ME18503 DESIGN OF MACHINE ELEMENTS

OBJECTIVES

-This course will impart the knowledge on various types of stress- selection of materials
-This course will make acquainted design principles on shaft, fits and tolerances.

- This course will familiarize the design principles of springs under dynamic and static conditions.
-This course will enable to check strength of fasteners kind of both rivet and welding.
-This course will facilitate to select and examine the rolling and sliding contact bearings.

OUTCOMES

1. Able to depict the design process, material selection, calculation of stresses under static and variable loading conditions with the effect of stress concentrations.
2. Adept the design of solid, hollow shafts keys and couplings. Also having knowledge of fits and tolerance.
3. Examining the close coil helical springs under variable loading. Acquiring the knowledge of leaf, disc and torsion springs.
4. Proficient in Design of riveted joint and welding joints under eccentric loading.
5. Have design knowledge on sliding and rolling contact bearing. EHD Journal Bearing

TEXT BOOKS:

1. Bhandari,V.B ,"Design of Machine Element", $3^{\text {rd }}$ edition, TMH Publications.New Delhi,2017.
2. Khurmi R.S., and Gupta J.K., "Machine Design", 14 th Edition,S Chand\&Co NewDelhi,2005.
3. Sundararajamoorthy, T.V. and Shanmugam, N., "Machine Design", Anuradha Agencies, Chennai,2003.

REFERENCES :

1. Bhandari V.B., "Design of Machine Elements", 4 th edition TATA McGraw HillNew delhi,2017.
2. Khurmi R.S., and Gupta J.K., "Machine Design", 14th Edition, S Chand and Co NewDelhi, 2005.
3. Lingaiah K., "Machine Design Data Book", 2 nd Edition Tata McGraw - Hill.New delhi,2010.
4. Robort.L.Norton," Machine Design", $5{ }^{\text {th }}$ Edition, Pearson Publisher, New delhi,2018.
5. Sharma,P.C and Agarwal,D.K,"MachineDesign",Agrawal-Kataria and Sons Publication, NewDelhi,2014.
6. Shigley, J.E., Charles, R.M. and Richard, G.B., "Mechanical Engineering Design", $10^{\text {th }}$ ed., McGraw-Hill, New Delhi,2014.
7. Spotts M.F., "Design of Machine Elements", 8 th Edition,Pearson Education,NewDelhi, 2019.

GENERAL DISCUSSION

PRE REQUISITE

Knowledge on

1. Strength of Material
2. Theory of Machines
3. Materials science/Metallurgy

SOME Questions for you

STRESS?
 STRAIN?

TYPES of STRESSES

Principle stress

Principle plane
$\sigma=$ load/Area $\mathrm{N} / \mathrm{mm}^{2}$
$\varepsilon=$ change in dimension/Original dimension no units

Tensile stress , compressive stress, shear stress

Stress acting on principle plane

Plane in which shear is zero

Types of Loads

1.Point load
2. UD load
3.UV load

Others

1. Dead load
2. Transverse load
3. Axial load
4. Tangential load

Name the load

Point load --- transverse load

Name the load

Axial load

Name the load
Tangential load

Last session 22-06-2020 -discussed

Objectives

Outcomes

types of simple stresses
Types of loads

Diagrams for different type of simple stresses

What is design?

Creating/innovate of an idea
Modify the existing

With the application of scientific principles and mathematical approaches

Types of Design

1. Adaptive design
2. Modifying design
3. New design--/ -- Innovation

Examples to understand the types of Design

Discussion -forum for some examples towards the types of design

Assignment to find the other types of design

Industrial design,
Experimental design,
Aesthetic,
Ergnomics design

```
        Syllabus
UNIT I
BASICS OF DESIGN PRINCIPLES
UNIT II
DESIGN SHAFT, KEYS AND FITS AND TOLERANCE AND COUPLINGS
```

```
UNIT III
DESIGN FOR SPRINGS
```

UNIT IV
DESIGN FOR RIVETED AND WELDING JOINTS, FASTNERS

UNIT V
DESIGN OF BEARINGS

UNIT I BASICS OF DESIGN PRINCIPLES

Design Process-

Types of Stress,

Cyclic stresses ,

Factor of Safety,

Stress concentration factor in tension, bending and torsion,

Theories of failures.

Notch sensitivity,

Design for variable and repeated loadings,

Fatigue stress concentration factor,

Endurance diagrams,
Introduction to fracture mechanics

What is Design process?

It is also known as design cycle

Mechanical properties

Learn some mechanical properties

Dstrength
Dhardness
-Plasticity
DElasticity

QResilience
DToughness
■Creep

Cyclic stress

$\underline{\text { Reversed stress cycle }}$

Repeated stress cycle

$$
\begin{aligned}
& \sigma_{m}=\frac{\sigma_{\max }+\sigma_{\min }}{2} \quad \sigma_{r}=\sigma_{\max }-\sigma_{\min } \\
& \sigma_{a}=\frac{\sigma_{f}}{2}=\frac{\sigma_{\max }-\sigma_{\text {min }}}{2}
\end{aligned}
$$

Random stress cycle

Cyclic stresses

b mean stress

Repeated stress

Last session topics

Types of simple stresses,
cyclic stresses
Design processes/cycle
Types of design - adaptive, modified, \& new design and others

Some important mechanical properties

Failures

Eccentric load concept

What is the stress?
What is the load?

Eccentric load concept

What is the stress?-compressive or direct stress

What is the load?--- Axial load
W-- original load
W1- introduced
W2 introduced opposite

How the member will fail---???
???? due to which stress

How to g et resolution for the effect

σ_{com}
$\sigma_{d=}$ Direct load/area
$\sigma_{b}=M / z$

Solving the problem
Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram , to have combined stress Step3: Calculate Direct stress (by axial load)

$$
\sigma_{d}=\text { load/area }
$$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$
\sigma_{b}=M / z
$$

where $\mathrm{M}=$ moment due to external load=wxe
$z=$ section modulus
Step5: Calculate combined stress ' $\sigma_{\text {com }}{ }^{\text {' }}$

$$
\sigma_{\text {com }}=\sigma_{d} \pm \sigma_{b}
$$

Problem :

A circular member of diameter 40 mm is subject to a load of 50 N , eccentrically 25 mm from the axis as shown in figure. Determine the stresses induced in the member.

		$\mathbf{I}=$	125640	$\mathrm{mm}^{\wedge} 4$
		$\mathrm{y}=$	20	mm
	therfore	$\mathbf{z}=$	6282	mm^3
	Now	$\mathrm{ab}=$	0.198981	N/sq.mm
Combined stress				
acom=		od + a max		0.24 Tensile
		or ad -a		-0.16 compresivf

Some applications with the eccentric loading concepts

Tower Crane - Luffing Boom

Lifting and Riging

Problem 2

Determine the max and min stresses induced at Section XX, for the member shown in the figure.. Take the diameter of the member is 50 mm

Combined stress

Shear stress

Prediction of failure of the member

Solving the problem
Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram, to have combined stress
Step3: Calculate Direct stress (by axial load)
бd = load/area

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$
\sigma_{b}=M / \mathbf{z}
$$

$$
\text { where } \mathrm{M}=\text { moment due to external load= } \mathrm{w} \times \mathrm{e}
$$

$$
\mathrm{z}=\text { section modulus }
$$

Step 5 Calculate Shear stess, $T=\pi / 16 \times T \times d^{\wedge} 3$
Step5: Calculate combined stress ' $\sigma_{\text {com }}{ }^{\text {' }}$

$$
\sigma_{\text {com }=} \sigma_{\mathrm{d}} \pm \sigma_{\mathrm{b}} \quad /=\mathrm{T} \pm \sigma_{\mathrm{b}}
$$

1 Direct stress
Stress
0 N/sq.mm

4	Combined stress				
	ocom=	shear stress+ σ b	max	2.85	Tensile
		or			
		ob-shear stress	min	1.22	Tensile

Problem for solving

Step1

Step 2

Step 3:

$$
\therefore \sigma_{R}=\sigma_{d}+\sigma_{b}
$$

$$
\begin{gathered}
\sigma_{R}=\frac{P}{3 t^{2}}+\frac{P e}{\frac{3}{2} t^{3}} \\
\sigma_{R}=\frac{P}{3 t^{2}}+\frac{2 P e}{3 t^{3}} \\
\sigma_{R}=\frac{P t+2 P e}{3 t^{3}}
\end{gathered}
$$

$$
\therefore 3 t^{3} \times \sigma_{R}=P t+2 P e
$$

Factor of safety

$$
\mathrm{n}=\quad \frac{\text { allowable stress }}{\text { working stress }}
$$

Allowable stress = design stress

Design stress

[б]

Soft material $\left[\sigma_{y}\right], y=y i e l d$

Brittle material [σ_{u}], $u=$ ultimate

Directional assignment of stresses under combined load

$\boldsymbol{\sigma}_{\mathbf{d}}=\boldsymbol{\sigma}_{\mathbf{x}} \quad$ Direct/ axial load
$\boldsymbol{\sigma}_{\mathbf{b}}=\boldsymbol{\sigma}_{\mathbf{y}} \quad$ Transverse load
$T_{x y}=T_{y x=} T$
Shear stress/load

The directional assignments of stresses will be useful to find the ' principal stresses'

- Principal stresses are nothing but stresses acting on principal plane

Quite applicable for finding the stress intensities in the form of

- ' $\sigma 1$ 'maximum and ' $\sigma 2$ minimum

When the members subjected to combined stresses and simple shear stress

Example : belt drive system - shafts carries pulley-

In general, Under strained material all the stress will be mutually perpendicular in three planes $x y, x z, y z$.

Out of the three one is max and the other is minimum

Now the combined stress problem is advancing with approach of principal stresses

Now refer the data book page : 7.2 two dimensional stresses

$$
\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2} \text { and } T
$$

The noobs of this cubac equation in 0 are the peincigat stressen
7.2

Now The objectives of solving problems

$$
\mathrm{n}=\frac{\text { allowable stress }}{\text { working stress }}
$$

Finding dimension of the member

Checking design for safety
Induced stress < Design Stress
$\sigma_{i}<[\sigma]$,
T < [T]

Problem 3

A circular member of diameter 40 mm is subject to a load of 50 N , eccentrically 25 mm from the axis as shown in figure. Determine the stresses induced in the member. If the allowable stress for the member material is $2 \mathbf{N} / \mathrm{mm}^{2} \quad$ Also determine the factor of safety

Solving the problem
Step1: Introduce imaginary loads equal and opposite at axis(equal to external load value)

Step2: Prepare the equivalent diagram , to have combined stress Step3: Calculate Direct stress (by axial load)

$$
\sigma d, \text { load/area }
$$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$
\sigma_{b}=M / z
$$

where $\mathrm{M}=$ moment due to external load= w xe
$\mathrm{z}=$ section modulus
Step 5 Calculate Shear stess, $T=\pi / 16 \times \tau \times d^{\wedge} 3$
Step5: Calculate combined stress' $\boldsymbol{\sigma}_{\text {com }}$ ' Principal stresses
$\sigma 1 \& \boldsymbol{\sigma}, \tau$

How to g et resolution for the effect

σ_{com}
$\sigma_{d=}$ Direct load/area
$\sigma_{b}=M / z$

Step3: Calculate Direct stress (by axial load)

$$
\begin{aligned}
& \sigma_{\mathrm{d}=} \text { load/area } \\
& \sigma_{\mathrm{d}}=\sigma_{\mathrm{x}=\text { ? ?? }}
\end{aligned}
$$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$
\sigma_{b}=M / z
$$

where $\mathrm{M}=$ moment due to external load=wxe

$$
\mathrm{z}=\text { section modulus }
$$

$$
\sigma_{b}=\sigma_{y}=? ? ?
$$

Step3: Calculate Direct stress (by axial load)

$$
\begin{aligned}
& \sigma_{\mathrm{d}}=\text { load/area } \\
& \sigma_{\mathrm{d}}=\sigma_{\mathrm{x}=0.04 \mathrm{~N} / \mathrm{sq} \cdot \mathrm{~mm}}
\end{aligned}
$$

Step4: calculate bending Stress (By combination of Original load and introduced load)

$$
\sigma_{b}=M / z
$$

where $M=$ moment due to external load=wxe

$$
\mathrm{z}=\text { section modulus }
$$

$$
\sigma_{b}=\sigma_{y}=0.198 \mathrm{~N} / \text { Sq. } \mathrm{mm}
$$

Step5: Calculate combined stress ' $\sigma_{\text {com }}$ "

Step6: Calculate σ_{1} and σ_{2}

In this problem, shear stress is zero, $\tau=0$

Data		
diameter	$\mathbf{4 0} \mathbf{~ m m}$	
Load	$50 ~ \mathbf{~ N}$	
e	$\mathbf{2 5} \mathbf{~ m m}$	
area		
$\mathbf{P i}$	3.141	
\mathbf{A}	$\mathbf{1 2 5 6 . 4}$	sq.mm

1 Direct stress
Stress $\quad 0.0398$ N/sq.mm
0.0398

$\sigma 1=$	0.198	$\mathrm{~N} / \mathrm{sq} \cdot \mathrm{mm}$
$\sigma 2=$	0.0398	$\mathrm{~N} / \mathrm{sq} \cdot \mathrm{mm}$
factor of saftey		
$\mathrm{n}=$	$\mathbf{1 0 . 1}$	

Maximum stress to be taken As working stress.

Problem 2

Determine the principal stresses induced at Section XX, for the member shown in the figure.. Take the diameter of the member is 50 mm .

Take allowable stress is $5 \mathrm{~N} / \mathbf{s q}$. Mm Also find the factor of safety.

Combined stress

Shear stress

2 Bending			
बb=	M/Z		
M	Load xe		
	25000	$\mathrm{N}-\mathrm{mm}$	
$z=$	1/Y		
	$1=$	$\pi^{*} d^{\wedge} 4 / 64$	
	$Y=$	d/2	
	$1=$	306738	mm4
	$y=$	25 m	mm
therfore	$z=$	12269.5 m	$\mathrm{mm}^{\wedge} 3$
Now	$\sigma b=$	$2.03757 \mathrm{~N} /$	$\mathrm{N} / \mathrm{sq} . \mathrm{mm}$
	oy	2.037	

3 Shear stress		T x16/(pi x d*d*d)		refer Pg.No 7.1/[
				DDB
	$\mathrm{T}=$	20000	N mm	
		(eccentrica	al distance	horizontal distar
T Shear stress		0.81503	$\mathrm{N} / \mathrm{sq} . \mathrm{mm}$	
	T	0.815		

Principal stress
$\sigma 1, \quad \sigma 2=$??
$\sigma x+\sigma y$
$\sigma x-\sigma y$ -2.037N/sq.mm
$(\sigma x-\sigma y)^{2}$ 4.1494
$(\sigma x+\sigma y) / 2$ 1.0185
τ 0.815
τ^{2} 0.664$(v(\sigma x-\sigma y) 2+4 T 2 / 2$1.304

```
\sigma1= 2.322941356N/sq.mm
```


$\sigma 2=\quad-0.285941356 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$

$\sigma_{i}<[\sigma]$,
2.32 <[5] design is safe
factor of saftey

AS per shear Stress Theory

T	+	$1.304 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$
T	-	$1.304 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$

Problem 3

A cantilever circular member is subject to loads as shown in figure. Determine the diameter of it .If The allowable stress is $90 \mathrm{~N} / \mathrm{mm}^{2}$

STEP1. Indentify the loads types and its effect on it
Step2: calculate the individual stresses 2 or 3
Step3 : Take into the Principal stress equations
Note: If the allowable stress given in the problem, then
That is design stress $[\sigma]=\left[\sigma_{1}\right]$,
Find the dimension of the member
ref. pg.No.7.2,/DDB
$\sigma_{1,2}=\quad \frac{\sigma \mathrm{x}+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma \mathrm{x}-\sigma \mathrm{y})^{2}+4 \mathrm{Txy}^{2}\right)}$

Step1

Calculation of direct stress $-\sigma_{d=} \sigma_{x}$

$$
\sigma_{d=} \text { load/area= NO }
$$

Step2

Calculation of bending stress $\sigma_{b}=\sigma_{y}$

$$
\sigma_{b}=M / z
$$

where $M=$ moment due to external load= $w x e$
$\mathrm{z}=$ section modulus

Step3: Calculate Shear stess,

$$
T=\pi / 16 \times T \times d^{\wedge} 3
$$

Step 4 Take into the Principal stress equations

$$
\begin{gathered}
\sigma_{1,2}=\frac{\sigma \mathrm{x}+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma \mathrm{x}-\sigma \mathrm{y})^{2}+4 \mathrm{Txy}^{2}\right)} \\
{[\sigma]=\left[\sigma_{1}\right]} \\
{\left[\sigma_{1}\right]=[90] \mathrm{N} / \mathrm{mm}^{2}}
\end{gathered}
$$

Step3

Using principal stress equation, Find diameter of The member

$$
\sigma_{1,2}=\frac{\sigma x+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma x-\sigma y)^{2}+4 \mathrm{xxy}^{2}\right)}
$$

σ_{1} is to be tken as allowable stress
Data
diameter
) mm
bendingLoad
Distance for bending lo
5000 N 1000 mm
Turning mament
area
Pi
3.141
[01]
A
$90 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$
$0.78525 \mathrm{~d}^{\wedge} \mathbf{2} \quad \mathrm{sq} . \mathrm{mm}$

Prıncıpal stress

$\sigma 1, \sigma 2=$	$? ?$		
$\sigma x+\sigma y$	50939191.34	$*\left(1 / d^{\wedge} 3\right)$	$\mathrm{N} / \mathrm{sq} . \mathrm{mm}$
$\sigma x-\sigma y$	-50939191.34	* $\left(1 / \mathrm{d}^{\wedge} 3\right)$	$\mathrm{N} / \mathrm{sq} . \mathrm{mm}$
$(\sigma x-\sigma y)^{2}$	2594801214407510	$*\left(1 / \mathrm{d}^{\wedge} 3\right)^{\wedge} 2$	
$(\sigma x+\sigma y) / 2$	25469595.67	$*\left(1 / \mathrm{d}^{\wedge} 3\right)$	

$\left(V(\sigma x-\sigma y) 2+4 T 2 / 2 \quad 25469596.404 *\left(1 / d^{\wedge} 3\right)\right.$

$$
\sigma_{1,2}=\frac{\sigma \mathrm{x}+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma \mathrm{x}-\sigma \mathrm{y})^{2}+4 \mathrm{xxy}^{2}\right)}
$$

Asper principal stress

$$
\begin{array}{rl}
{[90]=} & 50939192.074 *\left(1 / d^{\wedge} 3\right) \\
90 & 50939192.074 *\left(1 / d^{\wedge} 3\right)
\end{array}
$$

$$
d^{\wedge} 3=\quad 565991.023
$$

Problem 4

Determine the diameter of the member at Section XX, for the member shown in the figure. Take the allowable stress of the member is $120 \mathrm{~N} / \mathrm{sq}$. $\mathbf{~ m m}$

Combined stress

Shear stress

STEP1. Indentify the loads types and its effect on it
Step2: calculate the individual stresses 2 or 3
Step3 : Take into the Principal stress equations
Note: If the allowable stress given in the problem, then
That is design stress $[\sigma]=\left[\sigma_{1}\right]$,
Find the dimension of the member
ref. pg.No.7.2,/DDB
$\sigma_{1,2}=\quad \frac{\sigma \mathrm{x}+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma \mathrm{x}-\sigma \mathrm{y})^{2}+4 \mathrm{Txy}^{2}\right)}$

Step1

Calculation of direct stress $-\sigma_{d=} \sigma_{x}$

$$
\sigma_{d=} \text { load/area= NO }
$$

Step2

Calculation of bending stress $\sigma_{b}=\sigma_{y}$

$$
\sigma_{b}=M / z
$$

where $M=$ moment due to external load= $w x e$
$\mathrm{z}=$ section modulus

Step3: Calculate Shear stess,

$$
T=\pi / 16 \times T \times d^{\wedge} 3
$$

Step 4 Take into the Principal stress equations

$$
\begin{gathered}
\sigma_{1,2}=\frac{\sigma \mathrm{x}+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left((\sigma \mathrm{x}-\sigma \mathrm{y})^{2}+4 \mathrm{Txy}^{2}\right)} \\
{[\sigma]=\left[\sigma_{1}\right]} \\
{\left[\sigma_{1}\right]=[120] \mathrm{N} / \mathrm{mm}^{2}}
\end{gathered}
$$

Data				
diameter	d mm			
Load	1500	(1.5 x 1000)		
eh- turning effect	400	(Horizontal	riginal load)	
ev-bending	500	(Vertical to in	duced load	from the bast
area				
Pi	3.141			

1 Direct stress

Stress	$0 \mathrm{~N} /$ sq.mm
$\sigma \mathbf{x}$	0

Due to no axial load

$\left(V(\sigma x-\sigma y) 2+4 T 2 / 2 \quad 4892549.561 *\left(1 / d^{\wedge} 3\right)\right.$

Asper principal stress $\quad \sigma_{1,2}=\frac{\sigma x+\sigma y}{2} \pm \frac{1}{2} \sqrt{\left.(\sigma x-\sigma y)^{2}+4 \backslash x y^{2}\right)}$

$[90]=$	$8712988.911 *\left(1 / d^{\wedge} 3\right)$
12090	$8712988.911^{*}\left(1 / d^{\wedge} 3\right)$

$d^{\wedge} 3=\quad 96810.9879$
d
45.92 mm

Tutorial 1 3-7-2020

Determine the principal stresses in C - clamp at XX section resembles rectangular.Determine the thickness of the steel bracket loaded as shown in fig. taking allowable stress as 90 Mpa

STRESS CONCENTRATION FACTOR

STRESS CONCENTRATION FACTOR- K_{t}

Stress flow lines
Def:
The stress concentration factor, , is the ratio of the
highest stress to a nominal stress of the gross cross-section
$\mathrm{K}_{\mathrm{t}}=\boldsymbol{\sigma}_{\mathrm{Max} /} \boldsymbol{\sigma}_{\text {nominal }}$
where $\boldsymbol{\sigma}_{\text {Max }}$ is allowable or Design Stress
$\boldsymbol{\sigma}_{\text {nominal }}$ is the stress with respect to area of cross
section of the member

Force flow lines in an abrupt changes in the cross section of the member

Methods of Reducing Stress Concentrations

\square Avoiding sharp corners and only using rounded corners with maximum radii.
\square Sanding and polishing surfaces to remove any notches or defects that occur during forming and processing.
\square Lowering the stiffness of straight load-bearing segments.
\square Placing notches and threads in low-stress areas.

2

3

Stress relieving groove

To solve problems
refer design data book pages 7.8 to 7.16 pages for variou types of members and their loading condition.

P5. Find the maximum stress induced in the plate as shown in figure. All sizes are in $\mathrm{mm} \mathrm{T}=15 \mathrm{MM}$

$$
K t=\frac{\sigma m a x}{\text { onominal/working }}
$$

Identify the Notations as per data book Refer pg.No 7.10/DDB

$$
\mathrm{W}=80 \mathrm{~mm} \& \mathrm{a}=24 \mathrm{~mm}
$$

2 Kt

To be obtained rom DDB 7.10

Ratio a/w
0.3

Kt $\quad 2.4$

3бmax

oma

x = Kt x onom
$2.8 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

P6. Find the maximum stress induced in the object as shown in figure. All sizes are in mm

Load is 1 KN , Bigger dia is $\mathbf{8 0} \mathbf{~ m m}$ and stepped dia is $\mathbf{4 0} \mathbf{~ m m}$. The radius of the fillet is 8 mm

Stress concentration Factor

DATA

Load

Dia(D)
smalldia(d)
radius of fillet r
Area
$\mathrm{pi} / \mathbf{4}^{*}\left(\mathrm{~d}^{\wedge} \mathbf{2}\right)$
p

D
d
40 mm

8 mm
$1256.4 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$
???

Take small area

1 onom
L/A

$$
0.795924865 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
$$

To be obtained from DDB 7.11

Ratio r/d

$$
0.2
$$

Ratio D/d

Kt
1.5

3 gmax
$\sigma \max =\quad$ Kt x onom
$1.194 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

Practice by yourself various components
in stress concentration

1.Determine the stress concentration factor for the plate ubjected to load of 9KN As Inkigure.

THEORIES OF FAILURES

Why ? Need to study

Under combined stress, it is difficult to predict by which stress the failure of member occurred.

Hence the stresses are accounted in terms of principal stresses

This involves the assessment of stresses in biaxial or tri axial stresses.

It is by nature all the engineering components subjcted to those systems stresses

TYPES OF THEORIES OF FAILURES

1. Maximum Principal Stress theory (RANKINE'S THEORY)—(Onormal)
2. Maximum Shear Stress theory (GUEST AND TRESCA'S THEORY)--- (T max)
3. Maximum Principal Strain theory (St. VENANT'S THEORY)---(e max)--- No reliable results- Not followed
4. Total Strain Energy theory (HAIGH'S THEORY)
5. Maximum Distortion Energy theory (VONMISES AND HENCKY'S THEORY)

How? The Theories of failure to be defined

Condition is for same material

1.Max. Normal or principal stress Theory

Def:

Formula

$$
\sigma 1 / \sigma 2 / \sigma 3 \leq \sigma y
$$

Chose max
$\sigma 1 / \sigma 2 / \sigma 3 \leq \sigma y / n$
Chose max

Graphical study

' $\sigma 1 / \sigma y$ " ratio to be calculated and it lies with in square region
Then the design is safe, if it fall out side then the design is not safe, then rework to be done

2.Max. Shear stress Theory --Tmax

Def:

Formula

$(\sigma 1-\sigma 2) /(\sigma 2-\sigma 3) /(\sigma 3-\sigma 1) \leq \sigma y / 2$,

Chose max

$(\sigma 1-\sigma 2) /(\sigma 2-\sigma 3) /(\sigma 3-\sigma 1) \leq \sigma y / 2 n$
Chose max

As per max shear stress theory

$$
\tau_{\max , \operatorname{simp}}=\frac{\sigma_{y}}{2}
$$

Where " σy " is the material yield value

It is suitable for ductile material and shaft design always use it Design check
a‘ $\sigma 1 / \sigma y$ ' ratio to be calculated and it lies with in shaded/coloured region
\square Then the design is safe,
if it fall out side then the design is not safe, then rework to be done

3.Max. Strain Theory - Emax

Def:

Formula

Maximum strain theory (St. Venant's)
$\left.\begin{array}{c}\sigma_{1}-\nu\left(\sigma_{2}+\sigma_{3}\right) \text { or } \sigma_{2}-\nu\left(\sigma_{3}+\sigma_{1}\right) \\ \text { or } \sigma_{3}-\nu\left(\sigma_{1}+\sigma_{2}\right) \text { whichever is maximum }\end{array}\right\}=\sigma_{\mathrm{Y}}$

As this theory is not providing Reliable results,

Not being/ recommended used in
 the design

4.Max. Strain EnergyTheory

Def:

Formula

Poisson ratio

It holds good results for ductile materials

Design check

' $\sigma 1 / \sigma y$ " ratio to be calculated and it lies with in square region

Then the design is safe, if it fall out side then the design is not safe, then rework to be done

5.Max. Distortion Strain Energy Theory

Def:

Formula

Maximum strain energy theory

$$
\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-2 \nu\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)=\sigma_{\%}^{2}
$$

It holds good results for ductile materials

Dist. Strain energy= strain energy- strain energy by stress

Design check

' $\sigma 1 / \sigma y$ " ratio to be calculated and it lies with in region
Then the design is safe,
if it fall out side then the design is not safe, then rework to be done

Problems Objectives

1. Find the size of the member
2. Find the factor of safety

A member is having its principal stresses as follows $\sigma 1=190 \mathrm{Mpa}$, $\sigma 2=90 \mathrm{Mpa}$ and $\sigma 3=0$ find the factor of safety for the member using theories of failures. Take material of C45 has 360 Mpa ,

$\sigma 1=$	190
$\sigma 2=$	90
σy	360
$\sigma 1-\sigma 2$	100
$\sigma 2-\sigma 3$	-190
$\sigma 3-\sigma 1$	1.894
$1 n$	1.8

```
3n 2.27 Max. Strain Theory
4n^2 4.021098 Max. Strain energy Theory
n 2.005
```

Max. Distoriton strain energy
5n^2 4.782288 Theory
2.19

STEPS to solve for theories of failure

Step1: Identify the stresses available

Step2: Directional assignments the stresses available

Step3: Calculate principal stresses

Step4: Applying theories of failures
\& find the objective

Problem 2

Determine diameter at Section XX, for the member shown in the figure. Find the diameter of the member Using theories of failure. Take factor of safety $\mathrm{n}=2.5$,

2 Bending					
$\sigma \mathrm{b}=$	M/Z				
M	Load x e				
	25000	$\mathrm{N}-\mathrm{mm}$			
$\mathrm{z}=$	1/y				
	I=	$\pi^{*} \mathrm{~d}^{\wedge} 4 / 64$			
	$Y=$	d/2			
	$\mathrm{I}=$	0.0491	d^4	$\mathrm{mm}{ }^{\wedge}$	
	$y=$	0.5	d	mm	
therfore	$\mathrm{z}=$	0.09815625	$\mathrm{d}^{\wedge} 3$	$\mathrm{mm}{ }^{\wedge}$	
Now	$\mathrm{ob}=$	$2.547 \mathrm{E}+05$	* $\left.1 / \mathrm{d}^{\wedge} 3\right)$	$\mathrm{N} / \mathrm{sq} . \mathrm{m}$	mm
	oy	$2.547 \mathrm{E}+05$	* $\left.1 / \mathrm{d}^{\wedge} 3\right)$		

with respect to $x-x$ COED.

Resolve it.

only Bending.

$$
\sigma_{n}=\frac{M_{n}}{2} \quad(1)
$$

$$
\begin{aligned}
A_{p v} & -\sigma_{2}=\frac{p_{v}}{A} \oplus \\
& \rightarrow \sigma_{b_{v}}=\frac{M_{v}}{Z}(2) \\
\sigma_{c o m}= & \sigma_{b_{H}}+\sigma_{b v}+\sigma_{d}
\end{aligned}
$$

Tutorial 2 week2 20 marks credit

Determine the maximum stress induced in the members, all dimensions are in mm

Tutorial 2 week2 20 marks credit

M=150 N-mm

Width =100, $a=40, t=20$ in mm

Principal stress		
б1, \quad 2=	??	
$\sigma x+\sigma y$	$2.547 \mathrm{E}+05$	* $\left(1 / \mathrm{d}^{\wedge} 3\right) \mathrm{N} / \mathrm{sq} . \mathrm{mm}$
$\sigma x-\sigma y$	-2.547E+05	* $\left(1 / \mathrm{d}^{\wedge} 3\right) \mathrm{N} / \mathrm{sq} . \mathrm{mm}$
$(\sigma x-\sigma y)^{2}$	64870030360.2	* $\left(1 / \mathrm{d}^{\wedge} 3\right)^{\wedge} 2 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$
$(\sigma x+\sigma y) / 2$	$1.273 \mathrm{E}+05$	* $\left(1 / \mathrm{d}^{\wedge} 3\right) \mathrm{N} / \mathrm{sq} . \mathrm{mm}$
T	101878.3827	*(1/d^3)
T^{2}	10379204857.6	* $\left(1 / d^{\wedge}\right)^{\wedge} 2$
$\left(v(\sigma x-\sigma y) 2+4{ }^{2} 2\right.$	163084.985	*(1/d^3)

Now
$\sigma 1=\quad 2.9043296 E+05 *\left(1 / d^{\wedge} 3\right) N / s q . m m$
$\sigma 2=\quad-35737.007 *\left(1 / d^{\wedge} 3\right) N / s q . m m$

Apply the theories of failure

1. Max.Normal Stess Theory

Ref. Pg.7.3/DDB
$\sigma 1 / \sigma 2 / \sigma 3 \leq \sigma y / n$
chose max value

$$
\sigma 1=\sigma y / n
$$

n	2.5	
Select material C45 ref. Pg.1.9/DDB (ASSUMED)		
$\sigma y=3$	360	$\mathrm{N} / \mathrm{mm}{ }^{\text {^2 }}$
Use the equation 1		
$2.9043296 \mathrm{E}+05$	360/2.5	
$2.9043296 \mathrm{E}+05$	144	
$2.0168956 \mathrm{E}+03$,=	$\mathrm{d}^{\wedge} 3$
$\mathrm{d},=12.63 \mathrm{~mm}$		

Now to check the design safe

Theory used is Max .Normal Stress Theory

Check for safe

As the ratio point lie in the region, Design is safe
$\sigma 2 / \sigma y=-0.047$

2Max Shear Stress Theory
Ref pg.7.3/DDB
$\sigma 1-\sigma 2 / \sigma 2-\sigma 3 / \sigma 3-\sigma 1$
$=\quad \sigma y / 2 n$
бy= 360, $n=2.5$

$$
\begin{array}{lr}
\sigma 1-\sigma 2= & 3.2616997 \mathrm{E}+05^{*}\left(1 / \mathrm{d}^{\wedge} 3\right) \\
\sigma 2-\sigma 3= & -35737.007 *\left(1 / \mathrm{d}^{\wedge} 3\right) \\
\sigma 3-\sigma 1= & -2.9043296 \mathrm{E}+05^{*}\left(1 / \mathrm{d}^{\wedge} 3\right)
\end{array}
$$

Chose max, $\sigma 1$ - $\mathbf{\sigma}$

$$
\begin{array}{rr}
3.261699 x & \\
10^{\wedge} 5 / d^{\wedge} 3= & 72 \\
d^{\wedge} 3 & 4.5301385 \mathrm{E}+03 \\
d= & 16.54 \mathrm{~mm}
\end{array}
$$

Similar way find the diameter by the other theories also check for the design safe

Dynamic Design

Fatigue \& Endurance strength SN - Curve

Theories
Gerber equation
Goodman equation
Soderberg Equation

Solving the problem

To understand cyclic stress

1

Cyclic Stresses

General terms ref.Pg.7.6/DDB

FATIGUE

Cyclic Stresses

Parameters used to characterize the fluctuating stress cyde:

1. Mean Stress $\left(\sigma_{m}\right)$:

$$
\sigma_{n}=\frac{\sigma_{\mathrm{en}}+\sigma_{\mathrm{an}}}{2}
$$

4. Stress Ratio (R) :

$$
R=\frac{\sigma_{\max }}{\sigma_{\max }}
$$

2. Range of Stress $\left(\sigma_{t}\right)$:

$$
\sigma_{\mathrm{T}}=\sigma_{\operatorname{man}}-\sigma_{\mathrm{min}}
$$

3. Stress Amplitude $\left(\sigma_{\mathrm{a}}\right)$:

$$
\sigma_{a}=\frac{\sigma_{T}}{2}=\frac{\sigma_{\operatorname{mat}}-\sigma_{\min }}{2}
$$

Cyclic stresses

b mean stress

Repeated stress

What is fatigue?

When a member subject to cyclic stresses, it fails below its yield stress value known as "fatigue".

It is unpredictable, - its so dangerous. It occurs due to flaws in the member(under micro study), which initiates the crack formation, then propagation and finally fracture.

Endurance or fatigue limit?

A member will undergo n numbers of cycles. With out failure/fracture at a particular stress value. This stress is known as Endurance or fatigue limit.

S-N diagram - example to predict the stress values With respect to cycles

Fatigue stress concentration factor K_{f}

Def:
Experimental definition only available

Fatigue stress concentration factor,

$$
K_{f}=\frac{\text { Endurance limit without stress concentration }}{\text { Endurance limit with stress concentration }}
$$

Notch sensitivity "q "

Def:

It is defined as the degree of attaining the Kt- theoretical stress concentration. q is estimated with some experimental curves. No extensive data available.

Ref. Pg.no:7.8/DDB
Notch sensitivity q index is defined by

$$
q=\frac{K_{f}-1}{K_{t}-1} \text { or } q_{\text {shear }}=\frac{K_{f s}-1}{K_{t s}-1} \quad \mathrm{Kf}=1+\mathrm{q}(\mathrm{kt}-1)
$$

 toberibitibenafisnide
batures of K, ricif kiveways

7.8

Problem for finding "Kf"

Find the Kf of the member which is made of steel and annealed.

SOLUTION

The equation,

$K f=1+q(k t-1) \quad$ Ref. Pg.no:7.8/DDB

1. $\mathrm{Kt}=$? 2. $\mathrm{q}=$?

Ref. Pg.no:7.11/DDB

$$
\begin{aligned}
& \mathrm{r} / \mathrm{d}=0.2, \\
& \mathrm{D} / \mathrm{d}=2.33(2.0) \\
& \quad \mathrm{Kt}=1.5
\end{aligned}
$$

Ref. Pg.no:7.8/DDB
$r=6$ (4.5), material steel \& annealed
$q=0.95$

Theories for Varying stresses
Refer pg.No.7.4 \& 7.6 /DDB

SODERBERG Equation

$$
\frac{1}{n}=\frac{\sigma m}{\sigma y}+\frac{\sigma a}{\sigma-1} \quad \frac{1}{n}=\frac{\mathrm{T} m}{\mathrm{~T} y}+\frac{\mathrm{T} a}{\sigma-1}
$$

Goodman equation

$$
\frac{1}{n}=\frac{\sigma m}{\sigma u}+\frac{\sigma a}{\sigma-1}
$$

$$
\frac{1}{n}=\frac{\mathrm{T} m}{\mathrm{~T} u}+\frac{\mathrm{T} a}{\sigma-1}
$$

Problem Objectives

1. Find factor of safety "n"

2. Find size of the member

Steps to solve the problem

Step1 Find the mean and amplitude loads (Wmax+Wmin)/2= Wmean (Wm)
(Wmax-Wmin)/2= Wampl or Wa (Amplitude or varying Load)

Step2 Find the mean and amplitude Stresses
omean= Wmean/ Area ,
бaor $\sigma v=$ Wa or Wv/ Area
Step3 Use the theories for varying stress
Find the size or factor of safety
which ever is applicable with respect to the problem

Solution

- Eccentric Loud concept.

$$
\begin{aligned}
& \text { Resolve it. }
\end{aligned}
$$

Tutorial 3 - Topic theories of failure

Material: 37 Mn 2

$$
n=2, \quad 2=0.2
$$

USE The ores of failures. find :"d

Pg. 1.13 /DDB, alloyed steel

Determine the factor of safety for the member having diameter 50 mm which is subjected to fluctuating load from -10 to +15 KN . The ultimate and yield stress values are $60 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ and $40 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ respectively. Use the Good man and Soderberg theories

Data:

$$
\mathrm{n}=?
$$

$D=50 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Ultimate }=\sigma u=60 \mathrm{~N} / \mathrm{mm}^{\wedge 2} \\
& \text { Yield }=\sigma y=40 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Max $. l o a d=15000 N$
Min.load $=-10000 \mathrm{~N}$

Soderberg

$$
\frac{1}{n}=\frac{\sigma m}{\sigma y}+\frac{\sigma a}{\sigma-1}
$$

Goodman

$$
\frac{1}{n}=\frac{\sigma m}{\sigma \mu}+\frac{\sigma a}{\sigma-1}
$$

Steps to solve the problem

Step1 Find the mean and amplitude loads (Wmax+Wmin)/2= Wmean (Wm)
(Wmax-Wmin)/2= Wampl or Wa
(Amplitude or varying Load)
Wmax $=15000 \mathrm{~N}$
Wmin $=-10000 \mathrm{~N}$

Wm	2500N	$(15000-10000) / 2=$ Wmean (Wm)
Wa	$12500 N$	$(15000+10000) / 2=$ Wampl or Wa

Step2 Find the mean and amplitude Stresses
omean= Wmean/ Area
Area $=1963.1 \mathrm{~mm}^{\wedge} 2$
$\sigma m=\quad 1.3 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$
oaor $\sigma v=$ Wa or Wv/ Area

```
\sigmav =
\(6.4 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
```

Step3 Use the theories for varying stress

$$
1 / n=(1.27348 / 40)+\left(6.3674 / \sigma_{-} 1\right)
$$

Now to find σ _1

Refer pg.1.42/DDB
Take reversed cycle

Bending Load $\quad \sigma _1=0.46 \sigma u$
$\sigma _1=27.6 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

$$
\begin{aligned}
& 1 / n=0.031836995+0.230703 \\
& 1 / n=0.262539854 \\
& n \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

G\&S Probm2

Determine the diameter of circular shaft subjected to axial load of range from - 300KN to 700 KN , Use factor of safety as 2.0.

NO yield, No Ultimate stress given, hence select suitable material Then find the both stress values

Material : C50, refer pg.1.9, $\sigma y=380 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \& \sigma u=730 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

G\&S Prob2

DATA

$$
\mathrm{n}=
$$

$$
\text { Wmax } \quad 700000 \mathrm{~N}
$$

$$
\text { Wmin } \quad-300000 \mathrm{~N}
$$

बu 730N/mm^2

бy 380N/mm^2
o_1 ?

Soderberg

$$
\frac{1}{n}=\frac{\sigma m}{\sigma y}+\frac{\sigma a}{\sigma-1}
$$

Goodman

$$
\frac{1}{n}=\frac{\sigma m}{\sigma u}+\frac{\sigma a}{\sigma-1}
$$

Step 1 Caculating Wm(mean) and amplitude Wa
Wm 200000N (Wmax+Wmin)/2= Wmean (Wm)

Wa 500000N Wmax-Wmin)/2= Wampl or Wa

Step2 Find the mean and amplitude

 Stresses
omean= Wmean/ Area

Area $=0.78525_{\mathrm{d} \wedge 2} \mathrm{~mm}^{\wedge 2}$

om $=$	254695.96/d^2	$\mathrm{N} / \mathrm{mm}{ }^{\wedge} \mathbf{2}$
бaor $\sigma v=$ Wa or Wv/ Area		
ov =	636739.89/d^2	$\mathrm{N} / \mathrm{mm}^{\wedge} \mathbf{2}$

Step3 Use the theories for varying stress

$$
1 / 2.0=\quad\left[254695.96 /\left(d^{\wedge} 2^{*} 380\right)+\left(636739.89 /\left(d^{\wedge} 2^{*} \sigma_{-} 1\right)\right]\right.
$$

Now to find o_1

Refer pg.1.42/DDB

Take reversed cycle
Load: Tension- compression

$$
\sigma _1=0.36 \sigma u
$$

262.8

$$
\sigma _1=\quad 335.8 \mathrm{~N} / \mathrm{mm}^{\wedge} \mathbf{2}
$$

Right answer: $\mathbf{7 8 . 6 5 \mathrm { mm } = 7 9 \mathrm { mm }}$

Combined varying stress

Bending

$$
1 / n=\left[\left(\frac{\sigma e q}{a y}\right)^{2}+\left(\frac{\tau e q}{\tau y}\right)^{2}\right]^{1 / 2}
$$

Required Task, to calculate σ eq \&Teq,
Again refer Pg.7.6/DDB

	Suderbere Equations	
	$\frac{1}{\pi}-\frac{\theta_{2}}{\theta_{y}}+\kappa_{y} \frac{\theta_{2}}{i_{1}}$ For ductile	$\frac{1}{n}-\frac{x_{2}}{\pi}+K_{1} \frac{T_{1}}{T_{i}}$
	Goodman (modiñed) equatian	
	$\frac{1}{\pi}-k_{1}\left[\frac{\sigma_{m}}{\sigma_{2}}+\frac{\theta_{2}}{\sigma_{1}}\right]$ Fur britile materials (not	$\frac{1}{n}=K_{1}\left[\frac{I_{2}}{x_{2}}+\frac{\pi_{2}}{\pi_{2}}\right]$ sensitiviey megrigitite)
	Combined Stresses	
	$\sigma_{* i}-\frac{\sigma_{2}}{\pi}-\sigma_{m}+K_{r} \frac{a_{*} \sigma_{p}}{\alpha_{2}}$	
	$\frac{1}{n}-\left[\left(\frac{a_{e q}}{a_{y}}\right)^{3}+\left(\frac{r_{r y}}{\tau_{y}}\right)^{2}\right]^{\frac{1}{2}}$	
7.6	DISIGN DATA - P	

Steps to solve the problem

Step1 Find the mean and amplitude Moments (bending \& twisting)
$(M m a x+M m i n) / 2=$ Mmean (Mm)
(Mmax-Mmin)/2= Mampl or Ma
(Amplitude or varying Load)
Step2 Find the mean and amplitude Stresses (bending \& twisting)

$$
\begin{array}{ll}
\sigma b \text { mean }=M \text { mean } / Z, & \text { Tmean }=16 x \mathrm{Tm} /\left(\text { Pi. } \mathrm{d}^{\wedge} 3\right) \\
\sigma b \mathrm{baor} \sigma v=M a \text { or } M v / Z & \mathrm{Ta}=16 \times \mathrm{Ta} /\left(\text { Pi. } \mathrm{d}^{\wedge} 3\right)
\end{array}
$$

Step3 Calculating equivalent σe \& Teq varying stress

Step4: Use of Soderberg equation, Find the size or factor of safety

Determine the diameter of the circular member 700N which is subjected to loads as shown in figure. Take $\mathrm{n}=2.0$

DATA

$\mathrm{d}=$?
$\mathrm{n}=2.0$
Bending load $=+1000 \mathrm{~N}$ to -700 N
Twisting Moment $=+30 \mathrm{KN}-\mathrm{mm}$ to $-20 \mathrm{KN}-\mathrm{mm}$ Use combined varying stress equation to solve

Other works

Material Assumption List yield \& ultimate Stresses
o_1 \& T_1 - Ref.

DDB_Pg.1.42

Londing	Reversed cycle	Repented cycle	
Tension - compresstion	$\sigma_{-15}-0.36 \sigma_{u}$	$0_{\text {or }}-0.5$	$\sigma_{u} \leq \sigma_{y}$
Bending	$\sigma_{-1 b}-0.46 \sigma_{4}$	$\sigma_{0 b}=0.6$	$\sigma_{u} \leq \sigma_{y}$
Torsion	$\tau-1-0.22 \sigma_{1}$	$\tau_{0}=0.3$	$\sigma_{u} \leq \sigma_{y}$

APPROXIMLATE REI.ATIONSHEPEETVVEEN ENDERANCE LIMITSS FGR DIFFERENT MATERLALS

Material	Relationship
Steels (Generally)	
Carbon Steels	$\sigma_{\mathrm{ob}}=1.5 \sigma_{-1 \mathrm{~b}} ; \quad \sigma_{0 \mathrm{t}}=1.6 \sigma_{-1 \mathrm{~b}} ; \quad \tau_{0}=(1.8$ to 2$) \tau_{-1}$
Alloy Steels	$\begin{gathered} \sigma_{-1 t}=0.95 \quad \sigma_{-1 \mathrm{~b}} ; \quad \sigma_{\mathrm{ob}}=1.6 \sigma_{-1 \mathrm{~b}} ; \quad \tau_{0}=(1.8 \mathrm{to} 2) \tau_{-1} \\ \\ \\ \sigma_{\mathrm{ot}}=(1.5 \text { to } 1.6) \sigma_{-1 \mathrm{t}} \end{gathered}$
Copper Alloys	$\tau_{-1}=0.58 \sigma_{-1 \mathrm{~b}} ; \quad \tau_{0}=(1.4$ to 2$) \tau_{-1}$
Aluminum Alloys	$\sigma_{o b}=1.8 \sigma_{-16} ; \quad \begin{aligned} & \sigma_{-11}=0.7 \sigma_{-1 \mathrm{~b}} ; \quad \tau_{-1}=(0.55 \text { to } 0.58) \sigma_{-1 \mathrm{~b}} \\ & \tau_{0}=(1.4 \text { to } 2) \tau_{-1} \end{aligned}$
Grey Cast Iron	
Endurance strength	or finite life $\sigma^{1}=\sigma_{-1}\left(\frac{10^{6}}{N}\right)^{0.09}$ where N is the required life in cycles

DATA

D
???
twisting moment
twisting moment(-)
Bending load
Bending load
Bending load Distance
n- factor of safety

Step1: Cal. Mean \& amplitude for bending Moment \& Twisting Moment

Max.M
Min.M

90000
MMean
Ma

Twisting Moment directly given
5000
T mean
Tamp--- 25000
BM = F x Distance

600000N-mm
-420000N-mm

510000 950000N-mm
250000N-mm

都

Step 2 Cal. ob and T (mean and amplitude)

$\mathbf{\sigma b}=$	M/Z					
Obmean=	Mmean/Z					
$\mathbf{Z}=$	1/y					
$\mathbf{I}=$	$\pi^{*} \mathrm{~d}^{\wedge} 4 / 64$					
$\mathbf{Y}=$	d/2					
$\mathbf{I}=$	0.0491	d^4	mm^4			
$\mathbf{Y}=$	0.5	d	mm			
$\mathrm{z}=$	0.09816	d^3	$\mathrm{mm}^{\wedge} 3$			
	90000					
M mean $=$	390000	N -mm				
obmean=	3973256.92	*(1/d^3)	$\mathrm{N} / \mathrm{mm}^{\wedge}$			
	916496.94	5519348	82.688			
obampl=	8252149	*(1/d^3)	$\mathrm{N} / \mathrm{mm}^{\wedge}$			

6982862.188

Now, to find

Teq=Tm+kf*Ta*Ty/T_1

Kf=1 (Assumed)

$\mathrm{Ty}=$	$\sigma y / 2($ refer Pg. $7.6 / D D B)$
$T y=$	$180 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

To find T_1
Refer Pg.1.42/DDB
Load
Torsion
Cycle: Reversed T_1 =0.22бu

T_1= $\quad 147.4 N / m^{\wedge} 2$

RHS of equation
Tm 25469.59567*(1/d^3) N/mm^2
kf*Ta*Ty $\quad 155513.135^{*}\left(1 / \mathrm{d}^{\wedge} 3\right) \quad \mathbf{N} / \mathrm{mm}^{\wedge} \mathbf{2}$ 22922636.04
kf*Ta*Ty/T_1 1055.041622*(1/d^3)
155513.135* (1/d^3)

Therefore
Teq $=26524.63729^{*}\left(1 / d^{\wedge} 3\right)$
180982.7308

STEP 4: CALCULATION OF "d" USING COMBINED VARYING STRESS EQUATION (REFR Pg.7.6 /DDB)

```
LHS of equation
    0 . 5
RHS of equation
(\sigmaeq/\sigmay)^2 1429757158*((1/d^3))^2
    376237379.1
(Teq/Ty)^2 21714.7032*((1/d^3))^2
    1010949.027
0.5 = 37812.4169*(1/d^3)
    19422.882
    d^3 75624.8338
    38845.763

Some critical and important problem
Link.


Solution
\(\times\) Eccentric Load Concept.


\section*{Tutorial 4:}

\section*{Topic: combined varying stress}

A hot rolled C60 steel shaft is subjected to torsion moment that varies from \(330 \mathrm{~N}-\mathrm{m}\) clockwise to \(110 \mathrm{~N}-\mathrm{m}\) counter clockwise and an applied bending moment at a critical section varies from \(440 \mathrm{~N}-\mathrm{m}\) to \(-\mathbf{2 2 0 N}-\mathrm{m}\). The shaft is of uniform cross section and no keyway is present at the critical section. Determine the required diameter of shaft. Take factor of safety as \(\mathbf{2}\), the size factor as \(\mathbf{0 . 8 5}\) and surface finish factor as \(\mathbf{0 . 6 2}\).

\section*{UNIT II}

ME18503-Design Of Machine Elements

\section*{UNIT II DESIGN SHAFT, KEYS AND FITS AND TOLERANCE \\ 12 AND COUPLINGS}

Preferred Numbers- Standardization Design of shafts under static and fatigue loadings, Keys - types of keys, design of keys. Design of Rigid coupling, and Flexible coupling. Fits- types of Fits and Tolenrance- hole basis system Shaft basis problems.

\section*{Objective}
- This course will make acquainted design principles on shaft, fits and tolerances. and couplings.

\section*{Outcome}

Analysing and applying the design of solid, hollow shafts keys and couplings. Also Understanding knowledge of fits and tolerance and analysing it

\section*{ROAD MAP}

\title{
SHAFT - DESIGN - static and fatigue loading
}

KEY Design

Couplings- Rigid coupling \& Flexible coupling

Fits \& Tolerance

Preferred Numbers \& Standardization

\section*{SHAFT}

\section*{What is shaft?}

An element which is usually in circular or round bar to transmit the motion from one element to other

Types of Shaft
1. Shaft ---- cylindrical revolving member used in power transmission
2. Axle------ Non rotating element, acting as supporting for the rotational elements.
3. Spindle--- Short length shaft - machine tools
line shafting was used to distribute power from a large central power source to machinery

\section*{Counter shaft Or Lay shaft}


Sliding Mesh Gear Box


\section*{Spindle shaft}


Spindle casing

\section*{Axle}

An axle is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. ... Sometimes, especially on bicycles, bikes.
bullock cart wheels on shaft


Shaft manufacturing : hot Rolled or cold working methods

Shaft standard Size: 5-7 meters.

Shaft Design
1. Strength Based :- theory of simple bending= \(M / I=\sigma / Y\)
2. Rigidity /stiffness based:- Theory of Torsion= \(T / J=T / y\)

Shaft generally subjected to
1. Torsion due to rotational action
2. Bending due to pulleys mounted on it.
3. Both
4. axial loads in some specific application

For remembrances

> types of beam:
1. Cantilever
2. Simply supported
3. Over hanging ( right, Left, or Both sides)

Shafts may be solid or hollow
hollow shaft is better than solid for the same power transmission.
due to saving of material.

Shaft design always prefers the Max Shear stress Theory
Refer the eqn. Pg.7.2/DDB. Tmax \(= \pm \sqrt{\sigma^{\wedge} 2+4 . \tau^{\wedge} 2}\)

\section*{SHAFT DESIGN STEPS}

\section*{Objective = Diameter finding}

Step 1: Indentify the loads applied on shaft
Step2: Select material (optional) List \(\sigma u \& \sigma y\)
Step3: calculate T torque transmission
\[
\begin{aligned}
& P=(2 \times \pi \times N T) / 60, \\
& N-\text { rpm, } P=\text { power, } T=?
\end{aligned}
\]

Step 4: Find the maxim bending moment
( use of BMD- bending moment diagram)
Step5 : Apply the equation to Find "d " of the shaft applying the loading both \(\mathrm{T} \& \mathrm{M}\)
use the equation in Pg. 7.21/DDB
\[
d_{0}^{3}-\frac{16}{\pi[\tau]\left\{1-\left(\frac{d_{i}}{d_{0}}\right)^{2}\right\}} \sqrt{\left[K_{b} M_{b}+\alpha \frac{P d_{0}}{8}\left(1+\frac{d_{i}^{2}}{d_{0}^{2}}\right)\right]^{2}+\left(K_{t} M_{0}\right)^{2}}
\]


Standard Series

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{} \\
\hline -84 & \(\underline{10}\) & \#19\% & - F 180 \\
\hline \(0-14\) & \(0-1.818\) & & 10\% \\
\hline \multirow{6}{*}{8} & \multirow{3}{*}{\(1 \times 8\)} & \(1 / 4\) & fins \\
\hline & & & 17 \\
\hline & & A17 & 117 \\
\hline & \multirow{3}{*}{12} & 1.17 & 128 \\
\hline & & & 141 \\
\hline & & 1.0 & 14 \\
\hline \multirow{7}{*}{160} & \multirow[b]{3}{*}{1**} & [43 & ten \\
\hline & & 183 & Tit \\
\hline & & 184 & 1.10 \\
\hline & \multirow{4}{*}{206} & & 2200 \\
\hline & & 109 & 218 \\
\hline & & & 734 \\
\hline & & 224 & 2510 \\
\hline \multirow{7}{*}{2.54} & \multirow[b]{3}{*}{280} & 2.40 & 280 \\
\hline & & & 265 \\
\hline & & 2 m & \(\frac{200}{200}\) \\
\hline & \multirow{4}{*}{} & & 3:12 \\
\hline & & 3.15 & 375 \\
\hline & & 345 & 345 \\
\hline & & 335 & 3.71 \\
\hline \multirow{8}{*}{4.00} & \multirow{4}{*}{400} & \(\pi\) tot & 100 \\
\hline & & & 4.25 \\
\hline & & 450 & 4.50 \\
\hline & & & 4.75 \\
\hline & \multirow{4}{*}{500} & 580 & 500 \\
\hline & & 2.00 & 530 \\
\hline & & \(5 \times 60\) & \(5 \times 0\) \\
\hline & & & 6.00 \\
\hline \multirow{8}{*}{6.36} & \multirow{4}{*}{630} & 6. 35 & 6.30 \\
\hline & & & 6.79 \\
\hline & & 710 & 710 \\
\hline & & & 7.50 \\
\hline & \multirow{4}{*}{810} & \multirow[t]{2}{*}{100} & +00 \\
\hline & & & 8.50 \\
\hline & & \multirow[t]{2}{*}{\$00} & 900 \\
\hline & & & 980 \\
\hline 10.00 & 1000 & 10.09 & 10.00 \\
\hline
\end{tabular}

Some task for finding the bending moment


\section*{Belt pulley \\ \(\mathrm{BM}=\mathbf{W} \mathbf{x}\) W= T1 + T2}

\(B M=W g \times L / 4\)
\[
\begin{aligned}
& \text { Ft = tangential force } \\
& \alpha=\text { Pressure angle }\left(20^{\circ}\right)
\end{aligned}
\]

Pg.6.4/DDB


\section*{Pg.6.5/DDB}


SP1- Find the diameter of the cantilever shaft which carries a belt pulley at its end as shown in figure. Take allowable Shear Stress as \(50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \mathrm{p}=10 \mathrm{~kW}\),at 800


10 KN
DATA
\(\mathrm{D}=\) ?
Loads = Only belt pulley - tensions
T1= 10 KN ,
\(T 2=8 \mathrm{KN}\),
\([\mathrm{t}]=50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)

Equation to be used for the combination Torsion and bending

\begin{tabular}{|c|c|c}
\hline Type & \(\mathbf{K}_{\mathrm{b}}\) & \(\mathrm{K}_{\mathrm{a}}\) \\
\hline STATIONARY SHAFT & & \\
Gradually applied load & 1 & 1 \\
Suddenly applied load & \(1.5-2\) & \(1.5-2\) \\
\hline REVOLVING SHAFT & & \\
Gradual loading & 1.5 & 1 \\
Minor shock loads & \(1.5-2\) & \(1-1.5\) \\
Heavy shock loads & \(2-3\) & \(1.5-3\) \\
\hline
\end{tabular}

\section*{DATA}
D ? ?
\begin{tabular}{lr} 
T1 & 10000 N \\
T2 & 8000 N \\
Diameter & mm \\
{\([T]\)} & \(50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
\end{tabular}

Step1 Loads identification

T1 \& T2
Weight of belt pulley (If not given in problem,)
\(\mathbf{W}=\quad \mathrm{T} 1+\mathrm{T} 2\)

If weight of the pulley is given
\(W=\quad W p+T 1+T 2\)

Now

Step2: Material Selection, List ou \& oy _ (optional)

Allowable shear stress is gievn, no need to select material
\[
[T]=\quad 50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\]

Step3 Calculation of torque T

Step3: calculate T torque transmission
\(P=(2 \times \pi \times N T) / 60\),
\(\mathrm{N}-500 \mathrm{rpm}, \mathrm{P}=8 \times 10^{\wedge} 3, \mathrm{~T}=\) ?
\[
\begin{aligned}
\mathrm{T}=\mathrm{Mt} & =152.817 \mathrm{~N}-\mathrm{m}, \\
& =152.817 \times 10^{\wedge} 3 \mathrm{~N}-\mathrm{mm}
\end{aligned}
\]


Step 5 CALCuIAtion of Diameter

\section*{Refer Pg. 7.21/DDB}
\[
d_{0}{ }^{3}=\frac{16}{\pi[\tau]\left\{1-\left(\frac{d_{i}}{d_{0}}\right)^{4}\right\}} \sqrt{\left[K_{b} M_{b}+\right)^{2} \frac{\left.P b_{k}+\left(+\frac{d_{i}}{8}\right)\right]^{2}+\left(K_{1} M_{1}\right)^{2}}{0}}
\]
\[
\mathrm{Di}=0, \text { for solid shaft }
\]
\begin{tabular}{lr} 
[T] & 50 \\
Mb & 12600000 \\
Mt & 152817
\end{tabular}

Put \(P=0 \quad\) No axial load
\(\mathrm{Kb} \& \mathrm{Kt}=\) ?
Refer Pg. 7.21/DDB

Take : revolving condition
\begin{tabular}{lr} 
Assumed & Gradual Loading \\
Kb & 1.5 \\
Kt & 1
\end{tabular}
\begin{tabular}{|c|c|}
\hline Kb x Mb \(\quad 1.9 \mathrm{E}+07\) & 3.572E+14( \(\mathrm{Kb} \times \mathrm{Mb})^{\wedge} 2\) \\
\hline Kt x Mt 152817 & \(2.335 \mathrm{E}+10\left(\mathrm{Kt} \mathrm{x} \mathrm{Mt)}{ }^{\wedge} 2\right.\) \\
\hline sqrt( \(\left.\mathrm{KbMb}^{\wedge} \mathbf{2 + K t M t}{ }^{\text {® }} \mathbf{2}\right)=\) & 18900617.8 \\
\hline 16/( \(\pi \times[7])=\) & 0.101878383 \\
\hline \(\mathrm{d}^{\wedge} 3=\) & 1925564.373 \\
\hline d \(=\) & 123.8105999 \\
\hline Pg.7.20/DDB & 124.409 \\
\hline STD R20 series & 125 mm \\
\hline
\end{tabular}

SP1a- Find the diameter of the cantilever shaft which carries a belt pulley at its end as shown in figure. Take allowable Shear Stress as 50


DATA
\(\mathrm{D}=\) ?
Loads = Only belt pulley - tensions
\(\mathrm{T} 1=10 \mathrm{KN}\),

T2 \(=8 \mathrm{KN}\),
\([\tau]=50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)

\section*{DATA}
D ..... ??
T1T2
Diameter 1000mm[T]
10000N
8000N
\(50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
Step1 Loads identification
T1 \& T2
Weight of belt pulley
(If not given in prob,)
W = ..... T1+ T2
If weight of the pulley is given
W = Wp + T1 + T2Now

Step2: Material Selection, List \(\sigma u\) \& \(\sigma y\) _ (optional)

Allowable shear stress is gievn, no need to select material
\([T]=\quad 50 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)

\section*{Calculation of torque}

\section*{Step3 T}
\[
\left.\begin{array}{lc}
\mathrm{T}= & \mathrm{F} \times \mathrm{R}
\end{array} \begin{array}{l}
\mathrm{R}=\text { radius of Pulley } \\
\mathrm{F}=\text { net force ( } \mathrm{T} 1- \\
\mathrm{T} 2)
\end{array}\right] \begin{array}{cc}
(\mathrm{T} 1-\mathrm{T} 2)^{*} \mathrm{D} / 2 \\
\mathrm{~T}= & 1000000 \mathrm{~N}-\mathrm{mm}
\end{array}
\]

Step4 Calculation of Bending moment


\(\mathbf{M}=\)
\(12600000 \mathrm{~N}-\mathrm{mm}\)

\section*{Refer Pg. 7.21/DDB}
\[
\text { Di }=0, \text { for solid shaft }
\]
\begin{tabular}{lr}
{\([T]\)} & 50 \\
Mb & 12600000 \\
Mt & 1000000
\end{tabular}

Put \(\alpha=0 \quad\) No axial load

Kb \& \(\mathrm{Kt}=\) ?
Refer Pg. 7.21/DDB
Take : revolving condition
Assumed Gradual Loading
Kb 1.5
\begin{tabular}{|c|c|c}
\hline Type & \(\mathbf{K}_{\mathrm{b}}\) & \(\mathbf{K}_{\mathrm{t}}\) \\
\hline STATIONARY SHAFT & & \\
Gradually applied load & 1 & 1 \\
Suddenly applied load & \(1.5-2\) & \(1.5-2\) \\
\hline REVOLVING SHAFT & & \\
Gradual loading & 1.5 & 1 \\
Minor shock loads & \(1.5-2\) & \(1-1.5\) \\
Heavy shock loads & \(2-3\) & \(1.5-3\) \\
\hline
\end{tabular}
\(\mathrm{D}^{\wedge} 3=\quad\) ??
\begin{tabular}{ll}
\(\mathrm{Kb} \times \mathrm{Mb}\) & \(1.9 \mathrm{E}+07\) \\
\(\mathrm{Kt} \times \mathrm{Mt}\) & 1000000
\end{tabular}
3.572E+14(Kb x Mb)^2 \(1.000 \mathrm{E}+12(\mathrm{Kt} \mathrm{x} \mathrm{Mt})^{\wedge} 2\)
\(16 /(\pi \times[T])=\)
\[
d^{\wedge} 3=
\]
\[
d=
\]
123.86689

\section*{Refer Pg.7.20/DDB}

125 mm


SP2- Find the diameter of the cantilever shaft which carries a gear pulley with pressure angle \(20^{\circ}\). at its end as shown in figure. Take allowable Shear Stress as 400 \(\mathrm{N} / \mathrm{mm}^{\wedge} 2\). Power transmitted by the drive is 8 kW at 500


DATA
\(\mathrm{D}=\) ?
Loads = Gear drive
Wgear= Ft/Cos \(\alpha\)
\(\alpha=20^{\circ}\)
\([\mathrm{T}]=400 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)


Step2: Material Selection, List \(\sigma u\) \& \(\sigma y\) _ (optional)

Allowable shear stress is gievn, no need to select material [T] = 400N/mm^2
\begin{tabular}{|c|c|c|c|c|}
\hline Step3 & \multicolumn{2}{|l|}{Calculation of torque \(T\)} & & \\
\hline & \(\mathbf{P}=\) & 2x \(\pi \times N \times T / 60\) & & \\
\hline & \(\mathbf{T}=\) & P \(\times 60 /(2 \times \pi \times N\) & & \\
\hline & \(\mathrm{N}=\) & 500 & & \\
\hline & P & 8000 & W & \\
\hline & \(\pi\) & 3.141 & & \\
\hline & \(\mathrm{T}=\) & \[
\begin{aligned}
& 152.817574 \\
& 152817.574
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{N}-\mathrm{m}\) \\
\(\mathrm{N}-\mathrm{mm}\)
\end{tabular} & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\mathrm{Kb} \& \mathrm{Kt}=\) ?} \\
\hline \multicolumn{4}{|l|}{Refer Pg. 7.20/DDB} \\
\hline \multicolumn{2}{|l|}{Type} & \(\kappa\). & K, \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{STATIONARY SHAFT Graduazly neptied lood}} & & \\
\hline & & 1 & 1 \\
\hline \multicolumn{2}{|l|}{Suddenty applied lead} & 1.3.2 & \(1.5 \cdot 2\) \\
\hline \multicolumn{4}{|l|}{REVOLVINGSHAFT} \\
\hline \multicolumn{2}{|l|}{Gradual loading} & 1.5 & 1 \\
\hline \multicolumn{2}{|l|}{Minor shock loads} & 1.3-2 & 1-1.3 \\
\hline \multicolumn{2}{|l|}{Hesvy shork loads} & 2.3 & \(1.5 \cdot 3\) \\
\hline \multicolumn{4}{|l|}{Take: revolving condition} \\
\hline Assumed & \multicolumn{3}{|l|}{Gradual Loading} \\
\hline Kb & \multicolumn{3}{|c|}{1.5} \\
\hline Kt & & & 1 \\
\hline & & & \\
\hline
\end{tabular}
\[
d_{0}=\frac{16}{\pi(\tau)\left\{1 .\left(\frac{d_{i}}{d_{0}}\right)^{4}\right.} \sqrt{\left(K_{b} M_{b}+2 \frac{1 v_{1}}{8}\left(1+\frac{d_{1}}{2}\right)^{2}\right]^{2}+\left(K_{1} M_{1}\right)^{2}}
\]


\section*{Various pulleys mounted on the shaft}

Develop the shaft with respect the description in the problem


SP3. A shaft is having length of 2 meter and supported at its ends. A belt driven pulley of diameter 500 mm is mounted at distance of 0.5 meter from right end bearing. The maximum and minimum belt tensions are 12 KN and 8 KN respectively. An another gear pulley of 400 mm in diameter is mounted on the shaft at 400 mm from the left end support. The power transmitted by the system is 20 KW at 1200 rpm. Shaft is made of C45 steel. Determine the diameter of the shaft?

\section*{1. Develop the shaft arrangement}






BM at supports \(=0\) always
\(B M=F x L\)
Take fixed point \(A\), moments calculated about it.


Bm at
\begin{tabular}{lcc} 
A & 0 \\
C & \(780162(400 \times 1950.404)\) & \\
\hline D & \(10000(500 \times 20)\) & \(500 \times 20000\) \\
\hline B & 0 & \(10^{\wedge 7}\)
\end{tabular}


\section*{Find Ra \& Rb,}
take Moment about A,


Clockwise= anti clock wise


Use Rb in eqn1, \(\mathrm{Ra}=\) ?
\begin{tabular}{l|l|}
\hline \(\mathrm{Ra}+\mathrm{Rb}=21950.404\) & \\
\hline \(\mathrm{Ra}+395.08=\) & 21950.4 \\
\(\mathrm{Ra}=\) & 6560.323 N
\end{tabular}



SP4. A shaft is supported at its two ends by two bearings \(A \& B\), the span between them is 1.8 meters. To the right of bearing \(A\) a belt pulley of diameter 600 mm is mounted at 300 mm takes the horizontal drive with the tensions 20 KN and 12 KN . To the left of bearing B, another belt pulley of diameter of 400 mm , is located at 500 mm . Also it transmits a vertical drive. Determine the diameter of the shaft when it takes minor shock loads. Take angle of contact 180deg. and \(\mu=.25\)


\begin{tabular}{|l|l|l|l|}
\hline Step1 & Torque calculation & \\
\hline & & & \\
\hline & \(\mathbf{P}=\) & \(\mathbf{2 \pi N T} / \mathbf{6 0}\) & \\
\hline & T= F X R & & \\
\hline & & & \\
\hline & T=( T1-T2) X D1/2 & & \\
\hline & T1-T2 \(=\) & \(\mathbf{8 0 0 0}\) & \\
\hline & D1/2 \(=\) & 300 & \\
\hline & & & \\
\hline & T = & & \\
\hline & & & \\
\hline
\end{tabular}
Stepz Loads ide
W1belt pulley(H)
\(\mathbf{W 1 b p}=\mathbf{T 1 + T 2}\) 32000 N

\section*{W2Bp= T3+T4 ?}
Assume the torque is same for The D2 belt Pulle
\(T=\quad T 1 / T 2=\quad e^{\wedge} \mu \theta=T 3 / T 4\)
T1/T2= \(\quad e^{\wedge} \mu \boldsymbol{\theta}\)
\begin{tabular}{rr}
\(\mathrm{T} 1 / \mathrm{T} 2=\) & \(\mathrm{e}^{\wedge} \mu \boldsymbol{\theta}\) \\
& 2.1 \\
\(\mathrm{~T} 3 / \mathrm{T} 4=\) & 2.1
\end{tabular}

Use Torque, find T3 \& T4
\[
T=(T 3-T 4) \times D 2 / 2
\]
\[
\begin{array}{lr}
\text { D2/2 }= & 200 \\
\text { T3 }= & =T 4 * 2.0993
\end{array}
\]
\(2400000=T 4(2.0993-1) \times 200\)
\begin{tabular}{ll|l} 
T4 & 10916.04 N & \\
T3 & 22916.52 N & W2 \(\mathrm{Bp}=33832.6 \mathrm{~N}\)
\end{tabular}

\section*{Step3: Material Selection, List ou \& \(\sigma y\) _ (optional)}

Material is given asC45
Allowable shear stress is not gievn
[T] =
0N/mm^2

Refer Pg.1.9/DDB
C45
бy \(=\)
360N/mm^2
\(\sigma u=\)

Refer Pg.7.6/DDB
Asper \(\tau\) max theory,
\[
\text { T = } \quad \mathrm{y} / \mathbf{2}
\]
\begin{tabular}{ll}
\(T=\) & \(180 \mathrm{~N} / \mathrm{mm}^{\wedge 2}\) \\
{\([T]=\)} & 180
\end{tabular}

Calculation of Bending moment Need to have line sketch of shaft

MaxBM= ???
H \& V
\(\mathbf{R a}+\mathbf{R b}=\)
Total load (only Horizontal)
\(R a+R b=\)

Now bm at all points, \(A\), C, D \& B

BM at supports \(=0\) always

BM=F x L
Apply moment about A, to find \(R a \& R b\)
\(1800 \mathrm{Rb}=\quad 300 \times 32000\)
\(\mathbf{R b}=\quad 5333.333333\)
\(R a=\)

\section*{dead} 32000 eqn1
\(1800 \mathrm{Rb}=\quad 300 \times 32000\)
26666.6667


N

N

\section*{Now find moment at \(a, b, c, d\)}

At \(A \& B=0\)
At C
8000000(Ra x dist from c)
AT D
\begin{tabular}{lc}
\(R a+R b=\) & Total load \\
\(R a+R b=\) & \(33832.56 \quad\) (only Vertical)
\end{tabular}

Now bm at all
points, A, C, D \&
B

BM at supports = 0 always
\(B M=F \times L\)
Apply moment about \(A\), to find \(R a \& R b\)
\(1800 \mathrm{Rb}=1300 \times 33832.6\)
\begin{tabular}{lrr}
\(\mathrm{Rb}=\) & 24434.65556 & N \\
\(\mathrm{Ra}=\) & 9397.901655 & N
\end{tabular}
```

Rb= 24434.65556 N
Ra= 9397.901655 N

```

Now find moment at a,b,c,d
At \(A \& B=0\)
BM at Cv
2819370(Ra x dist from c)

\section*{BM at Dv}

12217328(Rb x dist from d)

Now to find Resutant BM at C \& D
\[
\begin{array}{rcr}
\text { RBM.C= } & \text { SQRT[(BMCh } \left.)^{\wedge} 2+(B M C v)^{\wedge} 2\right] \\
& 8482266.796 & N-m m \\
\text { RBM.D }= & \text { SQRT[(BMDh } \left.)^{\wedge} 2+(B M D v)^{\wedge} 2\right] \\
& 12504967.38 & N-m m
\end{array}
\]


Chose RBM at D as Max. BM

\section*{Step 5 CALCulAtion of Diameter}

Refer Pg. 7.21/DDB


Di \(=\mathbf{0}\), for solid shaft
[T]
Mb
Mt 180
12504967.38N-mm
\(2400000 \mathrm{~N}-\mathrm{mm}\)
\begin{tabular}{|c|c|c}
\hline Type & \(\mathbf{K}_{\mathrm{b}}\) & \(\mathbf{K}_{\mathrm{t}}\) \\
\hline STATIONARY SHAFT & & \\
Gradually applied load & 1 & 1 \\
Suddenly applied load & \(1.5-2\) & \(1.5-2\) \\
\hline REVOLVING SHAFT & & \\
Gradual loading & 1.5 & 1 \\
Minor shock loads & \(1.5-2\) & \(1-1.5\) \\
Heavy shock loads & \(2-3\) & \(1.5-3\) \\
\hline
\end{tabular}

Put \(\alpha=0 \quad\) No axial load

Kb \& Kt = ?
Refer Pg. 7.21/DDB

Take : revolving condition
Minor shock
Given loading

Kb
1.8

Kt
1.3
```

D^3= ??
Kb x Mb 22508941.28
Kt x Mt 3120000
sqrt(Kbmb^2+KtMt^2)=
16/(}\pi\times[T])
0.02829955
d^3 =
6 4 3 0 8 3 . 1 3 9
d =
85.9316106
Pg.7.20/DDB
STD R20 series
90mm

```

Other important points to be considered

1.Vertical downward = easy to solve
2.Vertical upward= balance the force with the support.
3. Inclined = to be resolved into two components, horizontal \(\cos \theta\) and \(\sin \theta\)

\section*{Other important points to be considered}


Hence two point loads will come 1.ver. \& 2. horizontal

This Ft acts downward or upward based on the rotation direction.

Wt of the gear component will act at given pressure angle to the vertical or horizontal
hence \(\mathrm{Wg}=\mathrm{Ft} / \operatorname{Cos} \alpha\) to be taken into two component \(\mathrm{Wg} \operatorname{Cos} \alpha\) and \(\mathrm{Wg} \operatorname{Sin} \alpha\)
1.A solid steel shaft is supported on two bearings 1.8 m apart. A \(20^{\circ}\) involute gearD, is keyed to the shaft at a distance of 150 mm to the left of the right hand bearing. Two pulleys B and C are located on the shaft at distances of 600 mm and 1350 mm respectively to the right of left hand bearing. The drive \(B\) is vertically downward while from \(C\) the drive is downward at angle of \(60^{\circ}\) to the horizontal. Draw the arrangement.
2. A shaft carrying a pulley \(A\) and gear \(B\) and supported in two bearings \(C\) and \(D\). The tangential force Ft on the gear acts vertically upwards. The pulley delivers the power Vertically down ward. B is located at 500 mm to right of \(C\) and \(A\) is located 400 mm to the left of \(D\). The span between \(c\) and \(D\) is 2000mm.Draw the arrangement on the shaft.
3. A horizontal shaft of 2.5 m AD supported in bearings at \(A\) and \(B\) and carrying the pulleys at \(C\) and \(D\). The \(C\) pulley drives the power vertically downward and \(D\) pulley delivers the power horizontally. The span of \(A B\) is 1.8 m . C located at 600 mm to right of \(A\) bearing. \(D\) is located at 2500 mm to the left of \(A\) bearing. Draw the arrangement

\section*{Unit2 Tutorial 1}
1. A horizontal nickel steel shaft rests on two bearings, \(A\) at the left and \(B\) at the right end and carries two gears at C and D located at distances of 250 mm and 400 mm respectively from the centre line of the left and right bearings. The pitch diameter of the gear \(C\) is 600 mm and the gear \(D\) is 200 mm . The distance between the centre line of the bearings is 2400 mm . The shaft transmits 20 kW at 120 rpm . The power is delivered to the shaft at gear \(C\) is taken out at the gear \(D\) in such a manner that the tooth pressure Ftc of gear \(C\) and \(F_{t D}\) of the gear \(D\) act vertically downwards. Find diameter of the shaft. Take weight of the gears C and D 950 N and 350 N respectively. The combined shock and fatigue factors for bending and torsion may be taken as 1.5 and 1.2. The working stress is 100 MPa in tension and 56 MPa in shear.

\section*{Key Design}

\section*{What is key?}

Key is a mils steel piece machine element inserted between the shaft and boss or hub of the pulley used to prevent the relative motion between the shaft and rotating element.

\section*{Types of keys}
1. Sunk keys
2. Saddle keys
3. Tangent keys
4. Round keys


Keytypes


5. Splines


\section*{KEYS Design}

(a) Feather key, (b) rectangular key, and (c) square key

Sunk taper key


Woodruff key ( used in automobile and machine tools, easy tilting in recess) Dimensions in me



Breaking of corners
\(\begin{aligned} & \text { (all-round) } \\ & \text { Chamfering }\end{aligned}\) Redfuring


Radius at bottom of keywey in shaft and hub


Hollow saddle key

saddle keys
Used for light loads,
Key is fitted in the hub and flat is rest on shaft surface

\section*{Tangent Keys}
- The tangent key are fitted in a pair at right angles.
- Each key is to withatand torsion in one direction only.
- sThey are used in large heavy duty shaft.


\section*{Round key}
- The round keys, are circular in section and fit into holes drilled partly in the shaft and partly in the hub.
- They have advantage that their keyways may be drilled and reamed after the mating parts have been assembled.


\section*{Feather key}
- A key attached to one member of a pair and which permits relative axial movement is known as feather key.
- It is a special type of parallel key which transmits a turning movement and also permits axial movement.



\section*{Key design Procedure}

Step1: find torque. Using power eqn. \(P=2 \pi N T / 60\)
Step2: Calculate diameter of shaft "d" As per Max T theory., \(T=\pi / 16 x[T] \times \mathrm{d} \wedge 3\)
Step3: Based on d of shaft find key sizes - according to type of key selected. \(\mathrm{w}=\) ?, \(\mathrm{t}=\) ? And \(\mathrm{L}=\) ?

Step4: Check for induced shear stress
Material of shaft = material of Key

\(T=T\) ind \(\mathbf{x} \mid x \mathbf{x} \mathbf{x} / \mathbf{2}\)


Shear Area is a plane

T ind < [ \(T\) ] safe design

Kp1. Design a parallel key for the following data . Power= 20Kw at 1200 rpm . The shaft's allowable shear stress is 50 Mpa .
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA & & & & & \\
\hline P & 20000 & w & & & \\
\hline N & 1200 & Rpm & & & \\
\hline [T] & 50 & N/mm^2 & & & \\
\hline Key & paralle & l key & & & \\
\hline Step1 & find tor & rque. Us & ng powe & \(r\) eqn. \(P=2 \pi\) & NT/60 \\
\hline & & & & & \\
\hline & & \(\mathrm{T}=\) & \(60 \times \mathrm{P} /(2\) & \(2 \times 3.141 \times \mathrm{N})\) & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 159.18 & \(\mathrm{N}-\mathrm{m}\) & \\
\hline & & \(\mathrm{T}=\) & 159185 & \(\mathrm{N}-\mathrm{mm}\) & \\
\hline & & & & & \\
\hline
\end{tabular}

Step2: Calculate diameter of shaft "d" As per Max T theory., \(T=\pi / 16 x[T] x d^{\wedge} 3\)


Step3: Based on d of shaft find key sizes - according to type of key selected.
\(w=\) ?,\(t=\) ? And \(L=\) ?


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Step4: Check for induced shear stress} \\
\hline \multicolumn{2}{|l|}{Material of shaft = material of Key [T] shaft= [T] key also} \\
\hline \(T=\quad \mathbf{F} \times \mathbf{R}\) & \\
\hline \multicolumn{2}{|l|}{\(F=\quad\) stress \(\times \mathbf{A}\)} \\
\hline \multicolumn{2}{|l|}{\(T=\quad\) stres \(\times \mathrm{A} \times \mathrm{D} / 2\)} \\
\hline \(A=\quad 1 \times \mathbf{w}\) & \\
\hline \multicolumn{2}{|l|}{\(T=\quad 1 \times w \times T \times d / 2\)} \\
\hline \multicolumn{2}{|l|}{\(T=\quad 45 \times 8 \times T \times 28 / 2\)} \\
\hline T inducd: 31.6 & \(\mathrm{N} / \mathrm{mm}{ }^{\wedge} \mathbf{2}\) [T]=50 \\
\hline \(31.584<\) [50] & \\
\hline design is safe & \\
\hline
\end{tabular}

\section*{Couplings}

To transmit motion from driver to driven, act as connector between them

\section*{Types}
1. Rigid flange coupling ----a. Protective type b. non protective
2. Flexible coupling- Bushed pin type

Clutch and coupling:
both functions are same, but clutch is distinguished by the transmission of motion can be intermittent . that is, when desired to stop or start is possile by disengage or enage the clutch.


Non protective flange


Protective flange


\section*{Design procedure for Flange coupling ( protective and non protective)}

Step1: Find Torque using power eqn.

Step2: Find ' d' of the shaft using Max. T equation
Step3: List the basic sizes of the coupling using ' \(d\) ' of the shaft refer Pg. 7.134/DDB

Step4: design for hub( treating it as hollow shaft, di=d of the shaft, do=2d

Step5: Design for key

Step6: Design for flange
Step7:Design for bolt

Step8: Draw the coupling with NTS free hand sketching with dimensions

CP1. Design and draw a rigid coupling for the following specifications.
Power 15 kW at 300 rpm . Allowable shear stress for Shaft and Key is \(40 \mathrm{~N} / \mathrm{mm}^{\wedge 2}\). Bolts working stress should not exceed \(30 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\). Flange is made of Castiron and its limited shear stress is \(14 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\). The toque transmission is \(25 \%\) higher than the actual torque. The crushing stress for key is \(\mathbf{2 . 5}\) times of its shear stress.
\begin{tabular}{|l|l|l|l|l|}
\hline DATA & & & \\
\hline P & & & \\
\hline N & & & \\
\hline
\end{tabular}

Step1: Torque finding
\[
\begin{aligned}
& P=2 \times 3.141 \times N \times T / 60 \\
& \text { Some times service factor will } \\
& \text { be given, } \\
& \mathrm{T}=\mathrm{p} \times \mathbf{6 0 / ( 2 \times 3 . 1 4 1 \times N})^{\mathrm{T}=\text { service factor } \times \text { Tcal } .} \\
& \text { ( } \operatorname{Tmax}=1.25 \times \mathrm{T} \text { cal) }
\end{aligned}
\]

Step2: Find diameter of The shaft
\[
\mathrm{T}=3.141 / 16 \times T \times \mathrm{d}^{\wedge} 3
\]

Std the " d" to R20 series
\begin{tabular}{|c|c|}
\hline D^3 \(=\) & T×16/( 3.141 \(\times\) T ) \\
\hline & \\
\hline\(d=\) & 76019.567 \\
\hline R20 series \(d=\) & 42.203469 mm \\
\hline & \(\mathbf{4 5} \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{Step3: List the basic proportions of coupling use d std}

\section*{Refer Pg.7.134 /DDB}
\(d=\) dia of the shaft
\(\mathrm{D}=\mathbf{2 d}\) ( \(\mathrm{d} 0=\) outter dia of the hub),
\(d i=\) inner dia of the hub= dia of theshaft

L=1.5 d hub length
D1=PCD \(=3 \mathrm{~d}\)
D2 = flange dia= 4 d
\(\mathrm{n}=\) no.of bolts selecte according to \(d\) of the shaft
\(T f=\) thickness of flange \(=d / 2\)

Refer rg.7.134/DDB
\begin{tabular}{|c|c|}
\hline shaft d= & 45 mm \\
\hline HUB di = & 45 mm \\
\hline do \(=\) & 90 mm \\
\hline Lof Hub= & 67.5 mm \\
\hline PCD for bolts = & 135 mm \\
\hline Flange dia = & 180 mm \\
\hline No.of bolts \(n=(40<d<100)\) & 4 nos \\
\hline
\end{tabular}

FIANGE COUPLING:S
\begin{tabular}{|c|c|}
\hline Equarlas & Nemenclature \\
\hline D - 24 & d) Piommal alismeter of toulth \\
\hline \(1 . \quad 15 \mathrm{a}\) & Hommar aiameter of bolta \\
\hline D, - 3 d & it Shaft diameter \\
\hline \(D_{1}-4 \mathrm{~d}\) & D Outaicle stiasieter \\
\hline \(1 .-\left(\frac{4}{2}\right)\) & D. Diammer ef bolt circie \\
\hline \begin{tabular}{l}
a - 3 for d upto 40 mum \\
- 4 for 11 upto 100 man \\
- E fier a upto 1 tho mm
\end{tabular} & \begin{tabular}{l}
n. number of toblts \\
"r Thickness of Dange
\end{tabular} \\
\hline \(t,-\left(\frac{d}{4}\right)\) & ', Thickness eff protectinge Mengo \\
\hline
\end{tabular}


UNPROTEGTED TYPE FLANGE GOUPLINC

HUB
\begin{tabular}{|c|c|c|}
\hline & Equation & Nompencinture \\
\hline 易 & \(T-\frac{n}{16} \quad T_{c}\left[\frac{D^{4}-d^{4}}{D}\right]\) & T. Allowsble shear strese for shate \\
\hline \multirow[b]{2}{*}{\[
0
\]} & \(\mathbf{T}=1 w \tau_{2}\left(\frac{d}{2}\right)\) & \multirow[t]{2}{*}{\begin{tabular}{l}
If Allowable shear strese for bolt \\
T. Allowable shear stress for key \\
\(\tau\). Allowable shenr stresi for flange
\end{tabular}} \\
\hline & \(T=\left(\frac{1}{2}\right) \sigma_{0}\left(\frac{d}{2}\right)\) & \\
\hline \begin{tabular}{l} 
¢ \\
\(\frac{5}{3}\) \\
\(\frac{1}{5}\) \\
\hline
\end{tabular} & \(T=\pi\left(\frac{D^{2}}{2}\right) \tau_{c} t_{r}\) & \(\sigma\) eb Allowable shear stress for crushing stress for bott \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2 \\
\hline 8 \\
\hline
\end{gathered}
\]} & \(T=n\left(\frac{n}{4}\right) d^{2}{ }^{2} \tau_{2}\left(\frac{D_{1}}{2}\right)\) & \multirow[t]{2}{*}{\begin{tabular}{l}
Allowable shear stress for erushing stress for key \\
Torque tranemined by the coupling
\end{tabular}} \\
\hline & \(T=\mathrm{nd}_{3} \mathrm{t}_{2} \sigma_{*}\left(\frac{\mathrm{D}_{1}}{2}\right)\) & \\
\hline
\end{tabular}


Step 4: Hub design
\(T=3.141 / 16 \times T \times\left[\left(d o^{\wedge} 4-d^{\wedge} \wedge\right) / d 0\right]\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{hollow shaft with torsion only} & \\
\hline \([T]=\) & 40 & \(\mathrm{N} / \mathrm{mm}^{\wedge} 2\) & \\
\hline \(\mathrm{T}=\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\((\pi / 16 \times\) x ind \() \times\left[\left(\mathrm{do}^{\wedge} 4-\mathrm{di} \wedge 4\right) / \mathrm{d} 0\right]\)}} \\
\hline & & & \\
\hline ( \(\pi / 16\) ) & 0.196313 & & \\
\hline (do^4-di^4) & 61509375 & & \\
\hline \(\left(\mathrm{do}^{\wedge} 4-\mathrm{di}^{\wedge} 4\right) / \mathrm{d} 0\) ) & 683437.5 & & \\
\hline \(\mathrm{T}=\) & 596943.6 & & \\
\hline 596943.6485 & 134167.3 & Tind & \\
\hline Tind \(=\) & 4.449 & \(\mathrm{N} / \mathrm{mm}^{\wedge} 2\) & \\
\hline 4.449 < [40] & & & \\
\hline Tind < [ \(\dagger\) ] & safe design & & \\
\hline
\end{tabular}

\section*{STEP. 5 Key Design} In shear In crushing




All dimensions in millimeters


Desigation: A Parallel Key of width 10 mm height 8 mm and length 50 mm shall be designated as: Parallel Key \(10 \times 8 \times 50\)
IS: 2048-1962

\section*{Preferred Length (L), mm}

a.) SHEAR failure



\section*{Step 5: Flange design}

\section*{Flange is made of Cl -cast Iron material}

Flange failure occurs at the junction of HUB

\[
\begin{array}{cc}
\mathrm{tf}=\text { Thck ness of Flage }= & 0.5 \mathrm{~d} \\
\mathrm{tf}= & 22.5 \mathrm{~mm}
\end{array}
\]


\section*{\(A=\pi x\) do \(x t f \quad 6360.525 \mathrm{~mm}^{\wedge} 2\)}

Failure takes around it circumference, at the junction of Hub and Flange

Circumference \(=\pi\) Do
A \(=\pi\) Do tf
\begin{tabular}{|c|c|c|}
\hline A \(=\pi \times\) do xtf & 6360.525 & \(\mathrm{mm}{ }^{\wedge} 2\) \\
\hline \(\mathrm{T}=\) & 596943.6 & \(\mathrm{N}-\mathrm{mm}\) \\
\hline \(\mathrm{R}=\) & 45 & mm \\
\hline \(596943.6485=\) & 286223.6 & Tind \\
\hline Tind \(=\) & 2.085585 & \(\mathrm{N} / \mathrm{mm}^{\wedge} 2\) \\
\hline \(2.08<\) [14] & safe design & \\
\hline
\end{tabular}


\section*{Design of bolts in shear and crushing}
\(\mathrm{T}=\mathrm{F} \times \mathrm{R}\)
( \(R\), the radial distance of Tangential force acts at \(\mathbf{P}\) \(F=\) stress \(\times \mathrm{A}\)
\(A=\pi / 4 \times d^{\wedge} 2\)
no.of .bolts= 4
\(T=[T] \cdot\left(\pi / 4 x^{\wedge} 2\right) \cdot n . R\)

\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{T}=\) & 596943.6 & \(\mathrm{N}-\mathrm{mm}\) & \\
\hline [T] = & 30 & \multicolumn{2}{|l|}{\(\mathrm{N} / \mathrm{mm}{ }^{\text {n }}\)} \\
\hline n & 4 & nos & \\
\hline \(\mathbf{R}=(\operatorname{PCD}\) value) & 67.5 & mm & \\
\hline \(\mathbf{d}=\) & ??? & & \\
\hline 596943.6485 & \(=\) & 6360.5 & \(\mathrm{d}^{\sim} 2\) \\
\hline \(\mathrm{d} \wedge \mathbf{2}=\) & 93.85132 & & \\
\hline d \(=\) & 9.687689 & & \\
\hline Ref.pg.5.49/DDB & B, std, & & \\
\hline d minimum \(=9.78\) & 8 to d max & \multicolumn{2}{|l|}{M10 selected} \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{d}=10 \mathrm{~mm}\)} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}



All dimensions in num


ES: 2389
1S: 1364

\section*{Crushing failure of Bolt}

\section*{Crushing = straining of material in confined zone}
\[
\begin{aligned}
& \sigma c=2.5 \mathrm{~T} \\
& \text { Oc ind }<[\sigma \mathrm{c}] \\
& \hline
\end{aligned}
\]


\section*{Flexible couplings}

Types
1. Bushed Pin type
2. Oldham's couplings
3. Universal coupling

Why?
1. Abutting ends of shaft to be connected
2. Not exact alignment of shafts
3. Permits axial misalignment without power loss at the shaft

Design procedure for
(Bushed pin flexible coupling)
Step1: Find Torque using power eqn.

Step2: Find ' d' of the shaft using Max. T equation
Step3: List the basic sizes of the coupling using ' \(d\) ' of the shaft refer Pg. 7.134/DDB

Step4: design for hub( treating it as hollow shaft, \(\mathrm{di}=\mathrm{d}\) of the shaft, \(\mathrm{do}=\mathbf{2 d}\)
Step5: Design for key

Step6: Design for flange
Step7:Design for PIN( instead of Bolt
Step8: Draw the coupling with NTS free hand sketching with dimensions


CP2. Design and draw a flexible coupling for the following specifications.
Power 32 kW at 960 rpm. Allowable shear stress for Shaft and Key is \(40 \mathrm{~N} / \mathrm{mm}^{\wedge 2}\). Bolts working stress should not exceed \(30 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\). Flange is made of Castiron and its limited shear stress is \(15 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\). The toque transmission is \(20 \%\) higher than the actual torque. The crushing stress for key \(80 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\).
\begin{tabular}{|l|l|l|l|l|}
\hline DATA & & & \\
\hline P & & & \\
\hline N & & & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{STEP 4} & KEY deisgn & & & \\
\hline & \multicolumn{2}{|l|}{Rectangular Key ( Assumed)} & \multicolumn{2}{|l|}{parallel keys} \\
\hline & Shaft d= & 40 & mm & \\
\hline \multicolumn{5}{|c|}{Refer Pg.5.16 \& 5.17} \\
\hline & above & 38 & mm & \\
\hline & upto & 44 & mm & \\
\hline & \(\mathrm{b}=\) & 12 & mm & \\
\hline & \(\mathrm{h}=\) & & mm & \\
\hline & I = hub length & 60 & & \\
\hline Pg.5.1 & prefered length = & 63 & mm & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline a.) SHEAR failure & & & & \\
\hline \(\mathrm{T}=\mathrm{F} \times \mathrm{R}\) & & & & \\
\hline & \(\mathrm{R}=\) the tange & ntial for & acting at pe & pery of sl \\
\hline & because the & key( h & ey ) is locate & at shaft \\
\hline & & & & \\
\hline & Stress \(=\) F/A & Therfeo & , \(F=\) stress \(\times \mathrm{A}\) & \\
\hline T= Stress x Area X R & & & & \\
\hline & & & & \\
\hline \(A=I \times W\) & 756 & \(\mathrm{mm}{ }^{\wedge} 2\) & & \\
\hline \(\mathrm{T}=\) & 382043.94 & \(\mathrm{N}-\mathrm{mm}\) & & \\
\hline & & & & \\
\hline \(\mathrm{R}=\) & 20 & mm & & \\
\hline & & & & \\
\hline 382043.9351 & 15120 & Tind & & \\
\hline & & & & \\
\hline Tind= & 25.267456 & & & \\
\hline 25.267 & & & & \\
\hline \(27.0729<[40]\) & & & & \\
\hline Tind< [T] & Safe design & & & \\
\hline
\end{tabular}
b.) crushing fallure




\section*{Dia of the Pin =?}

Dpin \(=0.5 \times \mathrm{d} / \mathrm{Vn}\)

Where \(d=\) shaft diameter
\[
n=6
\]


Apply prinicpal stress equation o1,2=?
\(\sigma 1<[T]\) prove it

\begin{tabular}{|c|c|c|c|c|c|}
\hline w= & 646.5986324 & & & & \\
\hline Wtotal= & 3879.591794 & ( \(6 \times \mathrm{W}\) ) & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline Now & & & & & \\
\hline Shear Str & lculation & & & & \\
\hline & & & & & \\
\hline \(T=W / A\) & & & & & \\
\hline & & & & & \\
\hline W= & 3879.591794 & N & & & \\
\hline \(\mathrm{A}=\pi / 4^{*} \mathrm{D}\) & & & & & \\
\hline & & & & & \\
\hline \(\mathrm{A}=\) & 820.7625217 & \(\mathrm{mm}{ }^{2}\) & & & \\
\hline & & & & & \\
\hline T= & 4.726814019 & \(\mathrm{N} / \mathrm{mm}{ }^{\wedge} 2\) & & & \\
\hline & & & & & \\
\hline
\end{tabular}



\begin{tabular}{lc} 
1Taper Key & \(5.21 / 5.22\) DDB \\
2Gib-Head Key & \(5.19 / 5.20\) DDB \\
3Tangential Key & \\
Power= & 40000 Watts \\
N= & 100 rpm \\
stress & \(20 \mathrm{~N} / \mathrm{mm}^{\wedge 2}\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline mm & 4 & 5 & 6 & 8 & 10 & 12 & 4 & 16 & , & 0 & 2 & 52 & 28 & 23 & 40 & 43 & 50 & \\
\hline  & 4 & 5 & 6 & 7 & 8 & 5 & 9 & 10 & 1 & 2 & 14 & 4 & 16 & 18.2 & 22 & 25 & 28 & \\
\hline \multirow[t]{30}{*}{} & 14 & 14 & . & . & - & . & . & - & . & . & - & & . & . & . & . & & \\
\hline & 16 & 16 & 16 & . & . & - & & . & & - & . & . & - & - & . & - & . & \\
\hline & 18 & 18 & 18 & . & . & - & - & . & - & - & . & - & - & - & - & . & . & \\
\hline & 20 & 20 & 20 & 20 & - & - & - & . & - & - & . & . & - & . & - & . & - & \\
\hline & 22 & 22 & 22 & 22 & - & - & - & - & . & - & . & & . & - & - & - & - & \\
\hline & 25 & 25 & 25 & 25 & 25 & - & - & . & - & - & - & , & . & - & - & - & - & \\
\hline & 28 & 28 & 28 & 28 & 28 & - & - & . & - & \(\cdots\) & \(\cdots\) & - & - & & & & & \\
\hline & 32 & 32 & 32 & 32 & 32 & 32 & - & - & - & - & - & - & \(\cdot\) & & \(\cdots\) & \(\cdots\) & & \\
\hline & 36 & 36 & 36 & 36 & 36 & 36 & - & - & - & . & - & - & - & & & - & & \\
\hline & 40 & 40 & 40 & 40 & 40 & 40 & 40 & - & - & - & - & - & - & & & - & - & \\
\hline & 45 & 45 & 45 & 45 & 45 & 45 & 45 & 45 & - & - & - & & & & & & . & \\
\hline & & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & - & . & & & & & - & . & \\
\hline & & 56 & 56 & 56 & 56 & 56 & 56 & 56 & 56 & 56 & \(\cdots\) & & & & - & - & - & \\
\hline & & - & 63 & 63 & 63 & 63 & 63 & 63 & 63 & 63 & \({ }^{63}\) & 71 & - & - & - & . & - & \\
\hline & & . & 71 & 71 & 71 & 71 & 71 & 7 & 71 & 71 & 21 & 80 & 80 & - & - & - & - & \\
\hline & - & - & - & 80 & 80 & 80 & 80 & so & \({ }^{80}\) & 90 & 50 & 90 & 90 & 90 & - & - & - & \\
\hline & - & - & - & 90 & 90 & 90 & 90 & 90 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & \(\bullet\) & - & \\
\hline & - & - & - & - & 100 & 100 & 110 & 110 & 110 & 110 & 110 & 110 & 110 & 110 & 130 & 120 & . & \\
\hline & - & - & - & - & 110 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & 125 & \\
\hline & - & - & - & - & & 146 & 140 & 140 & 140 & 140 & 240 & 440 & 140 & 140 & 140 & 140 & 140 & 14 \\
\hline & - & - & - & - & - & - & 160 & 160 & 160 & 160 & 160 & 160 & 160 & 160 & 160 & 160 & 160 & \\
\hline & & - & \(\checkmark\) & - & - & - & - & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & \\
\hline & & - & - & - & - & - & - & - & 200 & 200 & 201 & 200 & 200 & 230 & 200 & 200 & 200 & \\
\hline & & . & - & \(\stackrel{\square}{-}\) & - & - & - & - & - & 220 & 220 & 220 & 220 & 220 & 220 & 220 & 220 & 22 \\
\hline & & - & - & - & . & . & - & - & . & \[
\because
\] & 250 & 250 & 250 & 250 & 250 & 250 & 250 & \\
\hline & - & - & - & \(\cdots\) & - & - & - & \(\checkmark\) & - & - & - & 230 & 28 & 0280 & 280 & 280 & 280 & 28 \\
\hline & - & - & - & - & . & - & - & - & - & . & - & - & 315 & 5315 & 315 & 335 & 3155 & 315 \\
\hline & & - & - & , & & - & \(\sim\) & - & - & - & - & - & & 355 & 450 & 400 & 400 & 40 \\
\hline & & - & - & & & & & - & . & - & & & . & & & & & \\
\hline & & - & \(\cdot\) & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
TAPER KEYS AND KEYWAYS
}



IS 2292-1963


DESICIN DATA-PSET TECH

\section*{Fits and Tolerance}

Its a manufacturing consideration for the sizes of the product
Its relation between the dimensions of the mating parts Fit ?

The degree of tightness or looseness between the mating parts known as Fits

\section*{Three categories:}
1.clearance,
2.location or transition, and
3. interference.

General example t

Hole and shaft assembly arrangement

\section*{1. Clearance Fit}

Hole size > Shaft Size, there is clearance between the shaft and hole.

Examples of clearance fit are door hinges, wheel, and axle, shaft and bearing
2. Interference fit

Hole size < shaft size, then the assembly of parts made by means of forcing the shaft
Example : cotter pins in sleeve and cotter joint, Keys in couling,
3. Transition Fit

Almost hole size and shaft size are closer or equal or there sizes overlap
It is either clearance fit or interference fit

Example : coupling rings, Spigot mating

Clearance fit
Transition fit



\section*{Interference fit}
extmperigncom


\section*{Interference Fits}


The interference fits may be shrink fit, heavy drive fit and light drive fit.

\section*{Some basics}

Nominal size= size provided in the drawing sheet

Basic size= production size, which might be nominal size

Example:

Dia 50 mm of shaft is required

Nominal or Basic size 50 mm

During machining, 50 will not be attained, the size may be lower or higher than the requirement, due to various errors. Eg. Machine error, operator error
50.05 mm - upper size or
49.95mm - lower size

Higher is upper limit and lower is the lower limit
Representation \(=50^{ \pm 0.05} \mathrm{~mm}\) Limits: UL, LL

+0.05 mm is \(\mathrm{UL} / \mathrm{uD}\)--- denoted by ES/es
-0.05 mm is IL/ID---- denoted by EF/ef
What is the tolerance?
The difference between upper and lower limits of dimesions
\[
\begin{aligned}
& \text { ES- EI= Tolerance } \\
& \text { es- ei = tolerance }
\end{aligned}
\]

\section*{Types}
1. Unilateral---- variation of basic size in one direction either + or -
2. Bilateral------- variation of basic size in both direction + \& -

\section*{Limits systems}
1. HOLE basis system
2. Shaft basis System
1. HOLE basis system: hole size kept as constant, shaft size will allow to vary Denoted by Capital letters like H, G, L,,, etc
Always lower devation is zero( \(\mathrm{El}=0\) )
2. Shaft basis System = Shaft size kept as constant and hole size allowed to vary Denoted by small letters like h,g,i,,, etc Always upper devation is zero( es=0)

DATA BOOK usage; 3.1. 3.3 to 3.17 pages

\section*{Problems}

Hole size: 25.00 and 25.02 mm , \(\quad\) shaft size : 24.97 andd 24.95 mm
Tolerance calculation:

Hole: Upper limit- Lower limit of hole
\(=25.02-25.00\)
\(=0.02 \mathrm{~mm}\)

Shaft: upper limit - lower limit
= 24.97-24.95
\(=0.02 \mathrm{~mm}\)
Allowance: lower limit hole - upper limit shaft
\[
\begin{aligned}
& =25.00-24.97 \\
& =0.03 \mathrm{~mm}
\end{aligned}
\]


\section*{LEFTHER SYMEBCIS FCIR}

TCI ERCANCES






RUNNINIG ANG SLITDENG FHTA
\begin{tabular}{|c|c|c|}
\hline Combination of
Hole and shatit & ( Quality of fit & Typical usea \\
\hline  & Prectision & Srmall elearance -used in precioion aquipmeat under wexy lighe load-Bearingia for accurate link work and for piston and slide valvoa - Also whed/for spiget or loovarionfizs. \\
\hline  & Close running & Widedy uaced us greuase or oil fubricated beariags batving Low temperaturn differencea - bearings for moar shasfts. smatl electrio motor simafisand pump ahafts. \\
\hline  & Normal turnning & Weul for properily lubricated bedringes with appreciable otearanoe. Finer grades for highls speects and heavy loads. Turbo generator and lange electric motor bearimgs. \\
\hline \(\left\lvert\, \begin{array}{lll}\text { H } 8 \text { d } 8 & \text { Fine } \\ \text { H } 8 \text { a } \\ \text { H } & \text { Normat } \\ \text { H } 9 & \text { Conerse }\end{array}\right.\) & Loose ranning & For ptamber blook bearings and toose pulleys \\
\hline  & Stack rumning or positional thr & Longe elearance - not widely usud. \\
\hline \[
\left[\begin{array}{llll}
\mathrm{H} & 17 & c & 9 \\
\mathrm{H} & 11 & \mathrm{~b} & 9 \\
\mathrm{H} & 11 & a & 9
\end{array}\right\} \text { Coarse }
\] & &  \\
\hline
\end{tabular}

CABLE OF TOLERANCES

Note : G-Ca; N - No go, Tovetances in Mierpets

Designation : Number- (hole)capital letter .IT gradeNo./(shaft )small letter. It grade No


\section*{Shaft designation : 40 H8/f7}

Geometric mean diameter= Sqrt(D1 x D2)
D1 and D2 are shaft range
D1< Dgiven< D2

Tolerance calculation
\(i=0.453 V D+0.0001 D \mathrm{Gm}\)
pg.3.6/ddb.

\section*{UNIT III}
- ME18503-Design Of Machine Elements

\section*{UNIT III} DESIGN FOR SPRINGS

Design of Close coil helical springs under varying load condition. Design of Leaf spring, Disc Spring and Torsion spring

\section*{OBJECTIVE}

This course will familiarize the design principles of springs under dynamic and static conditions

\section*{COURSE OUT COME 3 - CO3}
1.Examining the close coil helical springs under variable loading .
2.Acquiring the knowledge of leaf, disc and torsion springs.

What is spring?
a steel wire wound around an imaginary cylinder- Helical springs a steel wire wound around an imaginary cone - conical spring

Elastic member absorbs energy when it is loaded and releases the energy when it is unloaded

It will distort when loaded and recover its original shape when unloaded

General - coil spring

\section*{Springs classifications}
1. Open coil and closed coil

compression and tension
2. Conical \& volute
3.Torsion springs \& spiral springs- bi-cycle hand lever brake, writng pads, toys, clocks
4. Leaf or laminated springs; pre stressed plates of different lengths held together by means of central bolt and clamps (U- clamps)
5.Disc or Belleville springs.- conical discs held together by central bolt Needed: high spring rate in compact unit.
6. Special purpose springs rubber, air or liquid, ring springs

Spring diagrams


Helical Compression Spring


Torsion Spring


Helical Extension Spring


Conical Spring


Laminated or Leaf Spring



Disc springs--- industrial uses, brakes, clutches piping- shock mounting


Rubber spring


Air spring

\section*{Uses/functions/applications}

To absorb the shock or vibration as in-car springs, railway buffers, etc.

To measure the forces in a spring balance.

Apply forces in brakes and clutches to stop the vehicles.

Spring is also used to store the energy as in clocks, toys, etc.

\section*{Spring Terminologies}


Spring stiffness(k): Load required to produce Unit deflection
\[
\mathrm{k}=\mathrm{w} / \delta \mathrm{N} / \mathrm{mm}, \mathrm{w}=\text { load }, \delta=\text { deflection }
\]

Spring Index (C): C= Dm/d - No unit
Where \(\mathrm{Dm}=\) mean diameter of coil
\(\mathrm{d}=\) wire diameter

Note: the clearance between the two adjacent turn is 1 mm always.

Pitch of the coil
\[
\begin{aligned}
& p=\frac{\text { Free length }}{n^{\prime}-1} \\
& p=\frac{L_{\mathrm{F}}^{\prime}-L_{\mathrm{S}}}{n^{\prime}}+d \\
& \text { where LF Free length of the spring: } \\
& \text { LS = Solid length of the spring, } \\
& \mathrm{n}^{\prime}=\text { Total number of coils, and } \\
& \mathrm{d}=\text { Diameter of the wire. }
\end{aligned}
\]

\section*{Stresses}

1. Shear stress by external load
2. Torsion at wire curvature- \(\mathrm{T}=\mathrm{FxR}\)

Radius of curvature is neglected in static loading
to consider this radius of curvature, Wahl's factor used. K

\section*{DESIGN PROCEDURE spring compression spring}

Step1: Find d, Dm, Do, \& Di for the spring using Shear stress( pg.7.100/DDB)

Step2: Find the deflection of spring ' y ' (Pg. 7.100/DDB) ( either y or n based on The available either y or n

Step3: Find the stiffness of the spring ' \(q\) ' ( \(\operatorname{Pg} .7 .100 / D D B)\)
Step4: Find Lf- free length of coil
\[
L f=L s+y+15 \% \text { of } y
\]
\[
\text { Ls= nxd } n=\text { no. of turns, } d \text { - wire diameter. }
\]

Step 5: Find pitch 'p '
Step 6 ; check for buckling Pg.7.101/DDB
Step 7: Check for surging ( optional step) pg.7.101/DDB

SPRINGS


\section*{lowest natural frequency}
\(f-\frac{(9 / m)^{1 / 2}}{2} \frac{d}{\pi D^{2} n} \sqrt{\frac{G g}{8 \gamma}}\)
Cheelc for surging
\(\mathrm{f} \geq 12 \mathrm{f}_{\mathrm{f}}\)
Check for solid stress
\(\tau<0.5\) o 4 for hard drawn carbon steels
\(<0.5 \sigma_{n}\) for alloy stoels
To avoid Buckiling
\[
\begin{aligned}
\frac{L}{D} r & <3 \\
\text { for } \frac{L r}{D} & >3 \text { the spring must be suitnbly guided }
\end{aligned}
\]

\section*{Cosaxian springs}
(suffixes 1, 2 refer to outer and inner springs respectively)
\[
\begin{aligned}
& \frac{\tau_{1}}{\frac{D_{1}}{d_{1}}-\frac{\tau_{2}}{}=\frac{D_{2}}{d_{2}}=C} \\
& \frac{\frac{P_{1}}{P_{2}}-\left(\frac{C}{C-2}\right)^{2}}{\Delta}=\frac{\left(D_{1}-D_{2}\right)-\left(d_{1}+d_{2}\right)}{2} \approx \frac{d_{1}-d_{2}}{2} \\
& d_{1} \leq \frac{D_{1}-D_{2}}{2}
\end{aligned}
\]

The winding of the springs should be of opposite hands
End conditions and length of springs
\begin{tabular}{|c|c|c|c|}
\hline Type of end & Total coils & \[
\begin{gathered}
\text { Free } \\
\text { length, L, }
\end{gathered}
\] & Solid length, \(L_{\text {s }}\) \\
\hline Plain & n & \(p \mathrm{n}+\mathrm{d}\) & \(d \mathrm{n}+\mathrm{d}\) \\
\hline Plain and Ground & n & p \(n\) & dn \\
\hline Squared & \(\mathbf{n}+\mathbf{2}\) & \(p \mathrm{n}+3 \mathrm{~d}\) & \(d n+3 d\) \\
\hline Squared and Ground & \(\mathbf{n}+2\) & \(\mathbf{P n}+2 \mathrm{~d}\) & \(d n+2 d\) \\
\hline
\end{tabular}
m mass of the active coil in the spring
\(f\), frequency of the applied load
\(\tau\) a shear stress in spring when compressed solid

\(\underset{\text { Plain }}{\text { Ends }}\)


Squared Ends


Plain and Ground Ends


Squared and Ground Ends

S1 Design a helical spring subjected to a load of 1000 N for a deflection of 25 mm and the spring index is 5 . The allowable shear stress is 420Mpa. Take modulus of Rigidity as 84 kN/mm^2.

DATA
Load W or P = 1000 N
\(\mathrm{C}=\mathrm{D} / \mathrm{d}=5\)
\(\mathrm{Y}=\mathbf{2 5} \mathrm{mm}\)
[ T\(]=420 \mathrm{~N} / \mathrm{mm}^{\wedge} \mathbf{2}\)
\(\mathrm{G}=84 \times 1000 \mathrm{~N} / \mathrm{mm}^{\wedge} \mathbf{2}\)

Step1: find d, Dm, etc refer 7.100/DDB


\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Mean \(\mathrm{D}=\) ?} & \\
\hline \(\mathrm{C}=\mathrm{D} / \mathrm{d}\) & & \\
\hline \(\mathrm{D}=\) & \multicolumn{2}{|r|}{31.39 mm} \\
\hline \multicolumn{2}{|l|}{Inner dia=? Di} & \\
\hline \multirow[t]{2}{*}{Di \(=\)} & Dm-2r & \\
\hline & Dm-d & [2r=d] \\
\hline \(\mathrm{Di}=\) & \multicolumn{2}{|r|}{25.11 mm} \\
\hline \multicolumn{3}{|l|}{Outter diameter Do?} \\
\hline \multirow[t]{2}{*}{Do=} & Dm+2r & \\
\hline & Dm+d & \\
\hline Do= & 37 & mm \\
\hline
\end{tabular}


Step2:

Find the deflection of spring ' y ' (Pg. 7.100/DDB) ( either y or \(n\) based on

The available either y or n

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & & & & \\
\hline LHS = & 25 & & & & \\
\hline & & & & & \\
\hline RHS = & \(8 \times 1000 \times 31.3\) & 39xn/(8 & & & \\
\hline & & & Nr & 247473770 & \\
\hline & & & Dr & \[
130512323
\] & \\
\hline 25 & 1.8961717 & n & & 1.8961717 & n \\
\hline & & & & & \\
\hline \(\mathrm{n}=\) & 13.18446 & & & & \\
\hline \(\mathrm{n}=\) & 13 & turns & & & \\
\hline
\end{tabular}

Step3 : Finding stiffness of the spring ' q '


\section*{Step4: Find Lf- free length of coil}
Lf = Ls + y + 15\% of y

Ls= nxd n= no. of turns, d-wire diameter
\begin{tabular}{rl} 
Ls & \(=\mathrm{nXd}\) \\
& \(=13 \times 6.28\) \\
& \(=81.64 \mathrm{~mm}\) \\
\begin{tabular}{rl}
Y & \(=25 \mathrm{~mm}\) \\
\(15 \%\) of Y & \(=0.15 \times 25\) \\
& \(=3.75 \mathrm{~mm}\)
\end{tabular} Free length
\end{tabular}
\[
\begin{aligned}
\text { Lf } & =81.64+25+3.75 \\
& =110.39 \mathrm{~mm}
\end{aligned}
\]

STEP 4: Calculation of Lf - free length of the coil.

\section*{Refer Pg.7.101/DDB}
applying End conditions
Already Assume d Plain End
Is=(dxn)+d solid length
\[
L f=L s+y+15 \% \text { of } y
\]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{STEP 5: Find pitch ' \(p\) '} & \\
\hline & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Free length }}{n^{\prime}-1}
\]}} & \\
\hline & & & & \\
\hline & \(\mathrm{Lf}=\) & & 110.39 & \\
\hline & \(\mathrm{n}=\) & & 13 & \\
\hline & & & & \\
\hline & \(\mathrm{p}=\) & & 110.39/(13 & -1) \\
\hline & \(\mathrm{P}=\) & & 9.199 & mm \\
\hline & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Step 7 & \multicolumn{2}{|l|}{Check for solid stress} & & & & & & \\
\hline & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Material selected: steel wire unalloyded cold drawn}} & & & \\
\hline & & & & & & & & \\
\hline & \multicolumn{2}{|l|}{for \(\mathrm{d}=7.00 \mathrm{~mm}\)} & \multicolumn{2}{|l|}{( Pg.7.105/DDB)} & & & & \\
\hline & \multicolumn{2}{|l|}{\(\sigma u=\mathrm{kgf} / \mathrm{mm}^{\wedge} \mathbf{2}\)} & & & & & & \\
\hline & & & & & & & & \\
\hline & \(\sigma u=111\) & 1110 & & & & & & \\
\hline & allowable she & ear stress is & =[420] & & & & & \\
\hline & & 420<0.5 \(\times\) o & & & & & & \\
\hline & & & & & & & & \\
\hline & \(420<\) & 555 & & safe design/ & / materia & al selecti & ion is cor & rect. \\
\hline & & & & & & & & \\
\hline
\end{tabular}

S2: design and draw a valve spring of a petrol engine for the following specifications
Spring load when the valve is open=400 N
Spring load when the valve is closed \(=250 \mathrm{~N}\)
Maximum inside diameter of the spring= 25 mm
Length of the spring when the valve is open \(=40 \mathrm{~mm}\)
Length of the spring when the valve is closed \(=50 \mathrm{~mm}\)
Maximum permissible stress \(=400 \mathrm{Mpa}\).
```

DATA
Basic needs C, y, Load
C= ?
Y=?
Dm=?
But " Di " is given in the

```
\(\mathrm{Y}=\) can be calculated by comparing length of spring when valve is opened and closed

Closed length- open length
\(Y=50-40\)
\(=10 \mathrm{~mm}\)
*Load is max: 400 N for shear stress
*Load for Y : max- min:
400-250= 150 N
\begin{tabular}{|c|c|c|c|c|}
\hline DATA & & & & \\
\hline W o= & 400 & N & opened & \\
\hline Wc= & 250 & N & closed & \\
\hline \(\mathrm{C}=\mathrm{D} / \mathrm{d}\) & ??? & & & \\
\hline \(\mathrm{Y}=\) & ??? & mm & & \\
\hline [T] = & 400 & \(\mathrm{N} / \mathrm{mm}{ }^{\wedge} 2\) & & \\
\hline G = & 84000 & \(\mathrm{N} / \mathrm{mm}{ }^{\text {n2 }}\) & & \\
\hline \multicolumn{2}{|l|}{lenght of spring ( opened)Lo} & & & \\
\hline \multicolumn{2}{|l|}{lenght of spring (opened)Lo} & & 40 & mm \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{length of closed coil Lc}} & & 50 & mm \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{Inside dia. Of coil ( Di)} & & 25 & mm \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1. \(\mathrm{y}=\) & Lc-Lo & & \\
\hline & 10 & mm & \\
\hline & & & \\
\hline & & & \\
\hline 2. \(C=D / d\) & ( to be assumed & ed from the Ks graph) & \\
\hline & & & \\
\hline & & & \\
\hline \(\mathrm{C}=\) & 5 & ( initial assumption) & \\
\hline & \(\mathrm{Ks}=\) & 1.3 & \\
\hline & & & \\
\hline 3. Load & & & \\
\hline Max= & 400 & ( for shear stress) & \\
\hline & & & \\
\hline Max- Min & & ( for y equation) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline LHS & = & RHS & \\
\hline 400 & = & \(6622.09 / \mathrm{d} \wedge 2\) & \\
\hline \(d^{\wedge} 2=\) & & 16.5552372 & \\
\hline d & = & 4.06881275 mm & \\
\hline & d= & 4.5 SWG & /ddk \\
\hline
\end{tabular}

Now to find Dm
\(D m=D i+d\)
\(D o=D m+d\)
\(C=D / d=5\)
Corrected C= 6.556
\(C=6.6\)
\begin{tabular}{lr} 
Dm \(=\) & 29.5 mm \\
D0 \(=\) & 34 mm
\end{tabular}


15; 4454-1967
DESIGN DATA-PSG TECH

\section*{Step2:}

Find the deflection of spring ' y ' (Pg. 7.100/DDB) ( either y or \(n\) based on The available either y or
\(Y=\quad 10\)
LHS = 10
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{6.55} & 1 \\
\hline & & & Nr & 150000n \\
\hline & & & Dr & 378000 \\
\hline & & \(0.8943715 n\) & & \(0.3968254 n\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
\(\mathrm{n}=\) & 11.181036 \\
\(\mathrm{n}=\) & 12 turns
\end{tabular}

Apply end conditions: plain end (Assumed)
\[
\mathbf{n}=\mathbf{n}
\]

STEP3: Finding stiffness of the spring ' \(q\) '

\section*{ref. Pg.7.100/DDB}
```

D= 29.50mm
d=
n=
G=
q =
q= 13.976295N/mm

```

STEP 4: Calculation of Lf - free length of the coil.
```

Refer Pg.7.101/DDB
applying End conditions
Already Assume d
Plain End
ls= (dxn)+d solid length
Lf = Ls + y + 15% of y
n= 12
d= 4.5
LS= 54mm
y= 10mm
15% of Y = 1.5mm
Now
Lf=
Lf =
65.5mm

```

Note:

To find Lf, the \(Y\) max to be obtained \(=(Y /\) difference ofload) \(\times\) max.load Lf \(=54+(10 / 150 * 400)+0.15 *(10 / 150 * 400)\)
\(=\quad 84.6666667\)

STEP 5: Find pitch 'p'
\[
p=\frac{\text { Free length }}{n^{\prime}-1}
\]
\begin{tabular}{lr} 
Lf \(=\) & 65.5 \\
\(n=\) & 12
\end{tabular}
\(p=\)
65.5/(12-1)
5.955 mm

6 mm

\section*{STEP 6 Check for Buckling}

REFER pg. 7.101/DDB
\[
\begin{array}{lr}
\text { LF/D }<3 \\
& \\
\text { Lf= } \\
\text { D= } & 65.5 \\
\text { Therfore } & 29.50 \\
\\
\text { Lf/D }= & 2.22033898
\end{array}
\]

No guidance required, buckling is zero

\section*{Surging of spring}

\section*{it must be prevented or it will cause failure of spring}


Time interval of applied load/force= time taken by the wave propagation to and fro betweenth Support and load taking end.

Resonance will occur
lowest natural frequency
\[
f=\frac{(q / m)^{1 / 2}}{2} \frac{d}{\pi D^{2} \mathrm{n}} \sqrt{\frac{\frac{q}{8}}{8 y}}
\]

PLan:

S3: A safety valve of 60 mm diameter is to blow off at a pressure of 1.2 \(\mathrm{N} / \mathrm{mm}^{\wedge}\) 2. It is held in its seat by a close coil helical spring. The maximum lift of valve is 10 mm . Design a suitable compression spring of spring index 5 and providing an initial compression of 35 mm . The maximum shear stress in the material of the wire is limited to \(500 \mathrm{Mpa} . \mathrm{G}=80 \mathrm{kN} / \mathrm{mm}{ }^{\wedge} 2\).

\section*{DATA}

Valve seat= 60mm
Pressure=1.2 N/mm^2
\(Y=10 \mathrm{~mm}\)
\(\mathrm{C}=5\)
Allowable shear stress \(=500 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\) Initial compression \(=35 \mathrm{~mm}\)
\(\mathrm{G}=80 \times 10^{\wedge} 3 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\).


Pre yere is the force or kad
\[
\begin{aligned}
& P=\frac{F}{A} \text { or } \frac{W}{A} \\
& \therefore w=P \cdot A \cdot\left[A=\frac{\pi}{4} \text { dratue }\right] \\
& \text { Ymax }=\text { Istial Compress }+ \text { Allitimind }
\end{aligned}
\]
\[
\begin{aligned}
& y_{\text {T } k 4}=35+10 \\
& =45 \mathrm{~mm} \text {. }
\end{aligned}
\]



F- mian Kimil_ Kat



repermad Ionationg
K: Waht emess factior, K + . K =

l A egrvíhire faelier
n tactor ot mafery
-P tatal load on thae sprimils, kigf
IF, imitinl lout ion boparaie the cails, kert
I , reasimurts vatue of inimal utrmis.
kirticm \({ }^{2}\)
\(\longrightarrow\)

The calculations for extenason aperogn are done as per the compresnion aprings based on the totul load P?

Approximate maximam streases at initial tension


\section*{DESIGN PROCEDURE for compression spring -varying load}

Step1: find d, using soderberg eqn. for spring.7.102/DDB) Find Mean load, amplitude load, Tm \&Ta, finally find ' \(d\) '

Step2: Find the deflection of spring ' y ' (Pg. 7.100/DDB) ( either y or n based on The available either y or n

Step3: Find the stiffness of the spring ' \(q\) ' ( \(P\) g. 7.100/DDB)

Step4: Find Lf- free length of coil
\[
\begin{aligned}
& \text { Lf }=L s+y+15 \% \text { of } y \\
& \text { Ls= nxd } n=\text { no. of turns, d-wire diameter. }
\end{aligned}
\]

Step 5: Find pitch 'p '
Step 6 ; check for buckling Pg.7.101/DDB
Step 7: Check for surging ( optional step) pg.7.101/DDB

S3. A helical compression spring made of oil tempered carbon steel, is subjected to a Load which varies from 600 N to 1600 N . The spring index is 6 and the factor of safety is 1.5 . The yield stress in shear is 700 MPa . The endurance in shear is \(350 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\). the compression at the maximum load is 40 mm . Take 80GPa. Design and draw the spring.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{DATA} \\
\hline Max load= & \multicolumn{2}{|c|}{1600N} \\
\hline Min load= & \multicolumn{2}{|r|}{600N} \\
\hline \(\mathrm{C}=\) & \multicolumn{2}{|r|}{6} \\
\hline [ \(T\) ] = & \multicolumn{2}{|r|}{700N/mm^2} \\
\hline \multirow[t]{3}{*}{G=} & \multicolumn{2}{|r|}{80Gpa} \\
\hline & \(80 \times 10^{\wedge} 9\) & \(\mathrm{N} / \mathrm{m}^{\wedge} \mathbf{2}\) \\
\hline & \(80 \times 10^{\wedge} 3\) & \(\mathrm{N} / \mathrm{mm}{ }^{\wedge} 2\) \\
\hline [T_1] = in shear & \multicolumn{2}{|r|}{\(350 \mathrm{~N} / \mathrm{mm}{ }^{\wedge} 2\)} \\
\hline \(\mathrm{n}=\) & \multicolumn{2}{|c|}{1.5} \\
\hline \(\mathrm{Y}=\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{40 mm}} \\
\hline Refer Pg.7.102/BBB & & \\
\hline
\end{tabular}


Refer Pg.7.102/BBB



\begin{tabular}{|l|l|l|l|}
\hline Now & & \\
\hline Dm= & Cxd : \(\quad 63 \mathrm{~mm}\) \\
\hline Do= & Dm+d \(=73.5 \mathrm{~mm}\) \\
\hline & & \\
\hline Di= & Dm-d \(=\) & 52.5 mm \\
\hline & & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{N}=13+2=15 \\
& \mathrm{Lf}=211 \mathrm{~mm}
\end{aligned}
\]

Pitch \(=15 \mathrm{~mm}\) \(\square\)

\section*{Leaf Spring Design}

\section*{What is?}

A number of curved or cambered plates held together by by means of Centre bolt or shrank at its middle. Also known as semi - elliptic laminated lea spring. - ( carriage spring)

The leaves are two types 1. Full length leaves or master leaf.
2. graduated leaves

To avoid digging action between the leaves, the graduated leaves end are trimmed

To have curved or triangular shapes.
Master leaf has eyes at its ends. Through which, hanger or shackle pin are inserted
And supports the structure.

Widely used in automobile suspension systems


\section*{NIPPING IN LEAF SPRING}

Stress in the full length leaves is \(50 \%\) greater than the stress in the graduated leaves. When the load is gradually applied to the spring, the full length leaf is relieved of the initial stress and then stressed in opposite direction. Such a pre stressing obtained by a difference of radii of curvature is known as nipping.


Design procedure for laminated spring

Leaf spring is treated as cantilever beam

Springs with full length leaves
Refer Pg.7.104/DDB

Objectives
1. If the sizes \(b\) and \(t\) of the leaves are given find stress induced and Y deflection , nip
2. Stress will be given, b \& t to be calculated

Step1. Cal. Of \(\sigma b\) pg.7.104/DDB

Step2. cal of \(\mathbf{y}\) deflection

\section*{Step3. cal. Of Nip h}

When you have extra full length and graduated leaves, the same method to be followed, one step to be added as follows

Step-4 : find the all the leaves length


LS1:A truck spring has 10 leaves and is supported at a span of length 100 cm with a central band of 80 mm wide. A load of 6 kN is applied at the centre of the spring whose permissible stress is 300 Mpa . The spring has the ratio of total depth to width of about 2.5. Design the spring.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DATA} \\
\hline Load 2P= & 6000N \\
\hline \(\mathrm{P}=\) & 3000N \\
\hline \multicolumn{2}{|l|}{Central band} \\
\hline \(\mathrm{a}=\) & 80mm \\
\hline [ \(\mathrm{\sigma b}\) ] = & \(300 \mathrm{~N} / \mathrm{mm}{ }^{\wedge} 2\) \\
\hline span (2L) & 1000 mm \\
\hline L = & 500 mm \\
\hline No.of leaves ( n ) & 10 \\
\hline assume ne= & 2( at least 1 and maximun 3) \\
\hline assume ng= & 8 \\
\hline \multicolumn{2}{|l|}{\(\mathrm{n}=\) ne+ng} \\
\hline Effective length= & 2L-a \\
\hline & 920 mm \\
\hline now new l= & 460mm \\
\hline
\end{tabular}



Step2: Finding defelection y


nth leaf
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1st leaf= & 182.22 & mm & \(\operatorname{Ln}=(920 /(10-1) \times 1)\) & +80 \\
\hline 2 & 2nd leaf= & 284.44 & mm & & \\
\hline 3 & 3rd leaf= & 386.67 & mm & & \\
\hline 4 & 4th leaf= & 488.89 & mm & & \\
\hline 5 & 5th leaf= & 591.11 & mm & & \\
\hline 6 & 6thleaf= & 693.33 & mm & & \\
\hline 7 & 7th leaf= & 795.56 & mm & & \\
\hline 8 & 8th leaf= & 897.78 & mm & & \\
\hline 9 & 9th leaf= & 1000.00 & mm & & \\
\hline 10 & 10th leaf & 1102.22 & mm & & \\
\hline
\end{tabular}

\section*{But Masterleaf}

But Masterleaf


Some special kind problems
(1) Saboty valve (springs)

Irfortant penves
(1). Iritial cmpression givern, daddastion \(\nu_{i}+Y\)
\[
\begin{gathered}
\nu_{i}+Y_{i} \\
Y_{T}=Y_{i}
\end{gathered} \rightarrow \text { used to fired "n }
\]
(2). Valve saot Dianavenigxven.
\[
\begin{aligned}
& \because W=P, A, \quad A=\frac{\pi}{4}\left(d_{N}\right)^{2} \\
& P=\text { opericting pressure }
\end{aligned}
\]

This" wiop \(\Rightarrow\) uspd in 3 "th \(\tau \& y^{\prime}\) equection
(3ax. M ad calculation(for).
\(Y=\) intial deflection gisero
\(y=\) Litt or deflection olfainees
\[
y_{\tau}=\frac{y_{i}+t_{0}}{\text { Gimax }_{\text {ma }}}=\frac{M_{0}}{r_{i}} \times y_{T}=\text { Whmax }
\]
(2) Using Energ. Usuin:
\[
\begin{aligned}
& V=\frac{1}{2} P \cdot \quad Y \text {-load } \quad Y \text {-detiection. } \\
& \Rightarrow K E=\frac{1}{2} m v^{2} \text {-whegon (vieibuas) } \\
& \rightarrow \text { Cheak Jor } 20 . \text { of frorings. } 2(0,)_{3} \\
& \omega=\frac{1}{2} p \cdot y \cdot(m) \quad n \rightarrow \text { no. g Sorn? }
\end{aligned}
\]


 Bia - ynwem.

Yeo \(=\operatorname{cosing}\) Di
cxive
\[
\begin{aligned}
& \hat{H}_{\mathrm{c}}=1 \sin \sin .
\end{aligned}
\]
\[
\begin{aligned}
& \text { cher forkistied. }
\end{aligned}
\]

Exingí curvention noy-eservetion

trion for Sgring arstaingermems
Sxwing> in sereres
Notein. Joad Renge " Stetre onky.
?. Vorying load /plucticetis Cosel. \(\rightarrow\) Dys naman -

\section*{Sp2.}

Design a spring for spring loaded safety valve for the following condition
Operating pressure=1 Mpa
Diameter of the valve seat \(=110 \mathrm{~mm}\)
Design shear stress or the spring \(=360 \mathrm{MPa}\).
G= 82GPa.
The spring is kept in the casing of 130 mm inner diameter and 400 mm long, The spring should be at maximum lift of 6 mm when the pressure is 1.08 MPa .

Answers C - to be assumed 4/5/6

Load: operating load and maxi load to lift the spring

\section*{Load 1= Load2= N d=110mm}

\section*{Load1-load2 = \(\square \mathbf{N}\)}
\(Y=6 \mathrm{~mm}\)
1. Find Dm , Do is = \(\mathrm{Di}=\mathrm{Do}\)

2. Find \(n, n=W=L 1-L 2\)

\section*{\(L s=\quad \mathrm{nm}\)}

Lf \(=\square \mathrm{nm}\)
\(\mathbf{P}=\square \mathrm{mm}\)
Lf/D

\section*{Springs in Series}
- Consider two springs with force constants \(k_{1}\) and \(k_{2}\) connected in series supporting a load \(F=m g\).
- Let the force constant of the combination be represented by \(k\)
- For the combination, supporting the load \(F=m g\) :
\[
F=k x \quad(\text { where } x=t h e ~ t o t a l \text { stretch })
\]
\[
\text { and } \quad x=\frac{F}{k}
\]
- For each spring
- the bottom supports \(m g=F\) and stretches by \(x_{t}\)
\[
F=k_{1} x_{1} \quad \text { or } \quad x_{1}=\frac{F}{k_{1}}
\]
- the top spring support mg plus the weight of the bottom spring (which is negligible Thus \(F\) is the stretching force for both springs)
\[
F=k_{2} x_{2} \text { or } \quad x_{2}=\frac{F}{k_{2}}
\]

- The total stretch
\[
x=x_{1}+x_{2} \quad \text { or } \quad \frac{F}{k}=\frac{F}{k_{1}}+\frac{F}{k_{2}}
\]
and \(\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}\)

\section*{Springs in Parallel}
- Consider two springs with force constants \(k_{1}\) and \(k_{2}\) connected in parallel supporting a load \(F=m g\).
- Let the force constant of the combination be represented by \(k\)
- For the combination supporting the load \(F=m g\) :
\[
F=k x \quad(\text { where } x=\text { the total stretch })
\]
- The two individual springs both stretch by \(x\) but share the load \(\left(F=F_{1}+F_{2}\right)\) and
\[
F_{1}=k_{1} x \quad \text { while } \quad F_{2}=k_{2} x
\]
- Thus the total force is
\[
F=F_{1}+F_{2} \quad \text { or } \quad k x=k_{1} x+k_{2} x
\]
\[
\text { and } k=k_{1}+k_{1}
\]


\section*{Design procedure for disc or Belleville spring}

Used: Less or compact space need high stiffness
Step1 Find load ' \(P\) ' or ' \(Y\) ' on the spring
Refer Pg. 7.104/DDB,
\(P=\) ? Based on data, iF ' \(p\) ' given, find \(y\) or vice versa
Step2. Find stress " \(\sigma\) " on the spring Refer Pg. 7.104/DDB,
\[
\sigma=?
\]

Prior to the above steps
TO be calculated \(\mathrm{M}, \mathrm{C} 1 \& \mathrm{C}\).


SP3 Design a disc spring or the following specifications Spring is made of \(\mathbf{4} \mathbf{~ m m}\) steel sheet has \(\mathbf{1 2 0 ~ m m}\) outer diameter and 60 mm inner diameter. It is dished by 5 mm . Calculate when deflection of the spring is \(\mathbf{2 . 5}\) mm due to an axial load P. Also calculate the stress induced in the spring take \(\mathrm{E}=\mathbf{2 0 0 k N} / \mathrm{mm}^{\wedge} \mathbf{2}\), Poisson's ratio as0.3
\(t=4, \quad d o=120, d i=60 \mathrm{~mm}, \quad h=5\), \(\mathrm{y}=2.5 \mathrm{~mm}, \mathrm{E}=200 \times 10^{\wedge} 3 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)

Answers:
\(\square\)
\(C 1=\square\)
C2 \(=\square\)
\(Y=\square\)
\[
\mathbf{P}=\square
\]

Stress=

\section*{UNIT IV}
- ME18503-Design Of Machine Elements

\section*{UNIT IV DESIGN FOR RIVETED AND WELDING JOINTS, FASTNERS}

Rivet - Types of rivet joints, Caulking and fuluring, Design of riveted joints for structural and pressure vessels. Eccentrically loaded rivet joint, Welding - Welding symbols, Design of welded joints under eccentrically load. Geometry of thread forms, Terminology of screw threads.Design of screws and bolts.

\section*{OBJECTIVE}
-This course will enable to check strength of fasteners kind of both rivet and welding.

\section*{COURSE OUT COME 4 - CO4}

Proficient in Design of riveted joint and welding joints under eccentric loading


\section*{Designs}
1. Rivet design under axial load and eccentric loading
2. Welding design under axial load and eccentric loading

Welding

\section*{What?}
joining metal by heat and with or with out application of pressure Why?

Large size parts can not be manuactuterd by casting process
Ex. Ship buliding

Types:
Lap joint butt joint joining method
other types are there


Corner Joint


Tee Joint


Edge Joint

\section*{Types of Welded Joints:}
a. Lip /art or filet /aimt
h. Paetlait
(4) Typen if flint most.
1)5ingle transverse 2) Double transverse


\section*{Throat}


\section*{Understanding of fillet weld}


\section*{Strength of Transverse Fillet Welded Joint:-}
- Consider a single transverse fillet weld.

\(\triangle A B C\) is a right angle isosceles triangle
Let, \(\mathrm{t}=\mathrm{BD}=\) Throat thick. In mm
\(\mathrm{Sw}=\mathrm{AB}=\mathrm{BC}=\) size of weld
\(L w=\) Length of weld in mm
\(\angle B A C=\angle B C A=45^{\circ}\)
\(T=\sin 45 \times h\)

\section*{Objectives of the weld design}

Weld size as " \(h\) " or" length"
( both axial load and eccentric load)

\section*{Load = area x stress}

Area of throat of weld bead or run or fillet

Stress= tensile and shear are major in consideration
bending will also be considered based on the structure and load application


3 fillets

1- set parallel fillet or double parallel Fillet
(9) Combtration of rimperis asd panlbifiletued.
1. Transverse i fillet

(4) Douthe panilelfiletwedd.

WP1 A plate 75 mm wide and 12.5 mm thick is joined with another plate as shown in figure The maximum tensile and shear stresses are 70 MPa and 56 MPa respectively.


Data
Width plate \(=75 \mathrm{~mm}\)
\(H=12.5\) weld size
L1 \(=\) Width of plate \(=75 \mathrm{~mm}\)

L2=?
(8) Combinaton of trimers
and panlibititet ued

\section*{Total load by the weld joint ( Tensile Load)}

\author{
Load by L1 by P1 single
}
\(P=\) Throat area \(\times\) Allowable shear stress \(=0.707 \mathrm{~s} \times 1 \times \tau\) 1
Load by L2 by P2 double
\(P=\) Throat area \(\times\) Allowable shear stress \(=0.707 \mathrm{~s} \times 1 \times \tau\)

Step1: Cal. Of total load
\(\mathrm{P}=\) stress x area

Stress= 70 Mpa

Area= \(75 \times 12.5 \quad P=65625 \mathrm{~N}\)
Step2: cal. Of Load P1

P1 \(=0.707 \times h \times 11 \times \sigma t\)
\(=0.707 \times \mathrm{hx} 75 \times 70 / 56\)
h= plate thickness= 12.5
\[
\text { P1= } 46397 \text { N }
\]

38-664N

Step3: cal of L2

Use P2=1.414 \(\mathbf{h x} \mathbf{L 2} \times \mathbf{T} \quad\) (2 single fillet \(=2 \times 0.707 \mathrm{~h}\) )
\(=1.414 \times \operatorname{xh} 56\)
\(=990 \mathrm{~L} 2 \mathrm{~N}\)

\section*{Now \(\quad \mathrm{P}=\mathrm{P} 1+\mathrm{P} 2\)}
\(65625=4639738664-+990\) L2
L2=19.43 27.2 + weld size

Weld size = \(12.5 \quad\) L2= 39.731 .93 mm

\title{
Important pages to be used from DDB
}
11.3
11.4
11.5
11.6

General information
11.1 \& 11.2




PLATE THICKNESS AND WELD SIZE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Plate thiekness, math & 3 to 5 & \begin{tabular}{l|l|l}
628 & 10 to 16
\end{tabular} & 18 to 24 & 26.4035 & over 38 \\
\hline Weid size, nam & 3 & 3 ¢ & 10 & 14 & 20 \\
\hline \multicolumn{6}{|l|}{- Permissible static load per em length : (Mrld Steel Fillet welds)} \\
\hline \multirow{3}{*}{Weld size mm} & \multicolumn{5}{|c|}{Permissible static load, kgf / cm} \\
\hline & \multicolumn{2}{|c|}{Bare Electrode} & \multicolumn{3}{|l|}{Cavered Electrade} \\
\hline & in tension & In shear & In tension & \multicolumn{2}{|r|}{in shear} \\
\hline 3 & 170 & 135 & 216 & \multicolumn{2}{|r|}{170} \\
\hline 4 & 225 & 180 & 280 & \multicolumn{2}{|r|}{225} \\
\hline 5 & 250 & 225 & 350 & \multicolumn{2}{|r|}{280} \\
\hline 6 & 335 & 270 & 420 & \multicolumn{2}{|r|}{335} \\
\hline 8 & 450 & 360 & 560 & \multicolumn{2}{|r|}{450} \\
\hline 10 & 560 & 450 & 700 & \multicolumn{2}{|r|}{560} \\
\hline 12 & 670 & 540 & 840 & \multicolumn{2}{|r|}{670} \\
\hline 14 & 785 & 630 & 950 & \multicolumn{2}{|l|}{785} \\
\hline 16 & 900 & 720 & 1120 & \multicolumn{2}{|c|}{900} \\
\hline 20 & 1120 & 900 & 1400 & \multicolumn{2}{|r|}{1120} \\
\hline
\end{tabular}
*For machine welding inorease the permiasible lowa by 25 to 30.96
DESIGN STRESSES FOR WELDED JOTNTS, kgI / cm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Find of weld and stresses} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Bare Electrodes}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Covered \\
Electrodies
\end{tabular}}} & \multicolumn{4}{|c|}{Fatigue Desiga Stresses} \\
\hline & & & & & \multicolumn{2}{|l|}{Structural
Steels} & \multicolumn{2}{|l|}{Allay Strels} \\
\hline & \[
\begin{gathered}
\text { Steady } \\
\text { losed }
\end{gathered}
\] & Reversed load & \[
\begin{gathered}
\text { Steady } \\
\text { laad }
\end{gathered}
\] & Reversed lond & \[
\begin{gathered}
2 \times 10^{\circ} \\
\text { eycles }
\end{gathered}
\] & \[
\begin{gathered}
10^{5} \\
\text { cycles }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 2 \times 10^{6} \\
\text { cycles }
\end{array}
\] & \[
\begin{gathered}
10^{*} \\
\text { cycles }
\end{gathered}
\] \\
\hline Brerr Weids Tension & 900 & 350 & 1100 & 550 & \[
\frac{1100}{1-0.8=}
\] & \[
\frac{1250}{1-0.5 \pi}
\] & \[
\frac{1150}{1-0.8 r}
\] & \[
\frac{2300}{1-0.6 x}
\] \\
\hline Compression & 1000 & 350 & 1250 & 550 & \[
\frac{1250}{1-0.5 T}
\] & \[
\frac{1250}{1-0.5 r}
\] & - & * \\
\hline Shear & 550 & 210 & 700 & 350 & \[
\frac{62.5}{1-0.5 x}
\] & \[
\frac{900}{1-0.5 x}
\] & - & - \\
\hline Fillert Herds A11 & 790 & 210 & 950 & 350 & \(\sim\) & \(\sim\) & \(=\) & - \\
\hline
\end{tabular}
\[
r=\frac{F_{\text {min }}}{F_{\operatorname{mxx}}}
\]

PROPRERTEES OF WERD TREATED AS A LINE


PROPERTIES OF WELD TREATED AS A LINE (contd...)
\begin{tabular}{|c|c|c|}
\hline Outine or welded joint & BENDING about horizondal axis XX, \(Z_{\text {w }}\) & TVVISTING about centroidal axis, J m \\
\hline \[
\times-\frac{--\infty}{-6}
\] & \(b d+\frac{d^{2}}{3}\) & \[
\frac{(b+a)^{3}}{6}
\] \\
\hline  & \[
\frac{\frac{2 b d+d^{2}}{3}}{\frac{d^{2}(2 b+d)}{3(b+d)} \text {, top }}
\] & \[
\frac{(b+2 d)^{3}}{12}-\frac{d^{2}(b+d)^{2}}{(b+2 d)}
\] \\
\hline \[
N_{y}-\frac{d^{2}}{2(b+d)}
\] & \[
\begin{aligned}
& \frac{4 b d+d^{2}}{3}, \text { top } \\
& \frac{4 b d^{2}+d^{3}}{6 b+3 d}, \text { bottom }
\end{aligned}
\] & \[
\frac{d^{3}(4 b+d)}{6(b+d)}+\frac{b^{3}}{6}
\] \\
\hline  & \(b d+\frac{d^{2}}{3}\) & \(\frac{b^{2}+3 b d^{2}+d^{3}}{6}\) \\
\hline  & \(\frac{2 b d+d^{2}}{3}\) & \(\frac{2 b^{3}+6 b d^{2}+d^{3}}{6}\) \\
\hline  & \[
\begin{gathered}
\frac{\pi d^{2}}{4} \\
\frac{\pi d^{2}}{2}+\pi D^{2}
\end{gathered}
\] & \[
\frac{\pi d^{3}}{4}
\] \\
\hline
\end{tabular}

\section*{Points to identify}
1. How many fillets are there
2. Static load
3. Fatigue load --- Kt to be used to find the weld size.
4. Eccentric loaded - weld bead are treated with line
5. \(\ln \operatorname{pg} 11.5 \& 11.6\), the given formula to be "x " by 't'

Design Proculurre
[Webling \(\rightarrow\) Eecentricl - ]]
Skens. Find thonk" G Come of Geunity.

Step 2: Introdice pitel at tailier Prink " A .

Slepp: Find \(\tau_{1}\)-dired shear stress \(\tau_{1}=\) ? \(\tau_{1}=\frac{f}{A}\)
Sqt: Find \(\tau_{2} \rightarrow\) secondary dhar theb
\[
\begin{aligned}
& \tau_{R}=? \\
& \tau_{2}=\frac{p r e \cdot}{J} \\
& r_{2}=r_{2} \\
& \cos 0=\frac{r_{1}}{r_{2}}
\end{aligned}
\]

Heps: \(\tau_{2}=\) ?
shos on M15 \(\tau_{x}=[\tau], \tau_{x}=\sqrt{\left.r_{1}+\tau_{2}\right\} 2 \sigma_{i} \cdot \tau_{0}}\)

Erientic Lead Concepl:
1. Fin \(G-c b\)

2 Introlive Pitro.

3.

3. Eecreve the fritum of \(A\).

4. Secondan Sheavstreds \(\tau_{2}^{\prime}\)

\[
\tau_{2}
\]
which \(C_{2}\) "
\[
\tau_{x}=\frac{T \cdot r_{2}}{J}
\]
\[
I=\text { PolariM. } 2
\]
\[
y_{t} \text { F Vadsus beture }
\]
\[
\Leftrightarrow \mid A \text {. }
\]

\[
\begin{aligned}
& \text { 5. Resultant } \tau \text {. [, rave Land } \\
& T_{R}=\sqrt{\left(\tau_{2}\right)^{2}+\left(r_{2}\right){ }^{2}+2 r_{1} \cdot T_{2} \operatorname{le0}} \\
& \cos \theta=\frac{r_{1}}{r_{2}} \\
& \text { final " } h \text { " of weld bee } \\
& \tau_{n}=[r] \text {. }
\end{aligned}
\]

WP2.A bracket carrying a load of 15 KN is to be welded as shown in figure
Find the size of the weld required if the allowable shear stress is 80 Mpa .


Data:
Load \(=15000 \mathrm{~N}\)
plate width \(=80 \mathrm{~mm}\)
e- eccentrical distance \(=125 \mathrm{~mm}\)
[T]= \(80 \mathrm{Mpa}=80 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
\begin{tabular}{l|r|r|r}
\hline DATA & & & \\
\hline Load- P & 15000 N & \\
\hline [T] & \(80 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\) \\
\hline width plate -d & 80 mm & \\
\hline eccentric. Dist. & 125 mm & \\
\hline length of weld- & 50 & mm & \\
\hline sin45 & 0.707 & \\
\hline
\end{tabular}



Failure points



Angle between the two forces Is acute, hence Resultant is given Parallelogram law of forces



\section*{\(t=0.00 \mathrm{~h}\)}
\begin{tabular}{l|l|}
\hline T: & \multicolumn{1}{|c|}{\(1875000 \mathrm{~N} \cdot \mathrm{~mm}\)} \\
\hline J & 127849.16667 \\
\hline 12 h & 47.16990566 mm \\
\hline
\end{tabular}
now


\(r_{2}=\sqrt{(\mathrm{AB})^{\wedge} 2+(\mathrm{GB})^{\wedge} 2}\)


\section*{Design procedure for closed system of welds}

Step1 Find weld areas
Step2: Find direct shear stress
Step3: Find either bending or tensile stress according to the weld structure.

Step4: Find h
1. apply max.normal stress theory - (When tensile failure is available)
2 Apply max shear stress theory- ( when shear stress is available)

\section*{wP3}

A shaft of rectangular cross section is welded to a support by means of fillet welds as shown in figure below. Determine the size of weld, if the permissible stress in the weld is limited to 75 MPa


Data
\(\mathrm{p}=25000 \mathrm{~N}\)
\(\mathrm{e}=500 \mathrm{~mm}\)
[T]= \(75 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
\(\mathrm{h}=\) ?
This is a closed system of weld
1. Max normal stress theory ( case1)
2. max. Shear stress theory (case 2)

Since , shear stress only given work for " 2 " cas

\section*{Step1 Total weld area}


Area \(=353.5 \mathrm{~h}\)

\section*{Step2: find direct shear stress}
\[
T=P / A
\]
\(=25000 /(353.5 \mathrm{~h})\)
\(=70.72 / \mathrm{h}\)

Step 3 Find bending stress
\[
\begin{aligned}
\sigma b & =M / Z \\
M & =p \times e \\
& =25000 \times 500 \\
& =125 \times 10^{\wedge} 5 \mathrm{~N}-\mathrm{mm}
\end{aligned}
\]

Now to find Z Ref. Pg.11.6/DDB
\[
\begin{aligned}
Z & =\left[b d+\left(d^{\wedge} 2 / 3\right)\right] \times t \\
& =\left[b d+\left(d^{\wedge} 2 / 3\right)\right] \times 0.707 \mathrm{~h}
\end{aligned}
\]
\[
Z=15907.5 h
\]
\[
\sigma b=785.8 / h
\]

\section*{Step 4: find h}
here, as shear stress value only given
choose, max shear stress theory

> Tmax \(=[\tau]=1 / 2 \sqrt{(-\sigma b)^{\wedge} 2+4 . \tau^{\wedge}}\)

\section*{Take [tensile]= [120] N/mm^2}
\[
[75]=1 / 2 \sqrt{(785.8 / h)^{\wedge} 2+4 .(70.72 / h)^{\wedge}} 2
\]
\[
\begin{aligned}
& \mathrm{h}=399.2 / 75 \\
& \mathrm{~h}=5.32 \mathrm{~mm}
\end{aligned}
\]

\section*{Closed system concept}
1. Normal stress theory ( if allowable tensile is given)
2. max shear stress theory (if allowableshear stress alone given)

Steps
1. Find direct stress
2. Find beniding or shear stress
3. Find weld size "h"

Apply max shear stress theory/ Normal stress theory


WP4
A circular shaft of dia 60 mm is welded to a support by means of a fillet weld as shown in figure. Determine the size of the weld if the permissible shear stress is limited to 85 MPa

Step1
direct stress Shear \(=\) load \(/ \mathrm{A}\)
\[
\begin{aligned}
\mathrm{A} & =\mathrm{pi} \times d \times t \\
& =3.141 \times 0.707 \mathrm{~h} \\
& =133.27 \mathrm{~h}
\end{aligned}
\]
\(\mathrm{P}=7000 \mathrm{~N}\)
Td=52.52/h
```

Step2 bending stress
\sigmab=M/Z
M=7000 x 150
= 105 x 10^4 N.mm
Z= pg.no.11.6/DDB
Z=[(pi x d^4)/4] x 0.707 h
= 1999h
\sigmab= M/Z=525.26/h

```

Step4:
\(\mathrm{H}=3.15 \mathrm{~mm}\)

\section*{Unit V}

Rolling contact bearing- ball bearings takes both radial and axial load
Sliding contact bearing - Journal bearings- sleeve and shaft - radial loads

\title{
Journal bearing \\ *** shaft and sleeve arrangement***
}

\section*{INTRODUCTION}

In journal bearing sliding action is along the circumference of circle or an arc of circle and carrying radial loads. [1]


\section*{Journal bearings}
- Dry
- Hydrodynamic
- Hydrostatic
- Squeeze Film


\section*{Bearing Classification}

(a) Full

(b) Partial

When the angle of contact of the bearing with the journal is \(120^{\circ}\), as shown in Fig (b), then the bearing is said to be partial journal bearing. contactor

(c) Fitted

When the angle of contact of the bearing with the journal is \(360^{\circ}\) as shown in (a), then the bearing is called a full journal bearing.
the diameters of the journal and bearing are equal, then the bearing is called a fitted bearing, as shown in Fig. (c).

\section*{Classification of Bearings}
1. Depending upon the direction of load to be supported.
a) Radial bearings, and (b) Thrust bearings.

(a) Radial bearing.
(b) Radial bearing.
(c) Thrust bearing.

\section*{Design procedure for sliding contact bearing- Journal bearing}

Basic data needed
Load= W
Journal Diameter or Length= D or L
RPM = speed

Step1: find the application chose L/D ration ref.Page N0 7.31/DDB

Step2: Find L \& D of the journal bearing \& List the values/propertes

Step3: Check for bearing pressure < [ pressure] Pg. 731
\[
\mathrm{P}=\mathrm{W} /(\mathrm{LxD})
\]

Step4: selection of SAE oil refer. Pg.No.7.31 \& 7.41

Step 5: Find coefficient of friction using Mc kees eqn. Pg.No.7.34

Step6: Find heat generation Hg ? Pg. 7.34

Step 7 : Find Hd heat dissipation pg. 7.34
Step8: check for Artificial cooling required or not \(\mathrm{Hg}<\mathrm{Hd}\) or \(\mathrm{Hg}>\mathrm{Hd}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline MACCHINERY & BEARING & L/ 10 & BEARING PRESSURES ALLOWABLE & LUBR & CANT \\
\hline \multirow[t]{4}{*}{Stationary High speed steam Engines} & Main & & Kgi/emi \({ }^{\text {2 }}\) & \% & E, 1 P mint \\
\hline & Main & 1.5-3.0 & 17.50 & 15 & 355,6 \\
\hline & Crank pin & \(0.9-1.5\) & 42.00 & 30 & 85.3 \\
\hline & Wrist pin & 1.3-1.7 & 126.00 & 25 & \%1.1 \\
\hline \multirow[t]{3}{*}{Gas and Oit Engines (Four Stroke)} & Main & 0.6-2.0 & 49-84 & \multirow{4}{*}{20-65} & \\
\hline & Crank pin & 0.6-1.5 & 108-126 & & 284.5 \\
\hline & Wrist pin & 1.5-2.0 & \(\frac{108-12}{175-15}\) & & 142.2 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Cas and Oil Englines \\
(Two Strolke)
\end{tabular}} & Main & 1.5-2.0 & 125-154 & & 71.1 \\
\hline & Crank pin & 9.6-15 & 35-125 & \multirow[t]{3}{*}{20-65} & 355.6 \\
\hline & Wrist pin & 0.6-1.5 & 70-105 & & 170.7 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Aiveraft \& \\
Automobile Engine
\end{tabular}} & Mein & 1.5-22 & 84-125 & & 142.2 \\
\hline & Crauk pin & \(\frac{0.8=1.8}{0.7-1.4}\) & 56-119 & \multirow{3}{*}{8} & 213.3 \\
\hline & Wrist pin & 0.7-1.4 & 105-245 & & 142.2 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Reciprecating \\
Compressors and Pumps
\end{tabular}} & Main & \(\frac{1.5-2.2}{1.0 .27}\) & 161-350 & & 113.8 \\
\hline & Crank pip & \(\frac{1.0 \cdot 2.2}{0.9-17}\) & 17.5 & \multirow{3}{*}{30-80} & 426.7 \\
\hline & Wriat pin & 0.9-1.7 & 42 & & 284.5 \\
\hline \multirow[t]{2}{*}{Centrifugal Pumap, Motors and Conerntors} & Wriat pan & \(1.5-2.0\) & 70 & & 142.2 \\
\hline & Rotor & \(1.0-2.0\) & \(7-14\) & 25 & 2844.5 \\
\hline Machinv Tools & Main & & & & \\
\hline Steam Tarhines & Main & 1.0-2.0 & \(\frac{21}{7-20}\) & 40 & 14.2 \\
\hline Ruilway Cars & Axle & \(\frac{1.0-2.0}{1.9}\) & \(\frac{7-20}{35}\) & 2-16 & 1422.3 \\
\hline \multirow[t]{3}{*}{Maring Steam Engines} & Maint & \(\frac{1.9}{0.7-1.5}\) & \(\frac{35}{35}\) & 100 & 711.2 \\
\hline & Crank pin & 0.7-1.5 & 35 & 30 & 2845 \\
\hline & Wrist pin & \(\frac{0.7-1.2}{1.7}\) & 42 & 40 & 213.3 \\
\hline Transmissions & Light,Fixed & \(\frac{1.2-1.7}{2.0-3.0}\) & 105 & 30 & 1422 \\
\hline Cyroscopes & Rotar & \(\frac{2.0-3.0}{-}\) & 1.8 & 25 & 1422.3 \\
\hline \multirow[t]{2}{*}{Shafting} & Self Aligning & 2.5-4.0 & 60 & 30 & 782,3 \\
\hline & Heavy & 2,5-4.0 & 11 & 60 & 426.7 \\
\hline Cotton Mills & Spindie & 2,0-3.0 & 11 & 60 & 426.7 \\
\hline \multirow[t]{2}{*}{Punching and Shearing Machines} & Main & \({ }_{10}{ }^{-}\) & 0.07 & 2 & 142231 \\
\hline & Craark Pin & 1.0-2.0 & 280 & 100 & - \\
\hline Rolling MIIIs & Main & \(1.0=2.0\) & 560 & 100 & - \\
\hline & & 1.0-13 & 210 & 50 & 142.2 \\
\hline
\end{tabular}

Z, absolute viscosidy, centipoises \(\quad \mathrm{n}, \mathrm{speed}, \mathrm{rpm} \quad\) Pr, pressure, \(\mathrm{kgf} / \mathrm{cm}^{2}\)
DESIGN DATA - PSC TECH

\section*{}


At stant


GEOMETRIC RELATION FOR ANY
JOUPUAAL EEARENG
(Showm here partial elearance bearing)

\section*{GEOMETRIC RELATIONS FOR A CLEARANCE BEAFINC}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Clemrance ratio, C/D} \\
\hline \multicolumn{5}{|l|}{Eceentricity, e \(\quad=\frac{\mathrm{C}}{2}-\mathrm{h}_{6}\)} \\
\hline \multicolumn{5}{|l|}{Ecoseraricity factor or} \\
\hline Attitutde, & c & & \(-1\) & \(\frac{2 h^{4}}{c}\) \\
\hline Pilm thickrness at any angle \(\theta\), & \(\mathrm{h}=\) & \(\frac{c}{2}\) & C © eos & \(\theta+1)\) \\
\hline \multicolumn{5}{|l|}{Minimum film thickness, \(\mathrm{ha}_{\mathrm{a}}=\frac{\mathrm{c}}{2}(1-6)\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline D & Journal diarneter, cis \\
\hline C & diarnmeral clearance, em \\
\hline \(\mathrm{b}_{\text {\% }}\) & mainimumf film thickriess, cm \\
\hline e & attitude, dirnension less \\
\hline ¢ & attitude, ingle \\
\hline L & Length of bewring, om \\
\hline W & Load, kef \\
\hline \(P\) & bearing pressure on projected area, \(\mathrm{kgf} / \mathrm{cm}\) \\
\hline E & eccentricity, cm \\
\hline n & sperd of journal, गmm \\
\hline n' & speed of journal, rys \\
\hline \(z\) & absolute viscosity of the oil, centipoises \\
\hline
\end{tabular}

KINEMATIE WISCOSITY SNYBOTT UNTVEESAL SECONDS


AVERAGE ABSOLUTE VISCOSITES Va TE WPERATUAE
Pg.7.41

\section*{DIMENSIONLESS PERFORMANCE PARAMETERS}



\section*{JBP1}

Design a full journal bearing for a railway car, running at 600 rpm. Diameter of the journal is 200 mm and load on the bearing is 230 KN .

Data
\(\mathrm{W}=\) load \(=230000 \mathrm{~N}\)
\(\mathrm{D}=\) diameter \(=200 \mathrm{~mm}\)
Speed \(=\mathrm{n}=600 \mathrm{rpm}\)

\section*{Step1.find the application chose L/D ratio ref.Page NO 7.31/DDB}

Application: railway car
From Pg.7.31
chose L/D ratio, L/D=1.9
[pb]= \(35 \mathrm{kgf} / \mathrm{cm}^{\wedge} 2---35 \times 10 \mathrm{~N} / \mathrm{cm}^{\wedge} 2---35 \times 10 / 10 \wedge 2 \mathrm{~N} / \mathrm{mm}^{\wedge} 2\)
\([P b]=[3.5] \mathrm{N} / \mathrm{mm}^{\wedge} 2\)
\(Z=100\) centipoise
\(\mathrm{Zn} / \mathrm{P}=711.2\)
\[
\begin{aligned}
& \text { Step2: Find } L \text { of the journal bearing } \\
& L / D=1.9 \\
& L=1.9 \times D \\
& L=1.9 \times 200=380 \mathrm{~mm}
\end{aligned}
\]
Step3; Check for Pind< [Pb]
\[
\begin{aligned}
& \mathrm{P}=\mathrm{w} /(\mathrm{L} \times \mathrm{D}) \\
& =230 \times 10^{\wedge} 3 /(380 \times 200) \\
& =3.026 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \\
& 3.026<[3.5] \\
& \text { Pind }<[\mathrm{Pb}] \text { design safe } .
\end{aligned}
\]

Step4: find SAE oil Pg. 7.41

Assume Operating temperature : \(40^{\circ}-120^{\circ}\) if not given in problem
Assume \(70^{\circ} \mathrm{C}\)
\(\mathrm{Z}=\mathrm{in} \mathrm{cp}\) ?
from step 1,
\(\mathrm{Zn} / \mathrm{P}=711.2\)
\(Z=\) ? \(\quad 711.2 \times 30.26 /(600)\)
\(\mathrm{Z}=35.87 \mathrm{cP}\).
Now use:
\[
\mathrm{z}=35.87 \mathrm{cP}, \mathrm{to}=70^{\circ} \mathrm{C}
\]

SAE50 oil selected

Refer. Pg.No:7.41/ddb from chart,
\(\mathrm{To}=70^{\circ} \mathrm{C}\) and \(\mathrm{Z}=35.87\)--- 45 cP
oil selected is SAE 50
Step5: find \(\mu\)
Refer Pg.7.34/DDB
\[
\mu=33.25 / 10^{\wedge} 10 \times(\mathrm{zn} / \mathrm{P}) \times(\mathrm{D} / \mathrm{C})+\mathrm{k}
\]
\(\mathrm{z}=45 / 36 \mathrm{cP}\)
\(\mathrm{n}=600 \mathrm{rpm}\)
Pind \(=30.26 \mathrm{kgf} / \mathrm{cm}^{\wedge} 2\)
\(D / C=1000\) (in general clearance ratio \(C / D=1 / 1000\) )
\(\mu=0.00546\)
\(=0.0026\) for \(\mathrm{z}=36 \mathrm{cP}\)

Step 5' find Hg ?
\(\mathrm{Hg}=\mu \times \mathrm{W} \times \mathrm{v}\)
\(\mu=0.00546\)
\(\mathrm{W}=23000 \mathrm{kgf}\)
\(V=\pi x d x n / 1000\)
\(\mathrm{d}=200 \mathrm{~mm}, \mathrm{n}=600 \mathrm{rpm}\),
\(\mathrm{V}=376.99 \mathrm{~m} / \mathrm{min}\)
Now
\(\mathrm{Hg}=47342.5 \mathrm{kgf} \mathrm{m} / \mathrm{min}\)

Step6 Find Hd=?
Pg. No. 7.34/DDB
\[
H d=(\Delta t+18)^{\wedge} 2 \times L X d / K \quad \text { Step7 }
\]
\(2 \Delta t=\Delta t a \operatorname{Pg} . N o .7 .35 / d d B\)
\(\Delta t=1 / 2 \times \Delta \mathrm{ta}\)
\(=1 / 2 \times(\mathrm{to}-\mathrm{ta})\)
\(=1 / 2 \times(70-30)\)
\(=20\)
\(\mathrm{L}=380 \mathrm{~mm}==38 \mathrm{~cm}\)
\(\mathrm{D}=200 \mathrm{~mm}==20 \mathrm{~cm}\)
\(\mathrm{k}=437\) or 775 ( pg.no: \(7.35 / \mathrm{ddB}\) )
\(\mathrm{Hg}>\mathrm{Hd}\)

Assume \(\mathrm{k}=437\) - heavy construction
Now Hd=2511.3 kgf m/min

A3-3 Design a journal bearing for the following data
Diameter of journal \(=75 \mathrm{~mm}\)
Load on journal \(=3500 \mathrm{~N}\)
Length of journal \(=75 \mathrm{~mm}\)
Speed=400 rpm
Minimum film thickness \(=0.02 \mathrm{~mm}\)
Take operating temperature \(60^{\circ} \mathrm{C}\)

\section*{Rolling Contact Bearing}

Point of contact
Also called 'antifriction bearing"

Loads
1. Axial
2. Radial load

Needs
Static capacity
Dynamic capacity

Structure of ball bearing

\section*{Rolling Contact Bearing}


\section*{Advantages and Disadvantages of Rolling Contact Bearings Over Sliding Contact Bearings}

\section*{Advantages}
1. Low starting and running friction except at very high speeds.
2. Ability to withstand momentary shock loads.
3. Accuracy of shaft alignment.
4. Low cost of maintenance, as no Iubrication is required while in service.
5. Small overall dimensions.
6. Reliability of service.
7. Easy to mount and erect.
8. Cleanliness.

Disadvantages
1. More noisy at very high speeds.
2. Low resistance to shock loading.
3. More initial cost.
4. Design of bearing housing complicated.

\section*{Types of Rolling Contact Bearings}

Following are the two types of rolling contact bearings:
1. Ball bearings; and 2. Roller bearings.


\section*{Why need of rolling contact bearings}

Avaladie in many sizes and cross secuons
Minimal lubricant supply needed
Low driving torque required
High load carrying capacity
Accurate positional capability
Wide temperature operating range (with solid lubricants)
Wide speed range capability
Many analytical programs available

\section*{DDB Pgs}
4.1
4.2
4.4
4.8
4.9

Selection of bearings
4.12 to 4.36

\section*{DESIGN PROCEDURE}

1 FIND Fa/Fr=e, select factors \(X\) \& \(Y\) Pg.4.14/DDB
2 Find equivalent load \(P\) Pg.4.2/DDB
3 Find dynamic capacity " C " of Bearing Pg.4.2/DDB
4 Select suitable rolling contact bearing based on "C"
state bearing designation
5. Rated life of the bearing at \(90 \%, 95 \%\) or given percentage```

