æ N .-14c.7 $\frac{W_{\mathcal{B}}}{(m+1)^2} \Big[g_{\mathcal{A}}^{-1}, g_{\mathcal{A}}^{-1} g_{\mathcal{A}}^{-1} + \pi g_{\mathcal{A}}^{-1} \Big]$ 1 = -2 M ____ $\mathcal{T}_{mm} ~~ = ~~ 800004 ~ \left[\frac{4VL^2}{101} \right] ~~ m ~~ \tau + ~ 00014$ М. - 24 M_ -0.129 # 1 = # 57141 Ē

SP1- Find the diameter of the cantilever shaft which carries a belt pulley at its end as shown in figure. Take allowable Shear Stress as 50 N/mm^2 p=10kW,at800


```
DATA
D= ?
Loads = Only belt pulley - tensions
T1= 10 KN,
```

T2= 8 KN,

[T] = 50 N/mm^2

Equation to be used for the combination Torsion and bending

Туре	Кь	к,
STATIONARY SHAFT		
Gradually applied load	1	1
Suddenly applied load	1.5 - 2	1.5 - 2
REVOLVING SHAFT		
Gradual loading	1.5	1
Minor shock loads	1.5 - 2	1 - 1.5
Heavy shock loads	2 - 3	1.5 - 3

DATA

D

?? 10000N **T1 T2** 8000N Diameter mm 50N/mm^2 **[T]** Step1 Loads identification T1 & T2 Weight of belt pulley (If not given in problem,) **W** = T1+ T2

If weight of the pulley is given

Wp + T1 + T2 **W** =

Now

W

18000N

Step2:	Material	Selection, Lis	t ou &	σy_(opt	ional)		
	Allowab	le shear stres	s is gie	vn, no ne	ed to se	lect mat	erial
	[T] =	50	N/mmʻ	2			
Step3	Calculati	on of torque	т				
Step3:	calculate	e T torque	transm	ission			
	12	NT) /60,					

T=Mt=152.817 N-m, =152.817 x 10^3 N-mm

Step4	Calcula	tion of Bendi	ng mom	ent			
	Beam	cantilever			7		1
	w	T1+T2			_		
		18000	N				
	L	700	mm				
	M =	WXL					
	M =	12600000	N-mm			W=	T1 + T2

Step 5 CALCulAtion of Diameter

Refer Pg. 7.21/DDB

$$d_{o}^{3} = \frac{16}{\pi \left[\tau \right] \left\{1 - \left(\frac{d_{i}}{d_{o}}\right)^{4}\right\}} \sqrt{\left[K_{b} M_{b} + \alpha \frac{Pd_{b}}{8} \left(1 + \frac{d_{i}^{2}}{d_{o}^{2}}\right)\right]^{2} + \left(K_{t} M_{t}\right)^{2}} 0$$

Di = 0, for solid shaft

[T]	50
Mb	12600000
Mt	152817

Put P = 0 No axial load

Kb & Kt = ?		Туре	K b	к,
Refer Pg. 7.2	21/DDB	STATIONARY SHAFT	1 14	
		Gradually applied load	1	1
		Suddenly applied load	1.5 - 2	1.5 - 2
Take : revolv	ving condition	REVOLVING SHAFT		
	•	Gradual loading	1.5	1
Assumed	Gradual Loading	Minor shock loads	1.5 - 2	1 - 1.5
КЬ	1.5	Heavy shock loads	2 - 3	1.5 - 3
Kt	1			

D^3=	??
------	----

Kb x Mb	1.9E+07	3.572E+14 <mark>(Kb x Mb)^2</mark>
Kt x Mt	152817	2.335E+10 <mark>(Kt x Mt)^2</mark>

sqrt(KbMb^2+KtMt^2)=	18900617.8
16/(π x [Ţ]) =	0.101878383

d^3 =	1925564.373
<mark>d =</mark>	123.8105999
Pg.7.20/DDB	124.409
<mark>STD R20 series</mark>	125 <mark>mm</mark>

SP1a- Find the diameter of the cantilever shaft which carries a belt pulley at its end as shown in figure. Take allowable Shear Stress as 50


```
DATA
D= ?
Loads = Only belt pulley - tensions
T1= 10 KN,
```

T2= 8 KN,

[T] = 50 N/mm^2

D	??
T1 T2 Diameter	10000N 8000N 1000mm
	50N/mm^2
Step1 W =	Loads identification T1 & T2 Weight of belt pulley (If not given in prob,) T1+ T2
	If weight of the pulley is given
W =	Wp + T1 + T2

Now <mark>W</mark>

<mark>18000</mark>N

(W = T1 + T2)

Step2: Material Selection, List σu & σy _ (optional)

Allowable shear stress is gievn, no need to select material [T] = 50N/mm^2

Calculation of torque Step3 T

T =	FxR	R= radius of Pulley
		F= net force (T1 -
		T2)
Τ=	(T1-T2)*	[*] D/2

- T = 1000000N-mm
- Step4 Calculation of Bending moment

Beam	cantilever	
W	T1+T2	
	18000	Ν
L	70	0mm

M = W X L

M = 1260000N-mm

Step 5 CALCulAtion of Diameter

Refer Pg. 7.21/DDB

Di = 0, for solid shaft

[T]	50
Mb	12600000
Mt	1000000

Put $\alpha = 0$ No axial load

Kb & Kt = ?Refer Pg. 7.21/DDBTake : revolving conditionAssumedGradual LoadingKb1.5Kt1

Туре	К	к,	
STATIONARY SHAFT			
Gradually applied load	1	1	
Suddenly applied load	1.5 - 2	1.5 - 2	
REVOLVING SHAFT			
Gradual loading	1.5	1	
Minor shock loads	1.5 - 2	1 - 1.5	
Heavy shock loads	2 - 3	1.5 - 3	

SP2- Find the diameter of the cantilever shaft which carries a gear pulley with pressure angle 20° . at its end as shown in figure. Take allowable Shear Stress as 400 N/mm². Power transmitted by the drive is 8kW at 500

DATA D= ? Loads = Gear drive Wgear= Ft/Cosα α = 20^o [T] = 400 N/mm²

DATA								
D	??							
P=	8 x 10^3	watts						
L	1000	mm						
Diameter	1500	mm	N= 5	500 rpm				
π	400	N/mm^2						
Step1	Loads id	entification						
W =	Weifght	of Gear Pulley						
W =	Ft/Cosα				T =	Рх	60/(2x	π x N)
α =	20				T =		52.8175	
Cos20	0.4081					1	52817.5	74N-mm
T=Ft.R								
Ft =	T/R	203.7567654	N·	(refer step3)				
Now								
Wgear=	499.3	N						

Step2: Material Selection, List σu & σy _ (optional)

Allowable shear stress is gievn, no need to select material [T] = 400N/mm^2

Step3	Calcula			
	P =	2x π x N x T/60		
	T =	P x 60/(2x π x	N)	
	N =	500		
	P	8000	w	
	π	3.141		
	T =	152.817574	N-m	
		152817.574	N-mm	

Step4	Calculati	on of Bendi				
	Beam	cantilever			1000	\rightarrow
	Wgear=	499.30341				$\left(\right)$
		499.30341	N			
	L =	1000	mm			C
	M =	WXL				
	M =	499303.41	N-mm			

	Kb & Kt =	The Second March			
	Refer Pg. 7	7.20/D	DB		
T	Тур		к,	К,	
[Gradually applie	ed load	i 1.5 + 2	1.5	2
	EVOLVING SHA Gradual loading Minor shock load Heavy shock load	a	1.5 1.5 · 2 2 · 3	1 1 - 1 1.5 -	.5
	Take : revo	olving	conditic	n	
	Assumed	Grad	ual Load	ling	
	КЬ			.5	
	Kt			1	

D^3=	??		
Kb x Mb	748955.1162	5.609E+11	=(KbM
Kt x Mt	152817.574	2.335E+10	=(KtM
sqrt(Kbm	b^2+KtMt^2)=	764386.667	
16/(πx[]]) =	0.0127348	
	d^3 =	9734.30968	
	d =	21.2865666	
Pg.7.20/D	DB		
	STD R20 series	22.4	mm

Various pulleys mounted on the shaft

Develop the shaft with respect the description in the problem

SP3. A shaft is having length of 2 meter and supported at its ends. A belt driven pulley of diameter 500 mm is mounted at distance of 0.5 meter from right end bearing. The maximum and minimum belt tensions are 12 KN and 8 KN respectively. An another gear pulley of 400 mm in diameter is mounted on the shaft at 400 mm from the left end support. The power transmitted by the system is 20 KW at 1200 rpm. Shaft is made of C45 steel. Determine the diameter of the shaft?

1. Develop the shaft arrangement

$$d_{0}^{3} = \frac{16}{\pi [\tau] \left\{ 1 - \left(\frac{d_{i}}{d_{0}} \right)^{4} \right\}} \sqrt{\left(K_{b} M_{b} + \alpha \frac{P d_{b}}{8} \left(1 + \frac{d_{1}^{2}}{2} \right) \right]^{2} + \left(K_{t} M_{t} \right)^{2}}$$

??			
	-		
		12000 N	
8	KN		
		8000 N	
Im			
gear		_	y=500
→J			Belt pulley
•		•	
	2000		
	2000		>
			-
	20 x 10^3 20000 1200 2000 500 400 ?? 12	20 x 10^3 20000 watts 1200 rpm 2000 mm 2000 mm 2000 mm 2000 km 120 kN 120 kN	20 x 10^3 20000 watts 1200 rpm 2000 mm 500 mm 400 mm ?? N/mm^2 12 KN 12000 N 8 KN 8000 N 8 KN 8000 N

Step1	Torque c			
	P =	2 πNT/60		
	N=1200rpm			
	P= 20 x 10^	3		
	Т=	T = 159.1849729		
		159184.9729	N-mm	

Step2	Loads iden	tification		
Gear pulley				
W =	Weifght of	Gear Pulley		
W =	Ft/Cosα		[α is not give	en]
			[αis taken 2	0°]
α =	20			
Cos20	0.408082			
T=Ft.R				
Ft =	T/R	795.9248647	N-I	
Now				
Wgear=	1950.404	N		
Wbelt pulle	Y			
Wbp =	T1+T2			
	20	N		
	20 x 1	0^3		

Step3: Ma	terial Select	tion, List σu &	σy _ (option	nal)
	Material is	given asC45		
	Allowable s	hear stress is r	not gievn	
	[T] =	??	N/mm^2	
Refer Pg.1.9	/DDB			
	C45			
	σy =	360	N/mm^2	
	σu =			
Refer Pg.7.6	/DDB			
Asper Ţmax	theory,	Τ =σy/2		
		τ=	180	N/mm^2
		[T] =	180	
	-			

	Need to have	line sket	ch of shaft				
	MaxB M =	???	Wg=1950.404		Wbp=20N		
			400		500	->	
			1	2000	D	1	
			A Ra	2000	Rb	B	
					1007 N-n	nm	
			780162	H-mm			
Ra+Rb =	Total load						
Ra +Rb =	21950.4		~			в	
	at all points, A	≈qn1 ., C, D & E	C		D		
Now bm		, C, D & I	C				
Now bm	at all points, A pports = 0 alwa	, C, D & I	C				
Now bm BM at su BM= F x l	at all points, A pports = 0 alwa	, C, D & Ε γs	B				
Now bm BM at su BM= F x l	at all points, A pports = 0 alwa	, C, D & Ε γs	B				
Now bm BM at su BM= F x l Take fixe	at all points, A pports = 0 alwa	, C, D & Ε γs	B				
Now bm BM at su BM= F x I Take fixe Bm at	at all points, A pports = 0 alwa d point A, mon	, C, D & Ε γs nents cal	B Iculated abo				
Now bm BM at su BM= F x l Take fixe Bm at A	at all points, A pports = 0 alwa d point A, mon 0	, C, D & F γs nents cal	B Iculated abo				

Step 5	CALCulAtion of Diameter								
	Refer Pg. 7.21/DDB								
	ε. ³ - <u>16</u> πετι{τ.	$\frac{d_{1}\left(\frac{d_{1}}{d_{2}}\right)^{4}}{\left(\frac{d_{1}}{d_{2}}\right)^{4}}\sqrt{\left[\left(K_{1},M_{2}+\alpha,\frac{pd_{2}}{g}\left(1+\frac{d_{1}^{2}}{d_{2}}\right)\right]^{4}+\left(K_{1},M_{2}\right)^{2}}\right]}$							
		DI = 0, for solid shaft							
	(T)	??							
	Mb	10000000 N-mm							
	Mt	159184.9729							
	Put α = 0	No axial load							
	Kb & Kt =	?							
	Refer Pg. 7	7.21/DDB							
	-	and a second s							
	Gundanty against	and I I							
	BETTER STATE BEAU Strategy Missis send bads	13							
	Barry doub hads	• b.a b.a							

Take : revo	olving condition		
Assumed	Gradual Loading		
КЬ	1.5		
Kt	1		
D^3=	??		
Kb x Mb	15000000	2.250E+14	(Kb x Mb)^2)
Kt x Mt	159184.9729	2.534E+10	(Kt x Mt)^2)
sqrt(Kbml	0^2+KtMt^2)=	15000845	
16/(π×[Ţ]) =	0.0282996	
	d^3 =	424517.16	
-	d =	74.832304	
Pg.7.20/DI	DB <mark>STD R20 series</mark>	80	mm

SP4. A shaft is supported at its two ends by two bearings A & B, the span between them is 1.8 meters. To the right of bearing A a belt pulley of diameter 600 mm is mounted at 300 mm takes the horizontal drive with the tensions 20KN and 12 KN. To the left of bearing B, another belt pulley of diameter of 400 mm, is located at 500mm. Also it transmits a vertical drive. Determine the diameter of the shaft when it takes minor shock loads. Take angle of contact 180deg.and μ =.25

В

Step1	Torque o		
	P =	2 πNT/60	
	T= F X R		
	T=(T1-T2))	K D1/2	
	T1-T2=	8000	
	D1/2 =	300	
	T =	2400000	N-mm

Step2	Loads id	entification					
<u>W1belt</u>	pulley(H)					
W1bp =	T1+T2						
	32000	N					
W2Bp=	T3+T4	?					
	Assume	the torque is	s same	for T	he D2	belt l	Pulle

T=	T 1/ T2=	е^µθ	=T3/1	Г4	
	μ = θ =	0.3 170		3	
 -	T1/T2=	e^μθ			

	T1/T2=	e^μθ	
		2.1	
	T3/T4=	2.1	
Use Torque, fin	d T3 & T4		
Т=(ТЗ- Т	4)xD2/2		
D2/2=	20	00	
T3=	=T4*2.09	93	
240000	0 =T4(2.099	93-1) x 20	0
T 4=	10 916.0	04 N	
T3=	22916.5	52 N	W2 Bp= 33832.6

Step3: Material Selection, Material is give Allowable shea)
[T] =	0N/m	1m^2
Refer Pg.1.9/DDB		
C45		
σy =	360N/m	1m^2
σu =		
Refer Pg.7.6/DDB		
Asper T max theory,	Τ =σy/2	
	τ=	180 <mark>N/mm^2</mark>
	[T] =	180

Step4		Bending moment line sketch of shaft ??	t
Ra +Rb =	Total load	(only Horizonta	al)
Ra +Rb =	32	000 eqn1	
Now bm at all po C, D & B BM at supports = BM= F x L Apply moment al			
	1800Rb=	300 x 32000	
	Rb =		5333.333333
	Ra=		26666.6667
Now find momen At A & B= 0 At C		000(Ra x dist from	c)

8000000(Ra x dist from c) AT D

2666667(Rb x dist from d)

Ν

Ν

Now find moment at a,b,c,d At A & B= 0 BM at Cv 2819370(Ra x dist from c) BM at Dv 12217328(Rb x dist from d)

Now to find Resutant BM at C & D RBM.C= SQRT[(BMCh)^2 + (BMCv)^2] 8482266.796 N-mm RBM.D= SQRT[(BMDh)^2 + (BMDv)^2] 12504967.38 N-mm

Chose RBM at D as Max. BM

Step 5 CALCulAtion of Diameter

Refer Pg. 7.21/DDB

$$d_{0}^{3} = \frac{16}{\pi [\tau] \left\{ 1 - \left(\frac{d_{i}}{d_{0}}\right)^{4} \right\}} \sqrt{\left[K_{b} M_{b} + \alpha \frac{P d_{0}}{8} \left(1 + \frac{d_{i}^{2}}{d_{0}^{2}} \right) \right]^{2} + \left(K_{t} M_{t} \right)^{2}}$$

Di = 0, for solid shaft

[Τ]	180
Mb	12504967.38N-mm

Put $\alpha = 0$ No axial load

Kb & Kt = ? Refer Pg. 7.21/DDB

Mt

Туре	K ,	к,
STATIONARY SHAFT		
Gradually applied load	1	1
Suddenly applied load	1.5 - 2	1.5 - 2
REVOLVING SHAFT		
Gradual loading	1.5	1
Minor shock loads	1.5 - 2	1 - 1.5
Heavy shock loads	2 - 3	1.5 - 3

Take	:	revo	lving	condition	۱
	•		0		•

	Minor shock
Given	loading

D^3=	??
------	----

Kb x Mb	22508941.28	5.067E+14(Kb x Mb)^2)
Kt x Mt	3120000	9.734E+12 <mark>(Kt x Mt)^2)</mark>

sqrt(Kbmb^2+KtMt^2)=	22724146.6

16/(π x [Ţ]) =	0.02829955
-----------------	------------

1.Vertical downward = easy to solve

2.Vertical upward= balance the force with the support.

3. Inclined = to be resolved into two components , horizontal $\cos\theta$ and $\sin\theta$

Other important points to be considered

This Ft acts downward or upward based on the rotation direction.

Wt of the gear component will act at given pressure angle to the vertical or horizontal

hence Wg= Ft/ Cos α to be taken into two component Wg Cos α and Wg Sin α

Shaft problems for Sketching

1.A solid steel shaft is supported on two bearings 1.8 m apart. A 20° involute gearD, is keyed to the shaft at a distance of 150mm to the left of the right hand bearing. Two pulleys B and C are located on the shaft at distances of 600 mm and 1350 mm respectively to the right of left hand bearing. The drive B is vertically downward while from C the drive is downward at angle of 60° to the horizontal. Draw the arrangement.

2. A shaft carrying a pulley A and gear B and supported in two bearings C and D. The tangential force Ft on the gear acts vertically upwards. The pulley delivers the power Vertically down ward. B is located at 500mm to right of C and A is located 400mm to the left of D. The span between c and D is 2000mm.Draw the arrangement on the shaft.

3. A horizontal shaft of 2.5 m AD supported in bearings at A and B and carrying the pulleys at C and D. The C pulley drives the power vertically downward and D pulley delivers the power horizontally. The span of AB is 1.8 m. C located at 600mm to right of A bearing. D is located at 2500mm to the left of A bearing. Draw the arrangement

Unit2 Tutorial 1

1. A horizontal nickel steel shaft rests on two bearings, A at the left and B at the right end and carries two gears at C and D located at distances of 250 mm and 400 mm respectively from the centre line of the left and right bearings. The pitch diameter of the gear C is 600 mm and the gear D is 200 mm. The distance between the centre line of the bearings is 2400mm. The shaft transmits 20 kW at 120 rpm. The power is delivered to the shaft at gear C is taken out at the gear D in such a manner that the tooth pressure Ftc of gear C and F_{tD} of the gear D act vertically downwards. Find diameter of the shaft. Take weight of the gears C and D 950 N and 350 N respectively. The combined shock and fatigue factors for bending and torsion may be taken as 1.5 and 1.2. The working stress is 100 MPa in tension and 56MPa in shear.

Key Design

What is key?

Key is a mils steel piece machine element inserted between the shaft and boss or hub of the pulley used to prevent the relative motion between the shaft and rotating element.

Types of keys

KEYS Design

(a) Feather key, (b) rectangular key, and (c) square key

Sunk taper key

Woodruff key (used in automobile and machine tools, easy tilting in recess)

Breaking of corners (all-round) Chamfering Radiusing

Radius at bottom of keyway in shaft and hub

Hollow saddle key

Flat saddle key

saddle keys

Used for light loads, Key is fitted in the hub and flat is rest on shaft surface

Tangent Keys

• The tangent key are fitted in a pair at right angles.

 Each key is to withatand torsion in one direction only.

sThey are used in large heavy duty shaft.

Round key

 The round keys, are circular in section and fit into holes drilled partly in the shaft and partly in the hub.

 They have advantage that their keyways may be drilled and reamed after the mating parts have been assembled.

Feather key

• A key attached to one member of a pair and which permits relative axial movement is known as **feather key**.

• It is a special type of parallel key which transmits a turning movement and also permits axial movement.

Key design Procedure

Step1: find torque. Using power eqn. $P=2\pi NT/60$

Step2: Calculate diameter of shaft "d" As per Max T theory., $T = \pi/16 x$ [T] x d^3

Step3: Based on d of shaft find key sizes – according to type of key selected.
w=?, t=? And L=?

Kp1. Design a parallel key for the following data . Power= 20Kw at 1200 rpm. The shaft's allowable shear stress is 50 Mpa.

DATA				
Р	20000	w		
N	1200	Rpm		
[τ]	50	N/mm^2		
Key	paralle	l key		
Step1	find torque. Using power eqn. P=2πNT/60			
		T=	60 x P/(2 x 3.141 x N)	
			159.18	N-m
		T =	159185	N-mm

g.7.20/ DDB	d=	28	mm	(R20 series)	
	d=	25.23043327	mm		
		16217.50759			
	159185	9.815625	d^3		
	D*3-	1 10/3.1	71		
	D^3=	T x[T] x 16/3.1	<u>/</u> 1		
	d =	????			
	d^3=	????			
_		_	-		

?, t=? And L=?					
		given key =	parallel	key	
Refer page 5.16/D	DB				
	to find si	zes			
	shaft d=	28	mm		
	for d valu	ue, above 22 a	nd upto	30 mm,	
	w=	8	mm		DIMENSIONS OF PARALLEL KEYS AND KEYWAYS
	t /h=	7	mm		
refer pg5.17/DDB					Figure 4 Figure 4 CHARTES OR BADUG KCYNKY RADIES OF REF OF REF OF REF OF REF Figure 4abit Above 6 8 10 12 12 10 12 10 10 10 100
	=	45	mm		Diameter Upts 8 10 12 17 22 30 56 67 58 56 110 100 100 100 200 23 45 66 87 46 56 75 85 110 110 100 100 100 200 23 45 66 8 10 12 12 13 45 16 8 60 100 100 100 100 100 100 200 23 45 6 8 10 112 14 16 18 20 22 25 83 21 14 66 17 16 100 100 100 100 100 200 23 45 57 67 78 80 10 112 14 16 18 20 28 30 35 100 112 14 18 20 28 10 111 12 18 100
					Community Instruction Instruction

 Margeb
 L
 Main
 6
 6
 8
 10
 14
 18
 22
 28
 36
 45
 50
 55
 63
 70
 80
 90
 100
 110
 120
 140
 160
 180

 Mark
 20
 36
 45
 70
 90
 110
 140
 160
 180
 200
 220
 250
 230
 350
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400

-	SHA	FT-2		ſ		*		FL	ANGE	SHAF	न-1)	ed	. 1	-61	ng	th	a	-),	m	-								<u>*</u> 9	н	Эз	1.	Ds.		CM DV	
1.	+	1	-1	-	F-	Ŧ.	4	-	·	1.	1.	1	·		•	•								1.			1.2					-	-	_	Height (h), mm	Width (b), mm	
+	+	•	1	1.	ŀ	ŀ		•	·													18	33	128	10	13	0 N	8	6	4	12	16	8	6	**	••	
1.	1	•	1	ŀ	Ŀ			th	ŀ	of	Vċ									さ	忠	36	13	12	-	-	-	18	6	-	13	南	-	•	~	•••	1
ŀ		•	•		ŀ	7	18	ţ٢	ŀ	1.	1	1		. 1				56	8	4	3	36	-	1	-	13	20	80	6	Ŧ	12	10	8		*	-	
1.		- /			Þ		u			h	ztl	h		1		3	8	56	SO SO	5 45	0 40	-	32 3	28	-	13	3	80	16	-	12	0	•	•	-	~	1
				1.	1.	-			1.	1.	1	+		-	8	-	63	56 9		5 -5		36 3	22		1.5.	12	28	8	16	T.	1	1	•	Ľ		*	
		1	1.	1.	1.	+		1.	1.	+	-	-	-	-	-	-				- 1		36	33	-	1X		3	18	•	•	1		•	*	*	~	-
+	- \	1.	t.	1.	+	-		1.	-	-	1	-	-	-	8	-	හ	-		5	-	36	32	58	CX.	13	•	10	•	•	٠	•	•	•	69	10	R
+	-	In	b		ng			1.1	E.	d	_	-	-		88	3	8	36	S		古	5	33	3	•					•	•		•	•2	~	13	
-	• 1	-	-	-	-	54	-	-	-	_				8	8	20	S	36	S	\$	8	3		1	•	*	•		•	•	•	•	•	•	9	Z	PREFERRED LENGTHS OF PARALLEL KEYS
-	*	Nł	٦e	ere	c	=	S	ha	afl	ĒĊ	lia			8	8	S.	63	35	3	古,	•			1	•	•		10	•	•	•	•	•	•		16	12
•	•					10	181	8	5 8	50	2	3	8	8	8	3	8	35	3	•	•				•	•		•		•		•		•	101	56	EN
•	*			110	3	E	180	12	100	sk	R	1	18	99	8	3	8	\$	•	•								۰.			•	•	•	•	13	E	
+			4.2	3	3	S	INI	10	170		3	61	100	99	88	3	0	-					1	2	10		1	3	•	•	•	1.0	•	1	14	R	SO
		100	2	Z	3	30	10		5	5	B	H	-	90	8	3								1.		•		×		•	•	1	•	•	1	3	P
	10	_			3	18	-	-	-1-	-		110	10	8	33								1.	2		•	•	5	•	•	•		•	•	16	3	RAI
N.	+	-	-		13	130	-	-	- 1		17	0H	10	8	1		+		-			-		+				•	12	•		1	•	•	-	×	LE
	-	-			-	01.200		- 1	-	1111	125	10	100	-	1.			1.	1.	1.		1.	1×		1.						•	8	•		8	36	N
36	-	-	ě	_	10012	-	-	-	-	1		10	1.		1.	1.	1.		1.		1.	1.	1.				1.				•	1	•	•	ы	*	SA
Ś	-		- C		12012	-W -2		- +		お云	13 13	10	1.	1.	1.	1	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1-	1.	+	ŀ	•		•	•	ы	55	
ŝ		3	ž	S	101	100	-		1 09	5	-	+	1.	+	+.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.			ŀ		1.		*	1.		22	8	
10	1	3	180		53	-	-	-	8	台	ŀ	ŀ	+	t.	+	÷	+	1.	-	1.	1.	1.	1.	1.	Ţ.	1.	1.		ŀ		ŀ	•	+	ŀ	R	8	
12	1.1	X	8	S	12	10	NA IN	8	8		ľ	1º	1.	1	+	+	-	+	+	+	+	1	1.	1	1.	1.	1.	1.	1.			•			8	3	
NK	-+-	3	Z	13	110	10	3	ŝ	•		·	ŀ	1·	·	+·	÷	+	+	+	+	+	+	-		1	1.	1.	1.	1.	1.		1.			36	8	1
AVC 0		320	18	13	Te		MC			1.	·	ŀ	·	·	+	-	+	+	-	+	+	-	+	. 1	1	1	1	1	T			1.			参		1
4	-	0 320	0 280							1.	1.	•	1.	1	1	1	-+	-		+	-	-	+		1				1	1.	1		1.	ŀ	5	8	+
-		-	-	+	-	+	-		1.	1.		1.		1	1	1	-	-	+	-	+	-	-	-	+	1	- 1	· T	1	. 1		1		1.	\$	188	1
LAN IS	No W	100 130	NT-100	F.	+.	1		1.	t	1.	ŀ	1			•	•]	•	. 1	.]	_	1	_	-	-	-	-											

NUT-BOLTS

Step4: Cheo	k for ind	uced s	hear stress
	Material [T] shaft=		= material of Key also
	T=	F×R	
	F=	stress	хA
	T=	stres x	A x D/2
	A=	Ixw	
	T=	l x w x	Ţ×d/2
	T=	45 x 8	хŢ x 28/2
	T inducd	31.6	N/mm^2 [Ţ]=50
	<mark>31.584 <</mark>		
	design is	safe	

Couplings

To transmit motion from driver to driven, act as connector between them

Types

- 1. Rigid flange coupling ----a. Protective type b. non protective
- 2. Flexible coupling– Bushed pin type

Clutch and coupling:

both functions are same , but clutch is distinguished by the transmission of motion can be intermittent . that is, when desired to stop or start is possile by disengage or enage the clutch.

Non protective flange

Protective flange

Design procedure for Flange coupling (protective and non protective)

Step1: Find Torque using power eqn.

Step2: Find ' d' of the shaft using Max. T equation

Step3: List the basic sizes of the coupling using 'd' of the shaft refer Pg. 7.134/DDB

Step4: design for hub(treating it as hollow shaft, di= d of the shaft, do=2d

Step5: Design for key

Step6: Design for flange

Step7:Design for bolt

Step8: Draw the coupling with NTS free hand sketching with dimensions

CP1. Design and draw a rigid coupling for the following specifications.

Power 15 kW at 300 rpm. Allowable shear stress for Shaft and Key is 40 N/mm^2. Bolts working stress should not exceed 30 N/mm^2. Flange is made of Castiron and its limited shear stress is 14 N/ mm^2. The toque transmission is 25% higher than the actual torque. The crushing stress for key is 2.5 times of its shear stress.

DATA			
Р	15000	Watts	
N	300	rpm	
[T] shfata	Sakey =	40	N/mm^2
bolts wo	rking stress=	30	N/mm^2
crushing	is thrice the She	ear stress	
CI for FL/	NGE[T] =	14	N/mm^2
Tmax =	1.25 T		

Step1 : Torque finding

Step2: Find diameter of The shaft T= 3.141/16 x T x d^3

Std the "d" to R20 series

	D^3=	T x 16/(3.14	1 x Ţ)
		76019.567	
	d =	42.203469	mm
R20 series	d=	45	mm

Step3: List the basic proportions of coupling use d std

Refer Pg.7.134 /DDB

d = dia of the shaft D= 2d (d0 = outter dia of the hub),

```
di= inner dia of the hub= dia of
theshaft
```

L=1.5 d hub length

D1=PCD= 3d D2 = flange dia= 4 d n = no.of bolts selecte according to d of the shaft Tf= thickness of flange= d/2

Refer pg.7.134	/DDB			
		shaft d=	45	mm
HUB		di =	45	mm
		do =	90	mm
		L of Hub=	67.5	mm
PCD	for bolts =	1	135	mm
Flang	ge dia =		180	mm
No.o	f bolts n=	(40 <d<100)< td=""><td>4</td><td>nos</td></d<100)<>	4	nos

UNPROTECTED TYPE FLANGE COUPLING

7.134

DESIGN DATA - PSG TECH

HUB

7.135

÷

DESIGN DATA - PSG TECH

.

Step 4: Hub design

T= 3.141/16 x T x [(do^4-di^4)/d0]

hollow shaft with	th torsion or	nly
[T] =	40	N/mm^2
T=	(π/16 xTin	d x[(do^4-di^4)/d0]
(π/16)	0.196313	
(do^4-di^4)	61509375	
(do^4-di^4)/d0)	683437.5	
T=	596943.6	
596943.6485	134167.3	Tind
Ţind =	4.449	N/mm ²
4.449 < [40]		
Tind < [T]	safe design	

STEP.5 Key Design In shear

In crushing

	Rectangular Key	(Assumed)	parallel
	Shaft d=	45	mm
	Refer Pg.5.16 &	5.17	
	above	44	mm
	upto	50	mm
	b =	14	mm
	h =	9	mm
	I = hub length	67.5	
Pg.5.17/DDB	prefered length	70	mm

5.16	1			b ////	The second	//.			r1x		TA	KAI	LLE	LKI	.15	AN	D KJ	EYV	VAY	, 				_	1			
		ŧ	45				D -112 112										K	44				1				b	E	10 M
	,1111,			.////						CHAN	OF	OR R	ADIUS		B		NAY R						All d	imens	ions	in m	illim	eters
For shaf	Ab	ove	6	8	10	12	17	22	30	38	44	50	58	65	75	85	95	110	120	150	170	200	220	260	200	220	200	440
Diameters Key cross		to	8	10	12	17	22	30	38	44	50	58	65	75	85	95	-	130		170		-		200		-	440	
	Widt	h b	2	3	4	5	6	8	10	12	14	16	18	20	22	25	28	32	36	40	45	50	56	63	70	80	90	100
	Heigh	th	2	3	4	5	6	7	8	8	9	10	11	12	14	14	16	18	20	22	25	28	32	32	36	40	45	-
Key way Depth	In Sh:	aft	1.2	1.8	2.5	3	3.5	4	5	5	5.5	6	7	7.5	8.5	9	10	п	12	13	15	17	19	20	22	25	28	31
nominal)	In hub	t 2	1	1.4	1.8	2.3	2.8	3.3	3.3	3.3	3.8	4.3	4.4	4.9	5.9	5.4	6.4	7.4	8.4	9.4	10.4	11.4	13.4	12.4	14.4	15.	417.	4 19
lerance of	1 11	+	-	+0.	1	T				-	+	0.2		-			T			-		-	+ 0.3	_	-	1	-	1
eywaydepi		1				+	0.1				T				+	0.2	,	-		-	T		1,000	~	+ 0	3		_
namfer or	1.	Ma	x.	0.	25	Τ	0.	35	T	-	0.5	5	*	T		0.	8	-	T		1.3	-	T	2		T	2.9	95
idus of kcy								-	+		0.4	34		+	-	0.	26	_	+		1		+	1	-	+	200	.5
	y r ₁ Min. 0.16 0.2.						+		0.4	•	_	-		0.	0		-		JI		+	1.	0	+	- 4	~		
y way dius	r ₂	Max		0.1	6		0.2	5			0.4					0.	6				1			1	.6		2	2.5
ngth	L	Min.	6	6	8	10	14	18	22	28	36	45	50	56	63	70	80	90	10	0 11	10 12	5 1	40 1	60 1	80 2	00 2	20	250
Key			1.	- A -					-	-	-	-	-	-	-	-	_	-	_	-	_	_	_	_	_	-	-	

Designation: A Parallel Key of width 10mm height 8mm and length 50mm shall be designated as : Parallel Key 10 × 8 × 50

IS: 2048 - 1962

DESIGN DATA - PSQ TECH

41.2

(b), mm	Height (h), mm	and the second s												m	m	-),	(1	th	ng	-ei	11	ee	eri	-				1.		ŀ				
	클팔		-			-	-	18	20			1				•	•	•	•	•	•	•	-	-	2	·	-	-	-	+	1	1.	1.	
**	**	6	8	16	12	-		8 18	01 10	14	25	12	33	8				•		•		•	•	•	•	·	Ľ	·	Ľ.	I.	Ľ.	-	-	
· u	~	9	64	-	13	4	-		0 20	122.63		1.1.1			古	3					•	•	•	•	•					ŀ	·	ŀ	ľ.	Ľ.
*	*	۴.	Con I	9	12	-		-	-	X' = 0	1221		-		ち	-	S	56					1						ŀ		ŀ	·	·	ŀ
5	-	•	•	10	12	4	-	-	20	1.5.7.9			-		TTO LABOR	-	1	-	6	S											1			ŀ
*		•	•	1	1	In	16	18	20	100	dian (きん	-	-	35	-	-	28	99			1.	1.		1.	1.					
~	*	4	•	•	1	•	•	18	3	1.1		23	1	-	ち	-	-			-	08 0	8	-	110	+-	1.	1.	1.	1.	1.	1.	1.	1.	1.
10	-	•	•	•	٠	•	•	1	•	E	C:		32	100	8	-	-	-	න		-		1	-	-	10	1.	1.	1.	1.	1.	1.	1.	1.
13	~	•	•	•	•		•	•	•	-	•	38	33		古		50 ·	36		10	8 08	90 0	100	10 1	-	-	-	+	+	+	1.	1.	1.	
z	9	•	•	•	•	•	•	1	1	*	:	2	1	36	40	-	8		3		8	98	1	1		-	19	-	+	-	-	+	+	+
8		•	•	•	•	•	•	10	•	•	•	5	1	•	•	さ	50	56	63	-	8	8	00		1.0			15		-	-	+	+	-
56	101	•		•	•	•	•	•	•	•	•	•	•	•	•	•	3	55	1	3	8	8	00	-	-	5 E	00	-	100			1		1
E	13	•	•	•	•	•		•	•	•	1	*	*	•	•	•	•	5	8	5	80	8	100	110	5	5	100		-	_	-			
R	14	•	•		•	•	•	3	•	•	10	2	1	•	•	•			63	3	88	8	100	011	13	140	180	UK.	3	020		•	•	
ы	*	•		•	·	•	-	×	1	•	•		•	•			•			3	80	90	1		56	5 3	180	100	120	Si	Z			
*	16	•	•	•	•	•	•	S.	•	•	1	2		•			•				8	18	10	110	5	No Ite	180	3						
ä		•		•		•		•		•	•	+	1	•	+				+		i.	8	100	110	5 1	Z I	3	3			NC.	33	_	
36	8	•	•	8	•		•	•	•	2	1		×				1.						100					-	SCI C	RI I	081 0	0 320		2
*	ы	•	•		•		•			1				•			1.		1	1.	1.	1.	-1-	X		=t	-	0 100	0 220	-			-	ち.
th.	DA	•	•		•	ŀ	+	1	*			1.	1.			1.	1.	ŀ	1.	1	1.	1.	1.			1.000		000 10	-	130 12	No.	1.0	35	喜
8	22	•	ŀ			1		P					1		1.	1.	1.	1.	1.	t.	1.	1.	+	1	-1		-	-	100	NS.	S	120	Š	當
8	R		1		1:					1.	1.	1.	1.	1.		1,		1	1.	+	1.	1.	+	+	5		-	-	120	R	180	S	165	盘
3	8	·						1.		1.	1.	Ŀ	1.	1.	1.	1.	1.	1	+	+	+	+	+	-	-	165	180	8	121	150	280	N.	360	형
5	36		1		•	1.		T	1.	1.	1.	1	1	1	+	+		+	-+-	+	+	+	1		•	•	8	30	15	230	178	320	360	書
	\$						Ŀ	1.	1.	1.	1.		+	+	+	+	-	+	-	-	-	1		•	•			100	B			-		0 40
99	5.	·				1.	1.	1	1		1.		+	-	-	+	-	-	-	-		1	•		÷				1.000	1.00	100	+	4-	-
100	\$			1.	1	T	T.	T	T.	t	t	-	-	-	-	-	+	:	-			•	•	+		1.	1.	1.	-	+	-	+		TOT DOT

15

a.) SHEAR fai	ilure					
	T=F x R					
		R= the tang	ential force acti	ng at pe	eripery	of shaft
		because the	e key(half key)	is locat	ed at sh	aft
		Stress= F/A	Therfeore, F= s	tress x A	۹.	
	T= Stress x Area	XR				
	A=I x W	980	mm^2			
	T =	596943.6	N-mm			
	R=	22.5	mm			
		77650	 • •			
	596943.6485	22050	lina			
	The al	27 07227				
	Ţind=	27.07227				
	27.0722 <[40]					
	Tind< [T]	Safe design				
	(110.1()	Sale design				

b.) crushing f	ailure							
	T F u P							
	T=F x R				-	_		
		R= the tang	ential fo	rce act	ing at pe	ripery	of shaft	
		because the	e key(ha	lf key) is locat	ed at sł	naft	
		Stress= F/A	Therfeo	re, F= s	tress x A	•		
				, .	-	-		
	A =	l x h/2		-				l material zone)
				(half	in shaft	key wa	ay only	to be considered
	A =	315	mm^2					
	T=	596943.6	N-mm					
	R=	22.5	mm^2					
	596943.6485	7087.5	σc					
					multis	1 / 10		W
	σc =	84.22485		1	Crusiun	36		an a
To find [σc]						_		Fat &
	[σc]= 2.5 Ţ						A	10
	[σc]=	100	N/mm^	2			/	1 41
							5	6-000
							V	12-0-
	84.224 < [100]							
	σc ind < [σc]	Safe design						

Step 5: Flange design

Flange is r	nade	of CI- cast	Iron mate	erial				
Flange fail	ure oc	curs at the	iunction	of HUB				
T=F x R								
T= Stess x	A x R							
		for ,R, the	hub dian	neter "d	o" to be	e selecte	ed	
		becuase T	he tanger	ntial forc	e is tak	en at pe	ripery	of HUB
	tf= 1	Thck ne	ess of	Flage	= 0.5	5 d		
			tf=		22	.5 m	m	

A= $\pi x \text{ do } x \text{ tf}$ 6360.525 mm²

Failure takes around it circumference, at the **junction** of Hub and Flange

Circumference = πDo A = = πDo tf

A= $\pi x \text{ do } x \text{ tf}$	6360.525	mm^2
T =	596943.6	N-mm
R=	45	mm
596943.6485 =	286223.6	Ţind
Tind =	2.085585	N/mm^2
2.08 <[14]	safe design	

Design of bolts in shear and crushing

T= F x R	
(R, the radial d	istance of
Tangential force	acts at P
F= stress x A	
$A = \pi/4 \times d^2$	
no.of .bolts= 4	
T= [Ţ].(π/4 x d	^2) .n .R

Τ=	596943.6	N-mm	
[τ] =	= 30		
n	4	nos	
R = (PCD value)	67.5	mm	
d=	???		
596943.6485	=	6360.5	d^2
d^2 =	93.85132		
d =	9.687689		
Ref.pg.5.49/DDB	B, std,		
d minimum= 9.7	8 to d max	M10 se	lected
		d= 10 m	m

All dimensions in num

1	Size	11	M 5	M 6	MI	8 M 10	M 12	M 16	M 20	M 24	M 30
d	Man NIa:	x. /	5	6 :	8	10	12	16	20	24	30
L	Min	4 4	82	5.82	7.78	9.78	11.73	15.73.	19.67	23.67	29.67
S	Max		8	10	13	17	19	24	30	30	46
	Min.	7.	85	9.78	12.73	16.73	18.67	23.67	29.67	35.38	45.38
k	Max.	3.0	55	4.15	5.65	7.18	8.18	10.18	13.22	15.22	19.26
	Min.	3.3	15	3.85	5.35	6.82	7.82	9.82	12.78	14.78	18.74
b Min. fe	or 1 < 1.	30 16	1	18	22	26	30	38	46	54	66
or 130 <	1 < 30	0] -		24	28	32	36	44	52	60	72
for 1	> 200	1 -		*		-		57	65	73	85
	Min.	7.2		9 1	11.7	15.3	17.1	21,6	27	32.4	41.4
C	~	0.2	10	E.C	0.4	0.4	0.4	0.4	0.4	0.5	0.5
e .N	1in.	8.87	111	.05	14.38	18.9	21.1	26,75	33.53	39.98	51.28
r M	lin.	0.2	0.	25	0.4	0.4	0.6	0.6	0.8	0.8	1
z M	ax.	0,8	1		1.25	1.5	1.75	2	2.5	3	3.5
1		30 - 75	30 -	80 3	50 - 90	35 - 120	40 - 120	50 - 220	60 - 220		

IS: 2389

IS: 1364

NO.

Crushing failure of Bolt

Crushing = straining of material in confined zone

 $\sigma c = 2.5 T$ $\sigma c ind < [\sigma c]$ [σc] = 2.5 Ţ [σc] = 100 N/mm^2 75 T = F X RT=Stress x A x R (Here the R, , tangetial force acts at PCD of flange,

n=	4	Nos
T=	596944	N-mm
A = n x d xtf		
d=	10	mm
tf=	22.5	mm
n =	4	nos
R= pcd/2	67.5	mm
A= 4 x 10 x 2	900	mm^2

T = n x dx tf x	σc x pcd,	/2	
596943.65	=	60750	σcind
σcind	9.8262		
9.8 < <mark>[100]</mark>	Safe desi	gn	
[75]			

Flexible couplings

Types

Bushed Pin type
 Oldham's couplings
 Universal coupling

Why?

- 1. Abutting ends of shaft to be connected
- 2. Not exact alignment of shafts
- 3. Permits axial misalignment without power loss at the shaft

Design procedure for (Bushed pin flexible coupling)

Step1: Find Torque using power eqn.

Step2: Find ' d' of the shaft using Max. T equation

Step3: List the basic sizes of the coupling using 'd' of the shaft refer Pg. 7.134/DDB

Step4: design for hub(treating it as hollow shaft, di= d of the shaft, do=2d

Step5: Design for key

Step6: Design for flange

Step7:Design for PIN(instead of Bolt

Step8: Draw the coupling with NTS free hand sketching with dimensions

Pg.7.135/DDB

t

CP2. Design and draw a flexible coupling for the following specifications.

Power 32 kW at 960 rpm. Allowable shear stress for Shaft and Key is 40 N/mm^2. Bolts working stress should not exceed 30 N/mm^2. Flange is made of Castiron and its limited shear stress is 15 N/ mm^2. The toque transmission is 20% higher than the actual torque. The crushing stress for key 80 N/mm^2.

DATA			
Р	32000	Watts	
Ν	960	rpm	
[Ţ] shfa	nt&key =	40	N/mm^2
bolts w	orking stress=	30	N/mm^2
crushin	ng is	80	N/mm^2
CI for F	LANGE[Ţ] =	15	N/mm^2
Tmax =	1.20 T		

STEP1	Toruque Finding		
	P=	(2x3.141xN :	x T)/60
	T=		Nm
	1-		N-mm
	Tmax =		N-mm

STEP2	Shaft dia 'd calc	ulating	
	T=	3.141/16 x Ţ	x d^3
	D^3=	T x 16/(3.141	x T)
	d =		mm
R20 serie	e d=		mm

STEP 3	3 LIST the BASIC o	limensions				
Refer	og.7.134/DDB					
		shaft d=	mm			
	HUB	di =	mm			
		do =	mm			
		L of Hub=	mm			
	PCD for bolts =		mm			
	Flange dia =		mm			
	No.of bolts n=	(40 <d<100)< td=""><td>nos</td><td>but use</td><td>e pin in d</td><td>case 6</td></d<100)<>	nos	but use	e pin in d	case 6

STEP 4	KEY deisgn			
	Rectangular Key (Assumed)		parallel keys	
	Shaft d=	40	mm	
	Refer Pg.5.16 & 5.17			
	above	38	mm	
	upto	44	mm	
	b =	12	mm	
	h =	8	mm	
	I = hub length	60		
Pg.5.1	prefered length =	63	mm	
5.1	7			

a.) SHI	EAR failure					
	T=F x R					
		R= the tange	ntial for	e acting	g at perip	ery of s
		because the	key(half	i key) is	located	at shaft
		Stress= F/A	Therfeo	re, F= st	ress x A	
	T= Stress x Area X R					
	A=I x W	756	mm^2			
	T =	382043.94				
	R=	20	mm			
	382043.9351	15120	Ţind			
	Tind=	25.267456				
	25.267					
	27.0723 <[40]					
	Tind< [T]	Safe design				

b.) crus	shing fallure							
	T=F x R							
		R= the tange	ntial force	acting at	perip	ery of s	haft	
		because the	key(half k	ey) is lo	cated	at shaft		
		Stress= F/A	Therfeore	, F= stres	s x A			
	A =	l x h/2					ntained ma	
	A =	252	mm^2	(nan in	snart	Key wa	ιγ στηγ το με	considered)
	T=	382043.94	N-mm					
	R=	20	mm					
	382043.9351	5040	σε					
	σc =	75.802368						
o find	[ac]							
	[oc]=	80	N/mm^2					
	75.802 < [80]							
	σc ind < [σc]	Safe design						

STEP5	Design of Flange								
	Flange is made of CI- cast Iron material								
	Flange failure occurs at the junction of HUB								
	T=F x R								
	T= Stess x A x R								
		for ,R, the	for ,R, the hub diameter "do" to be selected						
		becuase [*]	The tangentia	I force is tak	en at peripery	of HUB			

STEP6	Design of (bolts) Pin							
	T= F x R							
	(R, the radial distance of the tangential force, which acts at PCD of The fla							
	Tangential force acts at PCD of The flange							
	F= stress x A							
	A = π/4 x d^2							
	no.of .Pins= 6 always							
	Pin is Sujected to Tors	sion & Bendi	ng					

Dia of the Pin =?

Dpin= $0.5 \times d/\sqrt{n}$

Where d= shaft diameter

n = 6

Direct torsion			
Τ= W/A			
A= π/4 x d^2			
W= looad on the pin -	Pressure on	the pin	
p= 0.8 N/mm^2			
Bending Stress			
Pin trreated As UDL lo	aded shaft		
σ= M/Z			
M= (W x I)/2			
w=Pxdxl 🔶	• P= w/ A		
d- dia of Pin			
I- length of the pin			
Z- section modulus of	circular Pin		
Z= π/64 x d^4/(d/2)			
[z=I/y]			
L			

Apply prinicpal s	tress equa	tion	
σ1,2=?			
σ1<[Ţ] prove it			

T=	382043.9351	N-mm										
R=	120	mm										
P=	0.8	N/mm^2										
W=	Load on the pin	due to p	ressue									
T=	n xW x R											
Due tp Pr	ressure											
W=	P x A(Projected	area)										
	A= Dpin x l			Managara								
		Pin dia=	8.16497	8.1650								
	Dpin = 2dpin	(secured	in the le	ft flange (enlarged p	ortion)						
	Dpin =	32.33	mm	(2dpin)	1		n thick= 6	x 2=12 &	brass but	sh thick =	2 x 2= 4 in	mm)
	l=tf	in genera	ıl		Totally= :	12+4=16						
	L=		mm									

w=	646.5986324			
Wtotal=	3879.591794	(6 x W)		
Now				
Shear Stress	s calculation			
τ= w/A				
W=	3879.591794	N		
A= π/4*Dpi	$A = \pi/4^*$ Dpin^2			
A=	820.7625217	mm^2		
τ=	4.726814019	N/mm^2		

Now						
Bendng stre	ss calculation					
σ= M/Z						
0- 11/2						
[z= I/y]						
$M = (W \times I)/2$,	(udl & si	imply sup	ported b	eam)	
(-				,	
I= π/64 x Dp	in^4					
Y= Dpin/2						
	2246 222525					
Z=	3316.899525	mm^3				
M=	48494.89743	N-mm				
	44.60	NI/ 40				
σb=	14.62	N/mm^2				

Now Apply	Prie	cipal stress ec	uation	ι, σ	1,2		
σb=σx	Тxy	-τ					
Ref.Pg.7.2 /	DDB						
σb=σy=		14.62	N/mm	^2			
Τ ×γ= Τ=		4.73	N/mm	^2			
σ1,2= (σx+σ	y)/2	±1/2√(σx-σy) <u>^2 + 4</u> .	۲′	2		
RHS							
σγ/2=			7.310				
σγ^2/2=		10	6.880				
(4. T^2)/2	2 =	4	4.686				
Sqrt(/(თ)	(-σy)^2 + 4.	Ţ^2)=			17.410	
	-					8.707	

Now							
(σx+σy)/2	±1/2√(σx-σγ)	^2 + 4 . Ţ^2 =		16.0	017 N/mr	m^2	
		16.017 N	/mm^2				
	σ1=		N/mm^2				
			16.0	17 <[40]	Safe d	esign	
But aspec	e max.shear st	ress theory ,					
Ţmax = ±:	L/2v(σx-σy)^2	+ 4. Ţ^2					
Ţmax =	8.707	N/mm^2	2				
	8.707 2<[40] safe des	ign				

key design

1 Taper Key	5.21/5.22 DDB
2Gib-Head Key	5.19/5.20 DDB
3 Tangential Key	
Power=	40000 Watts
N=	100rpm
stress	20N/mm^2

	þ	IAMET	ER,	a		KE	Y		KI	EYWA	YINS	HAFT	AND	HUB
	L		including	Mith A (1.0)	Beight, h (nominal)	Tolerance	M n Height of Gh- head n.	Chamfer or Radius r,(Min.)	Width of Key way (D10)	Depth in Shaft, t ₁	Tol.on t,	Depth in Huh, t ₂	Tel. on t ₁	Radius at Bottom of Key way r ₂ (max)
	1		2 1	4	4	_	7	0.16	4	2.5		1.2		0.16
	1.			5	5	-	B	1 2223 5	5	3.5	-	1.7		1. 262.26
	1 17			0	6	+0.1	10	0.25	6	3.5	SV8VS	2.1	1000000	0.25
1	22			8	7	-	11	-	8	4	+0.1		+0.1	1.0000000
	38	44		10	8	-	12		10	5		2.5		
ŀ	-44	50		14	8 9	-1	12	0.40	12	5		2.5	1241010	
- 1-	50	1 58		16	20	-	16	0.40	14	5.5	8	2.9		0.40
1	58	1 65		IS	11	+0.2	18	()	18	7		3.4	4 4	
1	65	75	1	20 1	12	-	20		20	7.5	2	3.8		
+	75	85		22 /	14	1 1	22	0 00 0	22	8.5	1 mm	4.8	8 S	
	85	95		25	14	1 1	22	0.60	25	9		4.3	+0.15	0.60
	95	110		28 1	16	1 t	25		28	10		5.3		0.00
	110	130		2 1	18	i t	28	- F	32	11	8	6.2		
1	30	150	3	6 1	20		32		36	12		7.2		1.1
1	50	170	1 4		22		36	1.00	40	13	+0.15	8.2		1.00
1	70 1	200	1 4	5 /	25	- E	40	orates -	45	15	1021225	9.2	G	101100
20	00	230	1 50		28	- E	45		50	17	3	10.1		Internation and
23	0	260	56		32		50	-	36	19		11.1	1	
26	0	290	63			+0.3	56	1.60	63	20		12.1	1	1.60
29	0 1	330	70	1	36		63	-	70	22	1 3	13.1	+0.3	
330		380	80	1	40	-	70		80	25		14.1	12.55	C. Stranger
380		440	90		45		75	2,50	90	28	1	16.1		2.50
440	1	500	100		50	-	80		100	31		18.1	1	10414000

293 - 1963

IGN DATA - PSG TECH

1.00

5.19

÷

DESI
R
DATA
- PS
GTE
CH

-	- 1	_	_	-	-	-	_		-		_		Pre	fert	red	ler	gth	(L	.),	th m								245			(h)	
	+	•	•						,		1	1.		1				•	•	45	40	36	33	28	25	22	20	81	16	14	-	
	•						•		1		+			1				56	50	45	\$	36	32	81	25	22	20	18	16	14	UN	
		1	4	T			•				1					14	8	56	50	å	5	36	32	28	25	22	20	-	16		6	
			1	T				1.	T				10	3	8	2	63	56	SO	45	40	36	32	28	13	22	20		-		1	
	1.	1.	1.	1				1.	T		1	1 10	N I	8	80	1	63	8	50	45	40	36	32	28	23	1					-	
1	1.	1	1	1				T		140	-	-	3	99	80	17	8	56	50	45	お	36	32						1.		71	
	1.	-					1		-	-		-	1	8	80	1	3	56	50	45	40	1		ù					1.		0	
1.	1	1	1			1.	19	-			-	110	100	8	80	11	8	56	8	45		r.	X						¥.	1	5	
t	+	1	. 1		1.	100	-	-	-	140	125	110	100	90	80	17	e	56	50					1			e		1.	•	=	
+	-				220	-	-	-	160	140	125	110	001 0	8	80	1	3	56						1.					1		13	
+	+			250	-			081 6	160	1 140	125	110	100	8	80	3	8						1								X	L
+	-		280	0/250	_	and the second second		0 180	0 160	9 140	125	110	100	8	8	17									10	1.	1.	1.	1.	1.	Ŧ	
-		315	1.000	0 220	-	-	1200	081 0	0 160	0 140	5 125	011	100	90	80	1.		1.										1.			16	
•			280 280	_	_		0 200	0 180	0 160	0 140	5 125	011 6	-	90		1.		1	1.									ŀ	ŀ	ŀ	18	
4	355 3	315 3	1000	-		10 220	10 200	0 180	0 160	-	-	011 0		-		1.		1.										·		ŀ	20	
400 4	355 3	315 3		_	-	220	0 200	081 00	-	-	-		-	1	1.	1													*	1	R	1
40 4	-	-	-	_		20 220	002 00	081 08	-	-	-	-		t,	1.		t											1.	1.	·	N	
400 400	-	-	_	-	50 250	20 220	10 200		-			1.	1.	1.	1	1		. 1								1		1.		Ĩ.	28	

5.20

•

2		ALL	1 	B B B B D D os Unis			YWAY		KEY	AND Y TH			
[pu	SHAFT METER.	KEY]	EY		K	EYWA	Y IN S		the second party in the		5	7
Above	1	Cr Sec	oss tion Height h	dius dius dius dius dius dius dius dius	Keynay width b (D10)	Depth in shaft, t ₁	Tolerance on t 1	Depth in D Hab, (;)	8	Radius, r ₂ (Max)	E	1 -	-
6 8 10 12 17 22	8 10 12 17 22 30	2 3 4 5 6 8	234567	0.16		1.2 1.8 2.5 3.0 3.5	+0.05	0.5 0.9 1.2 1.7 2.1	+0.1	0.16	1	126	0 6 15 56 70 90
30 38 44 50 58	38 38 44 50 58 65	8 10 12 14 16 18	8 8 9 10	0.40	8 10 12 14 16 18	4.0 5.0 5.5 6.0 7.0	+0,1	2.5 2.5 2.5 2.9 3.4 3.3		0.46		5 12	90 110 140 160 180 200
65 75 85 95 110	. 75 85 95 110 130	20 22 25 28 32	12 14 14 16 18	0.60	20 22 25 28 32	7.5 8.5 9.0 10.0 11.0		3.8 4.8 4.3 5.3 6.2	+0.2	0.6	-	56 63 70 80 90	220 250 280 315 355
150 170 200	150 170 200 230	36 40 45 50	20 22 25 28	1.00	36 40 45 50 +	12.0 13.0 15.0 17.0	+0.15	10.1		1.		100 110 125 140	400 400 400 400 400
290	260 290 330 380	56 63 70 80	32 32 36 40	1.6	56 63 70 80	19.0 20.0 22.0 25.0		12. 11. 13.	H+0	10 J I I I I	.6		1
75 85 95 110 136 150 170 200 230	440 500	90 100	40 45 50	2.5	90 100	25.0 28.0 31.0		14.	1	1	2.5		

15 2292 - 1963

DESIGN DATA - PSG TECH

5.21

(b)	1=	13	1.	5	6	н	10	12	14	16	18	20 2	12 2	5 2		32	36	40	45	50	
Height (h)	2	3	4	5	6	7	8	8	9	10	**	12	14 1	4	10	18	20	22	25	28	
(1)(1)	6	- 1	-	-	-	-	-	1.0	-	- 4200	-	100	- 17	-	-	-	-	-	1 - 1	-	
	8	8	-	-	-		-		-	-	-	- 1	-	-	H- 1	-	-		- 1	-	
	10	10	10	-	-	-			-		-	-	-	- 1	-	-	-	-	-	-	
1	12	12	12	12	1 -	-		-	-	-	-	-	-	-	-	-	-	-		-	12
1	14	14	1.4	14	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	8
t	16	16	16	16	16	-	1-	-	-	-		-	-	-			-	-1		-	2
F	18	18	18	18	18		-		-	-	-		-	- 1		-	-		-	1 -	1
· 1.	20	20	20	20	20	20	-				-	-	- 1	-	-			-	-	-	1
1	- 1	22	22	22	22	22	-	-	-	<u> </u>		-		-	.	+ -	-	-	_		4
L	-	25	25	25	25	25	25				-	- 1	-	-						1 -	1
-	- 1	28	28	28	28	28	28	-	-		-	-		-	-	-		-		1	-
	-	32	32	32	32	32	32	32	-		-	-	-	-	-	1	-				-1-
	-	36	36	36	36	36	36	36	-	-	-	-	-	-		1 -	-	-			-
5	- 1	-	40	40	40	40	40	40	40			-	-	-	· · · ·			e			-
	- 1	-	45	45	45	45	45	45	45	45	-	-	-	-		1 :				-	-
- F	- 6	-	-	50	50	50	50	50	50	50	50	-	- A	-	-	-	-	-	-	-	
- 1		, <u></u> ⊒a	-	56	56	56	56	56	56	56	56	56	-	-	-	-	-	- 1		- 1	
-		- 1	- [63	63	63	63	63	63	63	63	63	-	-	-	-	-			-
-		-	-	-	70	70	70	70.	70	70	70	70	70	70	-	-	-	-	- 1		-
-		-	-	-	-	80	80	80	80	80	80	80	80	80	80	and the second	-	-		-	-
-	1	- 11	- 1	-		90	90	90	90	90	90	90	90	90	90	1	20	-	-	-	-
	-		- 1	-	-	21	100	100	100	100	100	100	100	100	10	0 1	00	100	- 1	-	-
-	-		-	-	-	4	110	110	110	110	110	110	110	110	11	0 1	10	110	110	-	-
-	1	-		-	-			125	125	125	125	125	125	125	12	5 1	25	125	125	125	-
-	1.	-	-	-	-			140	140	140	140	140	140	140	14	0	140	140	140	140	140
	-	-	-	-	-		-		160	160	160	160	160	160	110	so	160	160	160	160	160
			-	-	-		-				180	180	180	180	2118	30	180	180	180	180	180
-	-	12.	- 1	-	-	-	-	-	-	180			200	20	_		200	200	200	200	200
	-	1.0	-	-	-	-	-	-	-	-	200	200	-	-	-	20	220	220	-		220
-	-	-	- 1	-	-	-	-	-	-		-	220	220	220		-			-	1	250
	-	1 -	_		-	6210	14	-	1.00	-	-	-	250			50	250		-	-	280
	-	-	-	-	-		-	-	2.		-	-	-	28	0 2	80	280	-	-	280	
-	-		-	-	-	-		-		-	-	1223	-	-	3	15	315	315	315	And in case of the local division of the loc	-
-	-		-	-	Η.	-	-				-	-		-		-	355	35:	5 355	355	35
-	-			-	-	-	-	-		-		-	-	-		-	-	40	400	400	40

DESIGN DATA - PSG TECH

5.22

Fits and Tolerance

Its a manufacturing consideration for the sizes of the product

Its relation between the dimensions of the mating parts Fit ?

The degree of tightness or looseness between the mating parts known as Fits

Three categories:

1.clearance,
 2.location or transition, and
 3. interference.

General example t

Hole and shaft assembly arrangement

1. Clearance Fit

Hole size > Shaft Size, there is clearance between the shaft and hole.

Examples of clearance fit are door hinges, wheel, and axle, shaft and bearing

2. Interference fit

Hole size < shaft size, then the assembly of parts made by means of forcing the shaft

Example : cotter pins in sleeve and cotter joint, Keys in couling,

3. Transition Fit

Almost hole size and shaft size are closer or equal or there sizes overlap

It is either clearance fit or interference fit

Example : coupling rings, Spigot mating

Clearance fit

Transition fit

Interference fit

The interference fits may be shrink fit, heavy drive fit and light drive fit.

Some basics

Nominal size= size provided in the drawing sheet

Basic size= production size, which might be nominal size

Example:

Dia 50 mm of shaft is required

Nominal or Basic size 50 mm

During machining , 50 will not be attained, the size may be lower or higher than the requirement, due to various errors. Eg. Machine error, operator error

50. 05 mm- upper size or 49.95mm – lower size Higher is upper limit and lower is the lower limit Representation= 50^{±0.05 mm} Limits: UL, LL

+0.05 mm is uL/uD--- denoted by ES/es -0.05mm is IL/ID----- denoted by EF/ef

What is the tolerance?

The difference between upper and lower limits of dimesions ES- EI= Tolerance es- ei = tolerance

Types

1. Unilateral---- variation of basic size in one direction either + or -

2. Bilateral----- variation of basic size in both direction + & -

Limits systems

- 1. HOLE basis system
- 2. Shaft basis System

1. HOLE basis system: hole size kept as constant, shaft size will allow to vary Denoted by Capital letters like H, G, L,,, etc Always lower devation is zero(EI=0)

2. Shaft basis System = Shaft size kept as constant and hole size allowed to vary Denoted by small letters like h,g,i,,, etc Always upper devation is zero(es=0)

DATA BOOK usage; 3.1. 3.3 to 3.17 pages

3.3 to 3.10 more important for the calculation

Problems

Hole size: 25.00 and 25.02 mm, shaft size : 24.97 andd 24.95mm

Tolerance calculation:

Hole: Upper limit- Lower limit of hole =25.02-25.00 = 0.02 mm

Shaft: upper limit – lower limit = 24.97-24.95 = 0.02 mm

Allowance: lower limit hole – upper limit shaft =25.00-24.97 = 0.03 mm

FUNDAMENTAL TOLERANCES OF GRADES 01, 0 AND 1 TO 16

Diameter	1		Visiture	s of a	olerai	nces i	n Mile	T-SURFACE		1		3 800	Servis	- 0.8	×01 m	and the second second		
Steps	1							Toda	ream.	e Gra	des							1
Am ma.ma	01		3	2	3	4	5	6	.7	- 25	- 94	10	11	12	13	14-	15.1	16*
For and and 3	1 49.3	1 9.5	1.9.8	1.2	2	5	-4	6	5.69	14	2.5	40	642.	003	1-00	250	400.1	64040
Oreger 3 The same same sta	24	100	1 1	1.5	2.5	4			12	1.8	30	44	75	120	1.800	SUDID.	4.910	7.940
Dwer 6 To avid inc 10	0.4	0.6	1 1	1.5	2.5		6	. 10	1.7	2.2	3.0	5.8	940	1.50	3,210	3400	5-840	SADAD!
for anted little 1.8	12.5	1.00.00	112	2	3			22.	1.60	27:	4.5	710	320	1.90	270	430	71040	1000
is asted inter 3-0	0.6		1.5	2.5	- 4			1.3	23	23	\$2	64	130	210	3.50	5.20	2.40	1 940
r and inc 20	0.6		1.5	2.5	-4	- 7	1.1	16.	2.5	39	0.2	100	1.642	2.50	5:540	6.20	11000	0 1 1 640
Antial lates (ND)	-0.8	4.2	2				1.9	19	340	-0.0	74	8:2(0)	E-164(D)	3-040	-	17.44	0 11 20	10 3 94
send Mar 120	1	4.5	2.5	4		5.65	1.7	22	2.7	54	807	1.400	220	3.54	3.40	1 879	0 1-40	122
	1.2	2	3.5	5	•	12	1.0	2.5	-104	4.5	1.040	190	2.50	4010	1 8 2	0 500		23
ated inc 259	2	3.	4.2	7	10	1.4	20	29	-00	72	11.2	14.2	290	-	-			50 2
	5	4	•		12	1.6	2.5	3.2	5.2		1.30	210	\$20	5.20	-			100 5
and smc 400	3	5	7		1.2	1.0	2.5	24	37	20	1.400	2.80	1.0440	-			1000	
4001	4	6		10	1.5	20	2.7	-00	4.5		155	250	-					5.00

"Up to 1 mm, Grades 14 to 16 are not provided

ESIGN DATA - PSG TECH

3.3

eÓ)

RUNNING AND SLIDING FITS

Combination of Hole and shaft	Quality of fit	Typical uses
H 6 g 5 Fine H 7 g 6 Normal H 8 g 7 Coarse	Precision	Small clearance - used in precision equipment under very light load - Bearings for accurate link work and for piston and slide valves - Also used for spigot or location fits.
H6 f6 Fine H7 f7 Normal H8 f8 Coarse	Close running	Widely used as grease or oil lubricated bearings having low temperature differences - bearings for gear shafts, small electric motor shafts and pump shafts.
H7 e7 Fine H8 e8 Normal H9 e9 Coarse	Normal running	Used for properly lubricated bearings with appreciable clearance. Finer grades for high speeds and heavy loads. Turbo generator and large electric motor bearings.
H 8 d 8 Fine H 8 d 9 Normal H 9 d 9 Coarse	Loose running	For plamber block bearings and loose pulleys
$ H8 \ e 8 \\ H8 \ b 8 \\ H9 \ a 9 Fine Fine H9 \ c 9 \\ H1 \ c 11 Fine Fine Fine H9 \ c 9 Fine Fin Fine Fine Fine Fine Fine Fine Fi$	Slack running or positional fit	Large clearance - not widely used.

DESIGN DATA - PSG TECH

3.4

	Π	55	4		¥	ŧŧ,	朝	9]#		1.			10P	120	122	1.8			-				174	-			-	##	-	
	11		# #	清	ŧ.	18	34	=	1	17	1	17	44	1.04	199	144	44	144	1	24	23	1	1	1	_				L	1
	1 [8	25	41	1	1	43	43	-	R			24	-	-			95	98	-		-	1949	-	**	-	4 4	¥.9	*5	-
1		15	ąş	\$2	-	Ŧ	78	8 P	20	1	1	1	77	77	177	74	_	-	17											-
1	2	2	朝	3¢	13	F)	17	肖彩	80				-	37	-	-	-	18	185	2.0		54	-	**)	-	87	84	¥5	■冊	
I	3	5	1	祥祥	ij,	1	18	8 4	17	-	Ľ				4.7				1.	1						-			-	-
1	-	+-	副	-	-	+	-	-		2		1	1	1	1															
1	南美	18	H	釋	深時	3	R 9	騎	幕幕	弓号	房町	-	劑	F	##	新出	4 4	**	# #	77	74	94	1 24	877	年約	97	春 谷	明	専用	43
	長泉		6 8	P.	月月	帮	1	FQ .	1	-			1	-	-	-	1	-	_	_	-	-	-1	4	+	-	_	-	-	_
	28	-	-	1	-		1	-	1		5.		1	1	1	-	1		1	1		- [1			1				í.,
	1	-	-	+	-	-	-	-	深 4	1	12	将导	4	3/3	学	時	14 1	2	-	710 -	FOF 10	-	1.15 A	100 1	17 9	9 4	17 19	译,1	# 章	写写
E.			#	+	-	-	1	+	-	+	-	-	1	-	+	+	+	+	-	+	4	+	+	+	+	+	+	+	-	-
r Steps	-	-	- 字句	1		2.5		一章	¢ q	R 8	味	ŧŧ	Ę	8 4	Ê 9	羽肉	3 3	-	15 -	1F# 17	-	10 9	5 3	-	19 18	*		a	13	朝
PUBLICIES.	-	-	朝	÷	+	-	-	1	1	+	1			+	1	1	1	+	1	-	-	-	-	-	1	+	+	+	+	-
+	**	-+	-	-	+	-	-	183	1	-	ą :	ŧ÷,	-81	-	* *	-	-	8 2	R 7	= =	-	-	7 8	-		-	-	7 8		1
H	50 3	-	-		1	-	-	-	1	1	+	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
t	===	+	-	-	-	ž.		# 8	49	=		4	tinis.	-	-		- 22	197	* *	-	R #	17 41	y 19:	7 8-	: *:	-	5 P	*	a 4	4
1	18 R	14	3	<i>qq</i>	Ξ.	1	98	-		1	-	1	-	1		-		-	1	+	-	-	-	-	-	+	+	+	+	
11 11	- 年時	8	R I	12	9 9	197	1	48.	\$Ę	43		-	\$\$	무무	99	89	87	89	4	197	- Q	-	**	-	-	8:) \$1	* *	* *	時
22	58	31	*	ų,	ŧŞ	18)	ş :	FF	\$5	\$ \$	20	2	18	# \$	ę.e	79	-	47	44	* *?	*	47	-	\$	- 47	-	-	-	-	1
-3	商調	55	19	-	博	33		4	92	87	173	17	7	94	动之	÷'n	37	극적	海海	30	\$7	英司	-	**	87	87	*	; a	9 *	14
-	5.8	ŧ¢	R 1	18	ş	市際	1	q 1	58 :	55	司司	7	3	現時	98	-	岸府	şη	44	44	4 9	44	86	88	유민	87	-	5 101	4 4	N¢.
-	月月 :	23	87	-	-	ŦĘ	7	3 9	14/1	19	38	÷	÷.	明	幕府	44	44	将	容 将	日寿	彩辉	89	64	44	称符	专子	- 年月	5	4 5	4
	×	×	×	1.	-	×	,	*	×	R	R		-	×	N	×	*	x	*	*	×	×	×	*	×	×	*	1.	*	N
-	0 0		0	0	1.			10	0	1		0	2	. 0	1	a	-		0	0	6	10	0	0	0	0	e	e	12	8

SION DATA - PSG TECH

3.7

1.0

3

DESIGN DATA - PSG TECH

_	100				-	-					BLE	ON I	OLE	RAN	CES	2									
	0	er		3	1						-					,									
4.9	8	-	3	6	10	10 18	11 24 30	30 40	40	Ta	Die	meter	Steps,	mm		-	-								
_		G	270	270	336	317	352		40 50	50 65	45 35	80 104	10)	126	12	1.144	1	-		-		-			
8.9	N	c	145	170	186	254	363	372	382 326	414	456	467	120	560	- 169	160	180 300	200	먨	꼛	1200	205	The T	_	
	N		149	140	150	150	212	212	242	264	178	300	425	450	£14	658 ASE	715 668	155	976 600	1650	1100	315 335	25 4	21	쎪
8	N	Q	60	70	115	13k 95	142 109	192	192	196	ACE IIII	25	3.30	340	31e 306	404	455 340	495	SN CT	614	1456	34	1158	1005	186
		G	28 14	38 20	47 15	59	13	12)	150	148	138	287 126	261 186	300	316 211	338 234	348	775	- MI		34		#13 689	和湯	-
2	N		le	22	28	32	40		15 54		64 40		2	10	148	1 1.14	14	111	100	30	-	340	548 448	*	115 444
57	N	G	17	10	13	16	44 10		98 25			3		-	B		-	385	-		59. Ud:		H		
-	-	c	2	16	20	24	28		н			3	5		40	_		*			8	1	10	- 0	-
15	N	G	:	5	6	1	- 7		9	1			í		54 14			41 19				-	5		-
	N		1	1		•		-			3	1		Ľ.,				10	-	-	87 21	1	8	- 2	
17	N	G	8 10	0		ĩ	0		6 0						38	-	-	0	-	-		-	1	1	
		G	0	12	8	18	n			1		3	6	-	-	-	-	0	-					. :	
18	N	G	14	11	22	27	33				6	5		-	1				_		•			1	1
H 9	N		25	31	35	45	52		35 0		1		1	-		1		23							
110	N	0	0	0	8		î		0 0				2		100			315					-		
		G	49 8	49	-55 U	70 ¢	1		00 0		20		96)	100	100	-	-	185	-			1			-
H da	N	a	69	75 B	90	115	139		60	1	80 T	Z	10	-	198	-	-	194	-					-	_
17	N	-	-	6		10	11	-	е Н	-	8	2			*	_				1			C		
		G	+	-6	-1	-5	-9		11	-	12	. 4	18		-24			50 -46		1	is .	1			8
Kń	N	G	:	1	2.2	2.4	3 -41		3		4				4	- 0		-34		4.14	5	1			
К 9	N	G	-10	3	5	6 -11	5-15		7 ' 18		5 21		3	100	Ц ,28	1.1		13 -48		3			1		19 45
17	N		4	0.	0	0	0		0	1 10			1			-	-	0	-	1.0			6.		1
		G	-11	-13	-15	-18	-24	-	8		39 .9	-	15	-	-10	- 13	-	-44	-		N N	4	87 18		47
*7	N	G	-14	-16	-1	-5 -25	-25	-	-10		39	-	15	-	-SI		_	-44	-	1	H.		0		*
. 2	N.	G	4	-1	-24	-11 -23	-14 -35		17 45		91. 51		5	1	-35			-05	-	- 3		1	-197		1-2
16	N		-14	-16	-20	-25	-31		38 54	-0	-53	-54 -45	-17 -17	-65 -110	-10 -108	-124	-113	-12) -19	-00	-445	-461 -403	-179	-530	-59	13
	. 1	G	-29	-24	-39	-36	-32	4	54	-42	.48	-55	-24 -311	-17 -117	-25	-41	-105	-40 -49	-125 -169	434	-150 -(80	-149 -236	-187 -244	-38	
57	N	G	-14	37	-12	.39	-45		59	-73	-78	-18	-711				-						0.00000		

Note : G - Go; N - No go; Tolerances in Microns

1 Micron = 0.001 mm = 1 × 10⁻⁶ m

3.9

Designation : Number- (hole)capital letter .IT gradeNo./(shaft)small letter. It grade No

Shaft designation : 40 H8/f7

Geometric mean diameter= Sqrt(D1 x D2) D1 and D2 are shaft range D1< Dgiven< D2

Tolerance calculation

i= 0.45 3VD +0.0001D_{GM} pg.3.6/ddb. UNIT III

• ME18503-Design Of Machine Elements

UNIT III DESIGN FOR SPRINGS

Design of Close coil helical springs under varying load condition. Design of Leaf spring, Disc Spring and Torsion spring

OBJECTIVE

This course will familiarize the design principles of springs under dynamic and static conditions

COURSE OUT COME 3 - CO3

1.Examining the close coil helical springs under variable loading . 2.Acquiring the knowledge of leaf, disc and torsion springs. What is spring?

a steel wire wound around an imaginary cylinder- Helical springs a steel wire wound around an imaginary cone - conical spring

Elastic member absorbs energy when it is loaded and releases the energy when it is unloaded

It will distort when loaded and recover its original shape when unloaded

General - coil spring

Springs classifications

- 2. Conical & volute
- 3.Torsion springs & spiral springs- bi-cycle hand lever brake, writng pads, toys, clocks
- 4. Leaf or laminated springs; pre stressed plates of different lengths held together by means of central bolt and clamps (U- clamps)
- **5.Disc or Belleville springs.** conical discs held together by central bolt Needed: high spring rate in compact unit.
- 6. Special purpose springs rubber , air or liquid, ring springs

Spring diagrams

Disc or Belleville Spring

Disc springs--- industrial uses, brakes, clutches piping- shock mounting

Rubber spring

Air spring

Uses/functions/applications

To absorb the shock or vibration as in-car springs, railway buffers, etc.

To measure the forces in a spring balance.

Apply forces in brakes and clutches to stop the vehicles.

Spring is also used to store the **energy** as in clocks, toys, etc.

Spring Terminologies

Spring stiffness(k): Load required to produce Unit deflection $\mathbf{k} = \mathbf{w}/\delta$ N/mm, w= load, δ = deflection

Spring Index (C): C= Dm/d - No unit Where Dm= mean diameter of coil d = wire diameter

Note: the clearance between the two adjacent turn is 1 mm always.

Pitch of the coil

$$p = \frac{\text{Free length}}{n'-1}$$

$$p = \frac{L_F - L_S}{n'} + d$$
where LF = Free length of the spring.
LS = Solid length of the spring,
n' = Total number of coils, and
d = Diameter of the wire.

Stresses

- 1. Shear stress by external load
- 2. Torsion at wire curvature- $T = F \times R$

Radius of curvature is neglected in static loading

to consider this radius of curvature, Wahl's factor used. K

DESIGN PROCEDURE spring compression spring

Step1: Find d, Dm, Do, & Di for the spring using Shear stress(pg.7.100/DDB)

Step2: Find the deflection of spring 'y' (Pg. 7.100/DDB) (either y or n based on The available either y or n

Step3: Find the stiffness of the spring 'q ' (Pg. 7.100/DDB)

Step4: Find Lf- free length of coil

Lf = Ls + y + 15% of y

Ls= nxd n= no. of turns, d- wire diameter.

Step 5: Find pitch 'p '

Step 6 ; check for buckling Pg.7.101/DDB

Step 7: Check for surging (optional step) pg.7.101/DDB

SPRINGS

				Helic	al Spr	ings				Р	axial load, kgf
		Circu	ilar Se	ction		Rect	angul	ar Sect	ion	D	mean diameter of spring, em
t	τ '= Κ	<u>. 8 Р</u>	D =	K8	w/C ed ²	r -	Q2 2 t	b ²		d C	diameter of wire, cm spring index, D / d
T	v =	SPD	° <u>n</u>	SPC	20	v =	$Q_1 \pi$	PD		ъ	breadth of wire, cm
F		Gd		Ĝ	Diek!	*		Gt'b		t	thickness of wire, cm
	q =	Gd			³ n	q =		13 b	2	n -	number of active coils
t	1	8 D'		11		TT		D'n	-	τ	shear stress, kgf / cm ²
L	. * 1	, Н						+		G	modulus of rigidity, kgf / cm 2
L	×		$\downarrow \downarrow$							y	deflection of spring, cm
	BOL 1.	•	1	++-						q	spring rate or stiffness, kgf / cm
	EAC	H	N	++-	++					к,	Wahl stress factor
	WAHL STRESS FACTOR, C 77 77	H								Q ₁ , Q ₂	factors for springs of . rectangular section
	THE L			OFFICIAL OF						U	resilience, kgf cm
	≩ 	NW	FOR VALVE AND		-N		LRAN	GĘ		f .	lowest natural frequency for circular coil helical springs, cycles per second
	1,0	П	1812	\$	8 1	0 13	14	16		Y	specific weight of spring
		-	30 0	771.0	ING I						material, kgf / cm ³
τ	$J = \frac{P}{2}$	<u>y</u>					-	b -		g	gravitational constant, 981 cm / s ²
	ahl st					3	T 🔛		-	L,	free length of spring, cm
к	s =	C-4	<u> </u> + -	0.615 C	-	a	AXIS	OF SPI	RING	L.	solid length, cm
ma	y be ol	taine	d from	the gr	aph als	io)				P	pitch of coils, cm
-	12	actor	e for	rectar	anla	wing	sectio			a	helix angle, < 12°
/ t	-	1.5	2	3	4	6	8	10	a	λ	solid deflection, cm
1	7.09	5.10	-	3.80				3.21	3		clearance between concentri
10 million (1990)		-	-				-	11000000000		-	springs

ú

DESIGN DATA - PSG TECH

. 7.101

S1 Design a helical spring subjected to a load of 1000 N for a deflection of 25 mm and the spring index is 5. The allowable shear stress is 420Mpa. Take modulus of Rigidity as 84 kN/mm^2.

DATA

Load W or P = 1000 N

C = D/d= 5 Y = 25 mm

[T]= 420 N/mm^2 G= 84 x 1000 N/mm^2 Step1: find d, Dm, etc refer 7.100/DDB

16

Step2:

Find the deflection of spring 'y' (Pg. 7.100/DDB) (either y or n based on

The available either y or n

 8PD ³ n	8 PC ³ n
 Gd4 -	Gd

LHS =	25				
RHS =	8x1000 x31.3	39xn/(84x10	^3 x6.28	3)	
			Nr	247473770	n
			Dr	130512323	
25	1.8961717	n		1.8961717	n
n=	13.18446				
n=	13	turns			

Step3 : Finding stiffness of the spring ' q '

ref. Pg.7.10	00/DDB			
q =	$\frac{Gd^4}{8D^3n} =$	Gd 8C ³ n		
D=	31.39	2-227-275		
 D= n=	6.28 13	mm nos		
G=	84000	N/mm [^]	2	
q =	[984 x 10^3)x (6.28	3)^4] /[8 x (31.39) [/]	^3 x
q=	40.56757	N/mm		

Step4: Find Lf- free length of coil

Lf = Ls + y + 15% of y

Ls= nxd n= no. of turns, d- wire diameter

STEP 4: Calcu	lation of Lf - free le	ngth of the coil.
Refer	Pg.7.101/DDB	
applyi	ng End conditions	
Alread	ly Assume d	
Plain E	ind	
ls= (dx	n)+d solid length	
lf = ls	+ y + 15% of y	

Lf = Ls + y + 15% of y

n=	13		
d=	6.28		
LS=	81.64	mm	[Ls = 13 x 6.28]
y=	25	mm	
15% of Y =	3.75	mm	

Now	
Lf=	81.64 +25+ 3.75
Lf =	110.39 mm

STEP 5: Find pit	ich p
$p = \frac{\mathrm{Fr}}{\mathrm{Fr}}$	$\frac{1}{n'-1}$
Lf=	110.39
n=	13
p=	110.39/(13-1)
P=	9.199 mm

STEP 6	Check for Buc	kling			
REFER p	g. 7.101/DDB				_
	LF/D> 3		Lf/d	< 3 = no k	ouckling
	Lf=	110.39			_
	D=	31.39			
	Therfore				
	Lf/D =	3.516549	Т	his shows	buckling is there
	Lf/D > 3,				_
	"Guidance si	upport is must	for the	e spring"	

Step 7	Check for solid	stress						
	Material selected: steel wire unalloyded cold drawn							
	for d= 7.00 r	nm	(Pg.7.105/DDB)					
	σu= kgf/mm	^2						
	σu =111	1110						
	allowable sh	ear stress is	=[420]					
		420< 0.5 x d	JU					
	420 <	555		safe design/	materia	al select	ion is co	rrect.

S2: design and draw a valve spring of a petrol engine for the following specifications

Spring load when the valve is open=400 N Spring load when the valve is closed = 250 N Maximum inside diameter of the spring= 25 mm Length of the spring when the valve is open=40 mm Length of the spring when the valve is closed = 50 mm Maximum permissible stress = 400 Mpa.

DATA

Basic needs	С, у,	Load
-------------	-------	------

C= ? Y= ? Dm=?

But "Di " is given in the

Y = can be calculated by comparing length of spring when valve is opened and closed

Closed length- open length Y= 50 – 40 = 10 mm *Load is max: 400 N for shear stress

*Load for Y: max- min: 400-250= 150 N

DATA				
W o=	400	N	opened	
Wc=	250	N	closed	
C = D/d	???			
Y =	???	mm		
[T] =	400	N/mm^2		
G =	84000	N/mm^2		
lenght of sprin	ng (opened)Lo		40	mm
length of close	ed coil Lc		50	mm
Inside dia. Of	coil (Di)		25	mm

1. y =	Lc-Lo	
	10	mm
2. C =D/d	(to be assume	ed from the Ks graph)
C=	5	(initial assumption)
	Ks=	1.3
3. Load		
Max=	400	(for shear stress)
Max- Min	150	(for yequation)

Step1	Findin d,	Dm etc			Н			H	++-	+++	+++	
				¥ .	5	H			+		H	
	Refer Pg.7	.100 /DDE	5	TOR,	Ĥ	Ŧ			Ħ		Ħ	_
t '= K	<u>8PD</u> , πd ^J	=	K, <u>8₩C</u> πd ²	WAHL STRESS FACTOR,	H	AND	RINGS					
				3	MIN	FOR VALVE	UTCH SPRI	-	NOR		NGE	
P=	4	00		1.0	Π	R.	C.					
Pi=	3.1	.41			2	•	6 S	8 PRIN	JO G INDE		14 10	
(T) =	4	00				Ů.				¥.		
C=		5 <mark>(Assu</mark>	med)									
LHS =		400										
RHS =	[1.3 x (8 x	400 x 5)]/((3 .141 x d^2	2)								
	= 6622.094	487 /d^2										
LHS	=	RHS										

LHS		=	RHS		
	400	=	6622.09	/d^2	
d^2 =			16.5552372		
d		=	4.06881275	mm	
		d=	4.5	SWG pg.7.105	/ddb

Now	to	find	Dm

Dm=	Di+d
Do=D)m+d

C= D/d=5	Corrected C= 6.556 C= 6.6
Dm=	29.5mm
D0=	34mm

Average values of Tensule Number of Wite eval dram Special steel and temperad Special steel and temperad Special steel and temperad One Gr 1 Gr 2 Gr 3 Gr 4 ftSW @VW **1.8 *1.D **2.8 0.1 - 235 -					PROPE	RUES		RING S	h, kgf /	mm ² ,	d.	-
Diameter mtm Steel wire unalloyed cold drawn Mardreem-red wire unalloged drawn Mardreem-red wire unalloged wire unalloged wire unalloged wire unalloged wire unalloged wire unalloged u.s. W W **1.8 *1.D **2.8 0.1 - 273 Gr 4 78W 97W **1.8 *1.D **2.8 0.1 - 233 - <		_	_	-	verage	values e	d Tensile	steel oil		transfer 1	for mode	rately
of mire mm Gr 1 Gr 2 Gr 3 Gr 4 15W (B V V) 1.0 0.1 - - 238 -	Diamo	-+	-	i dentre	unalloy	red			ele	alles		*2 I
mma Gr 1 Gr 2 Gr 3 Gr 4 100 -			8	cold	drawn	A REAL PROPERTY.		⊕VW	**1 \$	"1D	1.23	
0.1 - - 288 - - - - - - - - - - - - - - - - - - 210 0.5 170 205 244 283 245 190 180 - . 210 1.0 160 194 228 245 190 180 180 200 1.5 152 184 214 231 180 165 190 180 200 2.0 145 175 203 209 166 155 180 170 195 3.0 135 160 187 202 162 151 180 170 195 3.0 135 160 187 202 162 151 180 190 190 4.0 128 151 173 188 185 148 175 162 15	mm	1	ar 1			Gr4	-		- 81			-
0.5 170 205 244 300 180 . . 210 1.0 160 194 228 245 190 180 . . 210 1.5 152 184 214 231 180 165 190 180 200 2.0 145 173 203 220 172 160 190 180 200 2.0 145 173 203 209 166 155 180 170 195 3.0 135 160 187 202 162 151 180 170 195 3.6 130 154 178 193 158 148 170 160 190 4.0 128 151 173 188 158 148 170 160 190 4.0 121 142 163 178 154 145 162 155 185	0.1	ť		1.	-	-		1			210	210
1.0 160 194 220 180 165 190 180 200 1.5 152 184 214 231 180 165 190 180 200 2.0 145 175 203 220 172 160 190 180 200 2.0 145 175 203 209 166 155 180 170 195 2.5 140 167 193 202 162 151 180 170 195 3.0 135 160 187 202 162 151 180 190 195 3.6 130 154 178 158 148 170 160 190 4.0 128 151 173 188 158 145 145 162 155 185 5.0 121 142 153 156 170 142 155 150 180	-	1	70	205			190	180				200
1.5 152 184 174 220 172 160 190 180 220 2.0 145 175 203 220 172 160 190 180 220 2.5 140 167 193 209 166 155 180 170 195 3.0 135 160 187 202 162 151 180 170 195 3.6 130 154 178 193 158 148 170 160 190 4.0 128 151 177 188 158 148 170 160 190 4.0 128 151 163 178 154 145 162 155 185 4.0 121 142 155 150 180 180 180 180 180 155 150 18	1.0)	60	194			180	165	190			200
2.0 145 175 2.00 166 155 180 110 172 2.5 146 167 193 209 166 155 180 110 195 3.0 135 160 187 202 162 151 180 170 195 3.6 130 154 178 193 158 148 170 160 190 4.0 128 151 177 188 158 148 170 160 190 4.0 128 151 177 188 158 145 162 155 185 4.0 121 142 163 178 154 145 162 155 180 5.6 117 138 158 172 150 142 155 150 180 6.0 115 132 <	1.5	1	52	184			172	160	190			195
2.5 146 167 152 202 162 151 180 170 193 3.0 135 160 187 202 162 151 180 170 193 3.6 130 154 178 193 158 148 170 160 190 4.0 128 151 177 188 158 148 170 160 190 4.5 125 147 169 184 154 145 162 155 185 5.0 121 142 163 178 154 145 162 155 185 5.6 117 138 158 172 190 142 155 150 180 6.0 115 135 156 170 160 142 155 150 180 6.5 113 132 151 165 146 138 150 145<	2.0	1	15	175			166	155	180	170		195
3.0 135 160 187 200 158 148 170 160 190 3.6 130 154 178 193 158 148 170 160 190 4.0 128 151 173 188 158 148 170 160 190 4.5 125 147 169 184 154 145 162 155 185 5.0 121 142 163 178 154 145 162 155 185 5.6 117 138 158 172 150 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 17	2.5	H	10	167				151	180	170		-
3.6 130 154 176 157 158 148 170 160 190 4.0 128 151 177 188 158 148 170 160 190 4.5 125 147 169 184 154 145 162 155 185 5.0 121 142 163 178 154 145 162 155 185 5.6 117 138 158 172 150 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 160 146 138 - - 170 <td>3.0</td> <td>13</td> <td>5</td> <td>160</td> <td></td> <td></td> <td></td> <td>148</td> <td>170</td> <td>160</td> <td></td> <td>19</td>	3.0	13	5	160				148	170	160		19
4.0 128 151 173 160 154 145 162 155 185 4.5 125 147 169 184 154 145 162 155 185 5.0 121 142 163 178 154 142 155 185 5.6 117 138 158 172 190 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 160 146 138 - - 170 8.5 104 122 140 153 140 - - - 70	3.6	13	0	154		-		148	170	160	190	19
4.5 125 147 109 109 109 109 109 109 109 109 109 109 109 105 185 185 185 185 185 185 185 185 185 186 178 154 142 155 150 180 5.6 117 138 158 172 190 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 160 146 138 - - 170 8.5 104 122 140 153 140 - - - 7 -	4.0	12	8	151				145	162	155	185	18
5.0 121 142 163 178 129 142 155 150 180 5.6 117 138 158 172 150 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 160 146 138 - - 170 8.0 107 124 143 157 140 - - - 170 8.5 104 122 140 153 140 - - - -	4.5	12	5	147					162	155	185	18
5.6 117 138 138 172 150 6.0 115 135 156 170 150 142 155 150 180 6.0 115 135 156 170 150 142 155 150 180 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 160 146 138 - - 170 8.0 107 124 143 157 140 - - - 170 8.5 104 122 140 153 140 - - - 170 8.5 104 122 140 153 140 - - - - 9.0 102 126 138 <td>5.0</td> <td>12</td> <td>1</td> <td>142</td> <td></td> <td></td> <td>-</td> <td></td> <td>155</td> <td>150</td> <td>180</td> <td>18</td>	5.0	12	1	142			-		155	150	180	18
6.0 115 135 136 170 122 6.5 113 132 151 165 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 560 146 138 - - 170 8.0 107 124 143 157 140 - - . 170 8.5 104 122 140 153 140 - . . . 9.0 102 126 138 151 140 - . . . 9.5 101 117 134 - 140 - . . . 10.0 110 115 132 <	5.6	11	7	138	_	-			155	150	180	18
6.5 113 132 151 103 140 120 7.0 111 129 149 164 146 138 150 145 175 7.5 109 127 146 360 146 138 - - 170 8.0 107 124 143 157 140 - - . 170 8.5 104 122 140 153 140 - - . . 7 9.0 102 126 138 151 140 - - . <	6.0	11	٤	135					150	145	175	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5	113	1	132						145	175	17
7.5 109 127 146 560 146 138 - 8.0 107 124 143 157 140 - - - 170 8.5 104 122 140 153 140 - - - - 7.5 9.0 102 126 138 151 140 - - - - 9.5 101 117 134 - 140 - - - - 9.5 101 117 134 - 140 - - - - 10.0 100 115 132 - 135 - - - - 10.5 - 112 - - 135 - - - - 10.0 0 110 - - 135 - - - -	7.0	111		129	149	1.5.1			-		170	17
8.0 107 124 143 157 140 - <	7.5	109		127	146						-	17
8.5 104 122 140 153 140 - <	8.0	107		124	143	157			-	-		1
9.0 102 126 138 151 140 - <	8.5	104		122	140	153	140	2		-	-	+
9.5 101 117 134 - 146 - <th< td=""><td>9.0</td><td>102</td><td></td><td>120</td><td>138</td><td>151</td><td>140</td><td>•</td><td>1</td><td>-</td><td></td><td>-</td></th<>	9.0	102		120	138	151	140	•	1	-		-
100 115 132 - 135 -	9.5	101	T	117	134		140	1		-		-
1.0 0 110 135	0.0	100		115	132		135					-
1.0 0 110 135		2	T	112			135	1.4			1. 1.	-
	-	0	T	110		-	135				-	
2.0 . 106 135		-	T	106	.		135			1	+	
2.5 - 105 135		-	-				135		15			
3.0 - 104 135	-	-	1	104	.	-	135		+		-	

W intended for value springs subjected to high dynamic stresses

* 1D and 2D intended for springs subjected to dynamic loads

** 1S and 2S intended for springs subjected to static loads

IS: 4454 - 1967

DESIGN DATA - PSG TECH

7.105

Step2: Find the deflection of spring 'y' (Pg. 7.100/DDB) (either y or n based on The available either y or

n

	10		
	10		
_	6.55		1
8	\$x150 x(5)^3xn/(84x10)^3 x 4.5)	
		Nr	150000n
		Dr	378000
10	0.8943715n		0.3968254n
	11.181036		
	12 turns		
<mark>id co</mark> r	nditions: plain end (As	ssumed)	
	10	10 6.55 8x150 x(5)^3xn/(84x10 10 0.8943715n 11.181036 12 turns	10 6.55 8x150 x(5)^3xn/(84x10^3 x 4.5) Nr Dr 10 0.8943715n 11.181036

n= n

STEP3: Finding stiffness of the spring 'q'

ref. Pg.7.100/DDB

D=	29.50mm
d=	4.50mm
n=	12nos
G=	84000N/mm^2

q = [(84 x 10^3) x (4.5)^4] / [8 x (29.5)^3 x12]

q= 13.976295N/mm

STEP 4: Calculation of Lf - free length of the coil.

Lf =	<mark>65.5</mark> mm

Note:

To find Lf, the Y max to be obtained = (Y /difference ofload) x max.load Lf = 54 + (10/150*400) + 0.15*(10/150*400)0.06666667 84.6666667 =

26.6666667

4

STEP 5: Find pitch 'p '

$$p = \frac{\text{Free length}}{n' - 1}$$

Lf=	65.5
n=	12

p=	65.5/(12-1)
P=	5.955 <mark>mm</mark>
	6mm

STEP 6 Check for Buckling

REFER pg. 7.101/DDB

LF/D< 3

Lf=	65.5
D=	29.50
Therfore	

Lf/D = 2.22033898

No guidance required, buckling is zero

Surging of spring

it must be prevented or it will cause failure of spring

Time interval of applied load/force= time taken by the wave propagation to and fro betweenth Support and load taking end.

Resonance will occur

f =
$$\frac{(q/m)\frac{1}{2}}{2} \frac{d}{\pi D^2 n} \sqrt{\frac{G g}{8 \gamma}}$$

Charles

S3: A safety valve of 60 mm diameter is to blow off at a pressure of 1.2 N/mm^2. It is held in its seat by a close coil helical spring. The maximum lift of valve is 10 mm. Design a suitable compression spring of spring index 5 and providing an initial compression of 35 mm. The maximum shear stress in the material of the wire is limited to 500 Mpa. G=80kN/mm^2.

DATA Valve seat= 60mm Pressure=1.2 N/mm^2 Y= 10mm C=5 Allowable shear stress=500 N/mm^2 Initial compression = 35 mm G= 80x 10^3 N/mm^2.

value Seat I additional to Expan value value Pre yere is the gorce or feed P= For A · W = P. A. [A= II drahe Ymax: Inticel Compressi + Additional (souper value) Yrotel = 35 + 10 = A5mm.

C	3	4	5	6	7	8	9	10	11	12	13
T i kgf/cm ²	1700	1600	1430	1300	1160	1000	930	830	760	690	50
	0 5	ihot o /ivo A	n Y15 I cam	era				ကေရေ	9707	ARR P	τí ελέ

DESIGN PROCEDURE for compression spring –varying load

Step1: find d, using soderberg eqn. for spring.7.102/DDB) Find Mean load, amplitude load, Tm &Ta, finally find 'd'

Step2: Find the deflection of spring 'y' (Pg. 7.100/DDB) (either y or n based on The available either y or n

Step3: Find the stiffness of the spring 'q ' (Pg. 7.100/DDB)

Step4: Find Lf- free length of coil

Lf = Ls + y + 15% of y

Ls= nxd n= no. of turns, d- wire diameter.

Step 5: Find pitch 'p '

Step 6 ; check for buckling Pg.7.101/DDB

Step 7: Check for surging (optional step) pg.7.101/DDB

S3. A helical compression spring made of oil tempered carbon steel, is subjected to a Load which varies from 600N to 1600 N. The spring index is 6 and the factor of safety is 1.5. The yield stress in shear is 700MPa. The endurance in shear is 350 N/mm^2. the compression at the maximum load is 40 mm. Take 80GPa. Design and draw the spring.

DATA Max load= Min load= C= [T] = G=	70	00N 6 00N/mm^2 80Gpa N/m^2
[T_1] = in shear n= Y= Refer Pg.7.102/BBB		50N/mm^2 .5

Ţm=?		(8 x Ks xPm x C)/(3.141 x d^2)
	=	21012.4 (1/d^2)
Ţa=?		(8 x Ks xPa x C)/(3.141 x d^2)
	=	9551.1 (1/d^2)

se soderbe	rg relation 7.102	2		
- <u>t</u> e	$\frac{\tau_x}{\tau_y} + \frac{2\tau}{\tau_z}$	A.4		
	LHS=	1/1.5	0.66667	
		1 term		2 term
	RHs=	16.3733	+	54.5777
		d^2		d^2
	0.6666	7 =	70 951	(1/d^2)
	0.0000	/ -	70.551	(1/4 2)
	d^:	2 =	106.427	
		d =	10.3163	
Std.	7.105/ddb	d=	10.5	mm

Cxd :	63	mm
Dm+d =	73.5	mm
Due d -	F2 F	
Dm-a =	52.5	mm
	Dm+d =	C x d : 63 Dm+d : 73.5 Dm-d = 52.5

Pitch=15mm

Leaf Spring Design

What is ?

A number of curved or cambered plates held together by by means of Centre bolt or shrank at its middle. Also known as semi – elliptic laminated lea spring. – (carriage spring)

The leaves are two types 1. Full length leaves or master leaf. 2. graduated leaves

To avoid digging action between the leaves, the graduated leaves end are trimmed

To have curved or triangular shapes.

Master leaf has eyes at its ends. Through which , hanger or shackle pin are inserted And supports the structure.

Widely used in automobile suspension systems

NIPPING IN LEAF SPRING

Stress in the full length leaves is 50% greater than the stress in the graduated leaves. When the load is gradually applied to the spring, the full length leaf is relieved of the initial stress and then stressed in opposite direction. Such a pre stressing obtained by a difference of radii of curvature is known as nipping.

Design procedure for laminated spring

Leaf spring is treated as cantilever beam

Springs with full length leaves

Refer Pg.7.104/DDB

Objectives

1. If the sizes b and t of the leaves are given find stress induced and Y deflection , nip

2. Stress will be given, b & t to be calculated

Step1. Cal. Of σb pg.7.104/DDB

Step2. cal of y deflection

Step3. cal. Of Nip h

When you have extra full length and graduated leaves, the same method to be followed, one step to be added as follows

Step-4 : find the all the leaves length

Treating the spring as a candideve beam of
uniform strength.

$$\frac{\sigma_{k} - \frac{6FL}{1} + y - \frac{6PL^{2}}{Enbt^{2}}$$
Nip, $h = \frac{2PL^{2}}{nBbt^{2}}$
Leas as the clip bolis

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{k}+2n_{g})}$$
Spring with extra full length leaves

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{k}+2n_{g})}$$

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{g}-1)}$$

7.104

2

LS1:A truck spring has 10 leaves and is supported at a span of length 100cm with a central band of 80 mm wide. A load of 6 kN is applied at the centre of the spring whose permissible stress is 300 Mpa. The spring has the ratio of total depth to width of about 2.5. Design the spring.

DATA	
Load 2P=	6000N
P=	3000N
Central band	
a =	80mm
[σb] =	300N/mm^2
span (2L)	1000mm
L =	500mm
No.of leaves (n)	10
assume ne=	2 <mark>(at least 1 and maximun 3)</mark>
assume ng=	8
n= ne+ng	-
Effective length=	2L-a
0	920mm
now new l=	460mm

					Ħ
atio= Total d	epth of sp	ring/ wid	lth		H
otal depth= r	nxt				
readth= b					
herfore ,	nt/b=2.5				
	b=nt/2.5				
	b=4t	[n=10]			
bjective to f	ind b & t				
objective to					
and the second se		marten trail	length	leaves	eqn.
Step1: find	the state of the s	extra fui			
Step1: find refer pg.7.10	the state of the s	extra fui			
refer pg.7.10	04/DDB				
refer pg.7.10	04/DDB				
refer pg.7.10	04/DDB				
refer pg.7.10	04/DDB				
refer pg.7.10	04/DDB				
$\sigma_{be} = \frac{1}{bt^2}$	04/DDB 18 P L (3 n . + 2 n .				
refer pg.7.10 $\sigma_{be} = \frac{1}{bt^2}$ P=	04/DDB 18 P L (3 n + 2 n) 3000				
refer pg.7.10 σ _{be} = be ² P= L=	04/DDB 18 P L (3 n + 2 n) 3000 460				
refer pg.7.10 σ _{be} = bt ² P= L= b=	04/DDB 18 P L (3 n + 2 n) 3000 460 4t				

LHS =						
	300					
RHS=						
	Nr=	18 x 3000 x 460 =		=	24840000	
	DR=	4t.t^2[(3.2)+(2.8)]			88	t^3
					282272.7	(1/t^3)
=	<mark>282273</mark>	<mark>(1/t^3)</mark>				
RHS	=	LHS				
300	=	282273	(1/t^3)			
t^3	=	940.91				
t	=	9.7767				
t	=	10	mm			
now, b	=	4 x t				
	=	40	mm			

step4: L	oad e	xreted on	band cl	ips	
	Рь=	$\frac{2n_sn_s}{n(2n_g+3)}$	P n.,)	Pg.7.104	/DDB
Pb		436.364	N		
tep5. Find t	he lengt	hs of the leave	S		
	Fisrt st	art with small I	eaf as l1		
th leaf leng	th= effe	ctive length/(n	-1) x n1 + ln	efective leng	th
	Effectiv	/e length=	920		
neffecctive	length-	n= a=	10 80		
neneccive	iengui-	a-	00		
		n=	2		
th loof					

nth leaf							
1	1st leaf=	182.22	mm	Ln=(920/	Ln=(920/(10-1) x1) +80		
2	2nd leaf=	284.44	mm				
3	3rd leaf=	386.67	mm				
4	4th leaf=	488.89	mm				
5	5th leaf=	591.11	mm				
6	6thleaf=	693.33	mm				
7	7th leaf=	795.56	mm				
8	8th leaf=	897.78	mm				
9	9th leaf=	1000.00	mm				
10	10th leaf:	1102.22	mm				
But Maste	rleaf 🖌 🖌	¥					

Some special kind problems

Conditions Gree believerte -(to) is office "- entrone the disconcessor in freed C-> equing sucher in nerformment ing toralled S-row Trophes. rungton of the Koning also service completion is / ensures Jalida 1 reconstruction Dia - given. Di grieco Anter + -sehne h zHc - Candition 463 to be do Springe convention representation Spring assaingerment form for Springs in screeks Note: , Load Range . _ stutte only 2. Varying load / fluctuatio lovel.

Sp2.

Design a spring for spring loaded safety value for the following condition

- **Operating pressure=1 Mpa**
- Diameter of the valve seat =110mm
- **Design shear stress or the spring =360MPa.**
- G= 82GPa.

The spring is kept in the casing of 130 mm inner diameter and 400 mm long, The spring should be at maximum lift of 6 mm when the pressure is 1.08 MPa.

Answers C – to be assumed 4/5/6

Load: operating load and maxi load to lift the spring

Load = P x area of valve seat, d=110mm

Load1-load2 = N Y=6 mm

1. Find Dm, Do is = Di= Do

P= mm

Springs in Series

- Consider two springs with force constants k₁ and k₂ connected in series supporting a load F = mg.
- Let the force constant of the combination be represented by k
- For the combination, supporting the load F=mg:

$$F = kx$$
 (where $x =$ the total stretch)

and $x = \frac{F}{k}$

For each spring
 the bottom supports mg=F and stretches by x₁

$$F = k_1 x_1 \quad or \quad x_1 = \frac{F}{k_1}$$

 the top spring support mg plus the weight of the bottom spring (which is negligible -Thus F is the stretching force for both springs)

$$F = k_2 x_2 \quad or \quad x_2 = \frac{F}{k_1}$$

The total stretch

$$x = x_1 + x_2 \quad or \quad \frac{F}{k} = \frac{F}{k_1} + \frac{F}{k_2}$$

and $\boxed{\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}}$

Springs in Parallel

- Consider two springs with force constants k₁ and k₂ connected in parallel supporting a load F = mg.
- Let the force constant of the combination be represented by k
- For the combination supporting the load F=mg:

F = kx (where x = the total stretch)

- The two individual springs both stretch by x but share the load ($F = F_1 + F_2$) and $F_1 = k_1 x$ while $F_2 = k_2 x$
- Thus the total force is

 $k = k_1 + k_2$

and

$$F = F_1 + F_2 \qquad or \qquad kx = k_1 x + k_2$$

Design procedure for disc or Belleville spring

Used: Less or compact space need high stiffness

- Step1 Find load 'P' or 'Y' on the spring
- Refer Pg. 7.104/DDB,
- P=? Based on data , iF 'p' given, find y or vice versa

Step2. Find stress "σ " on the spring Refer Pg. 7.104/DDB,

σ=?

Prior to the above steps

TO be calculated M, C1 & C2.

Treating the spring as a candideve beam of
uniform strength.

$$\frac{\sigma_{k} - \frac{6FL}{1} + y - \frac{6PL^{2}}{Enbt^{2}}$$
Nip, $h = \frac{2PL^{2}}{nBbt^{2}}$
Leas as the clip bolis

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{k}+2n_{g})}$$
Spring with extra full length leaves

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{k}+2n_{g})}$$

$$\frac{\sigma_{kg} = \frac{12PL}{bt^{2}(3n_{g}-1)}$$

7.104

2

SP3 Design a disc spring or the following specifications Spring is made of 4 mm steel sheet has 120 mm outer diameter and 60 mm inner diameter . It is dished by 5 mm . Calculate when deflection of the spring is 2.5 mm due to an axial load P. Also calculate the stress induced in the spring take E=200kN/mm², Poisson's ratio as 0.3

t= 4, do=120, di=60 mm, h=5, y=2.5mm, E=200 x 10^3 N/mm^2

Answers:

UNIT IV

• ME18503-Design Of Machine Elements

UNIT IV DESIGN FOR RIVETED AND WELDING JOINTS, FASTNERS

Rivet – Types of rivet joints, Caulking and fuluring, Design of riveted joints for structural and pressure vessels. Eccentrically loaded rivet joint, Welding – Welding symbols, Design of welded joints under eccentrically load. Geometry of thread forms, Terminology of screw threads.Design of screws and bolts.

OBJECTIVE

•This course will enable to check strength of fasteners kind of both rivet and welding.

COURSE OUT COME 4 - CO4

Proficient in Design of riveted joint and welding joints under eccentric loading

Designs

- 1. Rivet design under axial load and eccentric loading
- 2. Welding design under axial load and eccentric loading

Welding

What ?

joining metal by heat and with or with out application of pressure

Why?

Large size parts can not be manuactuterd by casting process

Ex. Ship buliding

Types:

Lap joint butt joint joining method

other types are there

Types of Welded Joints:

- Log joint or fillet joints
- h. Battjort
- (a) Types of fillet paint.

1)Single transverse 2) Double transverse

Throat

Understanding of fillet weld

Strength of Transverse Fillet Welded Joint:-

Consider a single transverse fillet weld.

ΔABC is a right angle isosceles triangle Let, t=BD=Throat thick. In mm Sw=AB=BC=size of weld Lw=Length of weld in mm <BAC=<BCA=45°

T= sin45 x h

Objectives of the weld design

```
Weld size as "h" or "length"
(both axial load and eccentric load)
```

Load = area x stress

Area of throat of weld bead or run or fillet

Stress= tensile and shear are major in consideration

bending will also be considered based on the structure and load application

3 fillets

1- set parallel fillet or double parallel Fillet

1. Transverse i fillet

WP1 A plate 75 mm wide and 12.5 mm thick is joined with another plate as shown in figure The maximum tensile and shear stresses are 70 MPa and 56 MPa respectively.

Data Width plate = 75 mm

H= 12.5 weld size L1= Width of plate =75 mm

L2=?

Total load by the weld joint (Tensile Load)

Load by L1 by P1 single

P = Throat area × Allowable shear stress = 0.707 s × $l × \tau$ Load by L2 by P2 double

 $P = \text{Throat area} \times \text{Allowable shear stress} = 0.707 \text{ s} \times l \times \tau$

Step1: Cal. Of total load P= stress x area

Stress= 70 Mpa

Area= 75 x 12.5 P= 65 625 N

Step2: cal. Of Load P1

P1= 0.707 x h x l1 x σt = 0.707 x h x 75 x 70/56

h= plate thickness= 12.5

P1= 46397 N

Step3: cal of L2

Use P2= 1.414 h x L2 x T (2 Single fillet = 2×0.707 h)

- = 1.414 x h x 56
- = 990L2 N
- **Now P**= **P1** + **P2**
- 65 625 = 46397 38 664 + 990 L2

L2=19.43 27.2 + weld size

Weld size = 12.5 L2= 39.7 31.93 mm

Important pages to be used from DDB

11.3
11.4
11.5
11.6

General information

11.1 & 11.2

DESIGN DATA - PSG TECH

13

PLATE THICKNESS AND WELD SIZE

	s, mm 3 to 5 6 to 8 10 to 16 18 to 24 24		4 261	0 35 0	over 38				
Weld size, mm		3	3		10	1	4	20	
• Permissible static	load per c	m length :	(Mild S	Steel Fillet	welds)				
1		F	ermissi	ble static	load, kg	f/cm			
Weld size mm		Bare Electrode			Covered Electrode				
	in tens	ion	in shear		in tension		in shear		
3	170		135		210		170		
4	225	1	180		280		22	5	
5	280		22	5	3.50	S	28	D	
6	335		270	0	420		33	5	
8	450		360	3	560		45	0	
10	560		450	0	700	2.2		D	
12	670	1	540		840		670		
14	785	61	630		980		785		
16	900		720		1120		900		
20	1120		900		1400		1120		
*For machine weldi	ng increase	the permi	ssible les	ad by 25 to	30 %			.0	
*For machine weldi	ng increase GN STR	the permi	or w	ad by 25 to	30 % JOINTS	, kgf / o			
*For machine weld DESI Kind of weld and	ng increase GN STR	the permi	OR W	ad by 25 to	30 % JOINTS	, kgf / d igue Des tural	cm ² ign Stres		
*For machine weldi DESI Kind of weld and stresses	ng increase GN STR	the permi ESSES F Bare	OR W	ed by 25 to ELDED	30 % JOINTS Fat Strue	, kgf / d igue Des tural	cm ² ign Stres	ses Stoels 10 ⁴	
*For machine weldi DESI Kind of weld and stresses	GN STR	the permis ESSES F Bare ctrodes Reversed	OR W Co Eles Steady	ed by 25 to ELDED vered ctrodes	30 % JOINTS Fat Struc Ste 2 × 10 ⁶	, kgf / o igue Des tural els 10 ⁵	cm ² ign Stres Alloy 2 × 10 ⁶	ses Stoels	
*For machine weld DESI Kind of weld and stresses Butt Welds	GN STR Elec Steady load	e the permis ESSES F Bare strodes Reversed load	OR W Co Elec Steady laad	ed by 25 to ELDED evered ctrodes Reversed load	30 % JOINTS Fat Struc Struc Ste 2 × 10 ⁶ cycles 1100	, kgf / d igue Des tural els 10 ⁵ cycles 1250	ign Stres Alloy 2 × 10 ⁶ cycles 1150	ses Steels 10 ⁴ cycles 2300	
*For machine weld DESI Kind of weld and stresses Butt Welds Tension	GN STR Elec Steady load 900	ESSES F Bare strodes Reversed load 350	OR W Co Elec Steady laad	ed by 25 to ELDED evered ctrodes Reversed lond 550	30 % JOINTS Fat Strue Ste 2 × 10 ⁶ cycles 1100 1 - 0.8 r 1250	igue Des tural els 10 ⁵ cycles <u>1250</u> 1-0.5 r 1250	$\frac{1150}{1 - 0.5 \text{ r}}$	ses Steels 10 ⁴ cycles 2300 1-0.6	
*For machine weld DESI Kind of weld and stresses But Welds Tension	GN STR Elec Steady load 900	ESSES F Bare strodes Reversed load 350	OR W Co Elec Steady laad	ed by 25 to ELDED evered ctrodes Reversed lond 550	30 % JOINTS Fat Strue Ste 2 × 10 ⁶ cycles 1100 1 - 0.8 r 1250	igue Des tural els 10 ⁵ cycles <u>1250</u> 1-0.5 r 1250	$\frac{1150}{1 - 0.5 \text{ r}}$	ses Stee 1 cyu 23	

DESIGN DATA - PSO TECH

11.4

.

Outline of welded joint	BENDING about horizondal axis XX, Z w	TWISTING about centroidal axis, J "
x	$bd + \frac{d^2}{3}$	$\frac{(b + d)^3}{6}$
$\frac{z}{f} \xrightarrow{\mathbf{b}} \frac{\mathbf{b}}{\mathbf{b}} = \frac{\mathbf{b}}{\mathbf{b}}$	$\frac{2bd + d^{2}}{3}, \text{ top}$ $\frac{d^{2}(2b + d)}{3(b + d)}, \text{ bottom}$	$\frac{(b+2d)^3}{12} = \frac{d^2(b+d)^2}{(b+2d)}$
$ \begin{array}{c} \begin{array}{c} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{4 b d + d^2}{3}$, top	$\frac{d^{3}(4b+d)}{6(b+d)} + \frac{b^{3}}{6}$
x	$\mathbf{b} \mathbf{d} + \frac{\mathbf{d}^2}{3}$	$\frac{b^2 + 3bd^2 + d^3}{6}$
x	$\frac{2\mathbf{b}\mathbf{d}+\mathbf{d}^2}{3}$	$\frac{2b^3 + 6bd^2 + d^3}{6}$
+	$-\mathbf{x} = \frac{\pi d^2}{4}$	<u></u>
CANKER .	$\frac{\pi d^2}{2} + \pi D^2$	

PROPERTIES OF WELD TREATED AS A LINE (contd...)

- Points to identify
- 1. How many fillets are there
- 2. Static load
- 3. Fatigue load --- Kt to be used to find the weld size.
- 4. Eccentric loaded weld bead are treated with line
 5. In pg 11.5 & 11.6 , the given formula to be "x " by 't'

Eccentric Load Concept: 1- Fin 6- CO. 2 Introduce P.+13 R. 3. R=Pz=P. 3. Encorre the duilous th' A' a- divert show [E. 52 4 Z= 3/ Shot on Y15 . Vivo Al camera 202010121043

4. Secondary Sheavestness 23 21 I secondars which makes comple to caculat Ta . T.Y2 J= Polov. M.Z. Yr lase

5 Resultent T. [1/ Renews Leen] TR= ([21 + (20) = 25. 7, 100 coso : The tral : h of weld has TR: [E].

WP2.A bracket carrying a load of 15 KN is to be welded as shown in figure

Find the size of the weld required if the allowable shear stress is 80 Mpa.

Data :

```
Load = 15000 N
plate width= 80 mm
e- eccentrical distance = 125 mm
[T]= 80 Mpa = 80 N/mm^2
```

DATA		
Load- P	15000	N
[Τ]	80	N/mm^2
width plate -d	80	mm
eccentric. Dist.	125	mm
length of weld- l	50	mm
sin45	0.707	

Step1 Find and locate "G" of the given weld arrangement

are is symentrical abou	ut X-X	
x=	b/2	25
y =	d/2	40
avity G is (25,40)		
	X=	y= d/2

Step2: Introduce p1 & P2 and prepare the stresses induced						
Two stress	es will be 1. dir	ect shear stress				
	2. Secoda	ry shear stress				

step3. Cal. Direc	t stress	
<mark>stress = load /A</mark>		
Load= 15000 N		
A= It for (single	fillet)	
A=2 x l x hx sin4	5 (for 2 fillet)
A=	70.7	h
Td=	load/Area	
	212.1640736	<mark>(1/h)</mark>

Step3: cal. Of s	secondary shearstress	; "Ţs"		
Use of torsion	theory refer pg 7.1 D	DB		
T/J= Ţs/r				
J= polar M.o.I				
T= twisting mo	ment = Pxe			
r= r2 from the	digram			
Ţs	=	Txr		
ເຈ	-	-	-	
		J		
From Pg. 11.5,	J=?			
	$\frac{b^3 + 3bd^2}{6}$		xt	

r₂= √(AB)^2 +(GB)^2

steps callor in	' (Tr by paralleg	rain law of r	orces			
ŢR	-	v Td^2-	+[s^2+2.[d.Ts.co	sθ	
	Ţd^2	45014	h^2			
	Ţs^2	5E+05	(1/h^2)		478	587.24*(1/h^2)
	$\cos\theta = r1/r2$	0.532				
where	r1= 25 r2=47	[from t	riangle]			
	2.Ţd.Ţs.cos0	2E+05	(1/h^2)			
ŢR	=	824.5	(1/h)			
80	=	824.5	(1/h)			
	h=	10.31	mm			
				11.	299mi	m

Design procedure for closed system of welds

Step1 Find weld areas

Step2: Find direct shear stress

Step3: Find either bending or tensile stress according to the weld structure.

Step4: Find h

1. apply max.normal stress theory – (When tensile failure is available)

2 Apply max shear stress theory- (when shear stress is available)

wP3

A shaft of rectangular cross section is welded to a support by means of fillet welds as shown in figure below. Determine the size of weld, if the permissible stress in the weld is limited to 75 MPa

DataThis is a closed system of weldp= 25 000 N1. Max normal stress theory (case1)e= 500 mm2. max. Shear stress theory (case 2)[T]= 75 N/mm^25 Since , shear stress only given work for "2" case

Step1 Total weld area

4 –sides are there weld length l=2(b+d)

A=txl

A= 0.707h x l A= 0.707 h x [2 b+ 2d]

b= 100

Area = 353.5 h

Step2: find direct shear stress

Τ= Ρ/Α

= 25000/(353.5h)

= 70.72/h

Step 3 Find bending stress

 $\sigma b = M/Z$

M= p x e = 25 000 x 500 = 125 x 10^5 N-mm Now to find Z Ref. Pg.11.6/DDB

 $Z = [bd + (d^2/3)] \times t$

= [bd + (d^2/3)] x 0.707 h

Z= 15907.5h

σb= 785.8/h

Step 4: find h

here, as shear stress value only given

choose, max shear stress theory

Tmax=[T]= 1/2√ (-σb)^2 + 4. T^2

Take [tensile]= [120] N/mm^2

[75]= 1/2√ (785.8/h)^2 + 4. (70.72/h)^2

h= 399.2/75

h= 5.32 mm

Closed system concept

- 1. Normal stress theory (if allowable tensile is given)
- 2. max shear stress theory (if allowableshear stress alone given)

Steps

- 1. Find direct stress
- 2. Find beniding or shear stress
- 3. Find weld size "h" Apply max shear stress theory/ Normal stress theory

WP4

A circular shaft of dia 60 mm is welded to a support by means of a fillet weld as shown in figure. Determine the size of the weld if the permissible shear stress is limited to 85 MPa

Step1

```
direct stress Shear = load/A
```

```
A= pi x d x t
= 3.141 x 0.707h
= 133.27h
```

P= 7000 N

Td=52.52/h

Step2 bending stress

 $\sigma b = M/Z$

M= 7000 x 150 = 105 x 10^4 N.mm

Z= pg.no.11.6/DDB

Z= [(pi x d^4)/4] x 0.707 h = 1999h

 $\sigma b = M/Z = 525.26/h$

Step4:

H=3.15 mm

Unit V

Rolling contact bearing- ball bearings takes both radial and axial load Sliding contact bearing - Journal bearings- sleeve and shaft – radial loads

Journal bearing *** shaft and sleeve arrangement***

INTRODUCTION

In journal bearing sliding action is along the circumference of circle or an arc of circle and carrying radial loads. [1]

Journal bearings

Loss /Realing

I COMPANY

- Dry
- Hydrodynamic
- Hydrostatic
- Squeeze Film

Con Intel

Bearing Classification

(a) Full

When the angle of contact of the bearing with the journal is 360° as shown in (a), then the bearing is called a full journal bearing.

(b) Partial

When the angle of contact of the bearing with the journal is 120°, as shown in Fig (b), then the bearing is said to be partial journal bearing.

(c) Fitted

the diameters of the journal and bearing are equal, then the bearing is called a *fitted bearing, as shown in Fig. (c).*

Classification of Bearings

Depending upon the direction of load to be supported.
 a) Radial bearings, and (b) Thrust bearings.

Design procedure for sliding contact bearing- Journal bearing

Basic data needed

Load= W

Journal Diameter or Length= D or L

RPM = speed

Step1: find the application chose L/D ration ref.Page N0 7.31/DDB

Step2: Find L & D of the journal bearing & List the values/propertes

Step3: Check for bearing pressure < [pressure] Pg.731 P= W/(LxD)

Step4: selection of SAE oil refer. Pg.No.7.31 & 7.41

Step 5: Find coefficient of friction using Mc kees eqn. Pg.No.7.34

Step6: Find heat generation Hg? Pg. 7.34

Step 7 : Find Hd heat dissipation pg. 7.34

Step8: check for Artificial cooling required or not Hg<Hd or Hg>Hd

MACHINERY Stationary High	BEARING	L/D	BEARING PRESSURES ALLOWABLE kgf/cm ²	LUBRICANT	
				Z	Z./P mir
speed steam Engines		1.5 - 3.0	17.50	15	355.6
	Crank pin	0.9 - 1.5	42.00	30	85.3
Gas and Oil Engines (Four Stroke)	Wrist pin	1.3 - 1.7	126.00	25	71.1
	Main	0.6 - 2.0	49 - 84	20 - 65	284.5
	Crank pin	0.6-1.5	108 - 126		142.2
	Wrist pin	1.5 - 2.0	125 - 154		71.1
Gas and Oil Engines (Two Stroke)	Main	0.6 - 2.0	35 - 125	20 - 65	355.6
	Crank pin	0.6-1.5	70 - 105		170.7
	Wrist pin	1.5 - 2.2	84 - 125		142.2
Aircraft & Automobile Engine	Mein	0.8 - 1.8	56 - 119	8	
	Crauk pin	0.7 - 1.4	105 - 245		213.3
	Wrist pin	1.5 - 2.2	161 - 350		142.2
Reciprocating Compressors and Pumps	Main	1.0 - 2.2	17.5	39 - 80	113.8
	Crank pin	0.9 - 1.7	42		426.7
	Wrist pin	1.5 - 2.0	70		284.5
Centrifugal Pump, Motors and Generators	Rotor	1.0 - 2.0	7 - 14	25	142.2 2844.5
Machine Tools	Main	1.0 - 4.0	21	100.00	
Steam Turbines	Main	1.0 - 2.0	7 - 20	40	14.2
Railway Cars	Axle	1.9		2-16	1422.3
Marino Steam Engines	Main	0.7 - 1.5	- 35	100	711.2
	Crank pin	0.7 - 1.2	35	30	284.5
	Wrist pin	1.2 - 1.7	42	40	213.3
Transmissions	Light,Fixed	2.0 - 3.0	105	30	142.2
Gyroscopes	Rotor	2.0-0.0	1.8	25	1422.3
Shafting	Self Aligning	2.5 - 4.0	60	30	782,3
	Heavy	2.0 - 3.0	11	60	426.7
Cotton Mills	Spindle		11	60	426.7
Punching and Shearing Machines	Main	1.0 - 2.0	0.07	2	142231
	Crank Pin	1.0 - 2.0	280	100	-
Rolling Mills	Main	1.0 - 1.5	560	100	-
Contraction of the second s		1.0 - 1.0	210	50	142.2

DESIGN PRACTICES - JOURNAL BEARING

Pg.7.31

Z, absolute viscosity, centipoises

n, speed, rpm

P, pressure, kgf / cm²

DESIGN DATA - PSG TECH

7.31

DESIGN DATA - PSG TECH

7.33

DESIGN DATA - PSG TECH

7.41

DIMENSIONLESS PER	FORMANCE PARAMETERS
Coefficient of friction Variable, $\mu \frac{D}{C}$ Flow variable, $4 g/DC \pi$	rL l
Flow ratio, q ₃ /q	At increase in bearing sur- face temperature from
Pressure ratio, P/p_{max} Temperature rise variable, $p C^* \Delta t_n$	ambient temperature, "C
Temperature rise variable,	k constant for Mekees equation
Axial flow in a 360° bearing, pressure fed, through the centre	D. Eurfan seed of lower
$q_{e1} = \frac{C^3 p_1}{24 Z^2} \left(\tan^{-1} \frac{\pi D}{L} \right) (1)$	State of the second
Flow is 2 to 3 times greater when the feed he in a longitudinal groove	ole is located construction, well venti- lated. 775 for light
With the feed hole in a central circumferentia $\equiv DC^2 p$.	groove
$q_{11} = \frac{\pi D C^2 p_1}{24 Z' L} (1 + 1.5)$ Energy increase of the oil = $q p C' \Delta t_0$	e") h _{av} average film thickness, cm
AVERAGE TEMPERATURE	RISE angle, 0, cm
Oil ring bearings (still sir), Δt_{s}	- When the set of the
Oil hath bearings (still air), Δt ,	= 1.3 ∆ t U _f frictional loss in the cap.
Waste packed bearings (still air), Δt_{s}	= 2.5 ∆t kgf m/min
Design oil film temperature, 60 - 95 °C FRICTIONAL LOSS IN THE	CAP A sliding area of the cap, cm
Average film thickness in the cap	Δt, difference in temperatur
$h_{44} = \frac{C}{2} \left(1 + 0.74 e^{2}\right)$	of oil and ambien temperature, °C
$F = \frac{Z' A v}{0.6 h_{ax}}$	
U, - Fu	

DESIGN DATA - PSG TECH

Pg.7.35

THE REAL PROPERTY OF THE PARTY OF THE PARTY

7.34

DESIGN DATA - PSG TECH

JBP1 Design a full journal bearing for a railway car, running at 600 rpm. Diameter of the journal is 200 mm and load on the bearing is 230 KN.

Data

W= load= 230 000 N D= diameter= 200 mm Speed= n= 600 rpm

Step1.find the application chose L/D ratio ref.Page N0 7.31/DDB

Application: railway car From Pg.7.31

chose L/D ratio, L/D=1.9

[pb]= 35 kgf/cm^2 ---- 35 x 10 N/cm^2----35 x 10/10^2 N/mm^2

[Pb]= [3.5] N/mm^2

Z= 100 centipoise

Zn/P= 711.2

Step2: Find L of the journal bearing

L/D=1.9

L= 1.9 x D

L= 1.9 x 200 =380 mm

Step3; Check for Pind< [Pb]

 $P = w/(L \times D)$

= 230 x 10^3/(380 x 200)

= 3.026 N/mm^2 3.026 < [3.5] Pind < [Pb] design safe. Step4: find SAE oil Pg. 7.41

Assume Operating temperature : 40° - 120° if not given in problem

Assume 70° C

Z= in cp?

from step 1,

Zn/P= 711.2

Z=? 711.2 x 30.26/(600)

Z=35.87 cP. Now use : z= 35.87 cP, to= 70° C SAE50 oil selected Refer. Pg.No:7.41/ddb from chart,

To=70° C and Z= 35.87 --- 45 cP

oil selected is SAE 50

Step5: find µ

Refer Pg.7.34/DDB

 $\mu = 33.25/10^{10} \text{ x} (\text{zn/P}) \text{ x} (\text{D/C}) + \text{k}$

z=45/36 cPn= 600 rpm Pind= 30.26 kgf/cm² D/C= 1000 (in general clearance ratio C/D= 1/1000)

To find k Pg.no. 7.34/DDB for L/D= 1.9,

k= 0.0025

μ= 0.00546

= 0.0026 for z=36cP

Step 5' find Hg?

 $Hg=\mu x W x v$

µ= 0.00546

W= 23000 kgf

 $V = \pi x d x n/1000$

d= 200mm, n= 600 rpm,

V= 376.99 m/min

Now Hg= 47342.5 kgf m/min

```
Step6 Find Hd=?
Pg. No. 7.34/DDB
                                          Step7
 Hd = (\Delta t + 18)^2 \times L X d/K
2\Delta t = \Delta ta Pg.No. 7.35/ddB
\Delta t = 1/2 \times \Delta ta
                                          Hg > Hd
   = \frac{1}{2} x (to-ta)
  =\frac{1}{2} \times (70 - 30)
  = 20
                                          Artificial cooling arrangement
L= 380 mm == 38 cm
D= 200 mm ==20 cm
                                          is required
```

k = 437 or 775 (pg.no: 7.35/ddB)Assume k = 437- heavy construction

g.no: 7.35/ddB) eavy construction

Now Hd=2511.3 kgf m/min

A3-3 Design a journal bearing for the following data

Diameter of journal=75 mm Load on journal=3500N Length of journal =75 mm Speed=400 rpm Minimum film thickness= 0.02 mm Take operating temperature 60° C

Rolling Contact Bearing

Structure of ball bearing

Rolling Contact Bearing Point of contact Also called 'antifriction bearing" Loads Outside diame 1. Axial 2. Radial load **Needs** Static capacity **Dynamic capacity**

Advantages and Disadvantages of Rolling Contact Bearings Over Sliding Contact Bearings

Advantages

- 1. Low starting and running friction except at very high speeds.
- 2. Ability to withstand momentary shock loads.
- 3. Accuracy of shaft alignment.
- Low cost of maintenance, as no lubrication is required while in service.
- 5. Small overall dimensions.
- 6. Reliability of service.
- 7. Easy to mount and erect.
- 8. Cleanliness.

Disadvantages

- 1. More noisy at very high speeds.
- 2. Low resistance to shock loading.
- 3. More initial cost.
- 4. Design of bearing housing complicated.

Types of Rolling Contact Bearings

Following are the two types of rolling contact bearings:

1. Ball bearings; and 2. Roller bearings.

Why need of rolling contact bearings

Available in many sizes and cross sections Minimal lubricant supply needed Low driving torque required High load carrying capacity Accurate positional capability Wide temperature operating range (with solid lubricants) Wide speed range capability Many analytical programs available

95TR29

DDB Pgs

4.1 4.2 4.4 4.8 4.9

Selection of bearings 4.12 to 4.36

DESIGN PROCEDURE

- 1 FIND Fa/Fr=e, select factors X & Y Pg.4.14/DDB
- 2 Find equivalent load P Pg.4.2/DDB
- 3 Find dynamic capacity "C" of Bearing Pg.4.2/DDB
- 4 Select suitable rolling contact bearing based on "C"

state bearing designation

5. Rated life of the bearing at 90%, 95% or given percentage