
IT16301 –
Computer Organization and

Architecture
Prepared by

N.Uma & V.Ranjith
Assistant professor/IT

CO1 - Build the basic structure of computer,
operations and instructions
CO2 - Design arithmetic and logic unit
CO3 - Discuss the pipelined execution and design
control unit
CO4 - Evaluate performance of memory systems
CO5 - Construct the parallel processing
architectures

Course Outcomes

Text Books:
• 1. M. Moris Mano, “ Computer System

Architecture”, 3rd Edition, Pearson/ PHI, 2007
• 2. David A. Patterson and John L. Hennessey,

“Computer organization and design‟, Morgan
kauffman / elsevier, Fifth edition, 2014.

Unit 1
BASIC COMPUTER ORGANIZATION AND
DESIGN

» Instruction codes,

» Computer registers,

» computer instructions,

» Timing and Control,

» Instruction cycle,

» Memory-Reference Instructions,

» Input-output and interrupt,

» Complete computer description,

» Design of Basic computer,

» design of Accumulator Unit.

» Register Transfer Language,

» Register transfer,

» Bus and Memory transfer,

» Arithmetic Micro-operations,

» Logic Micro-operations,

» Shift –Micro operations,

» Arithmetic Logic Shift

COMPUTER ORGANISATION AND
ARCHITECTURE

• The components from which computers are built, i.e.,
computer organization.

• In contrast, computer architecture is the science of
integrating those components to achieve a level of
functionality and performance.

• It is as if computer organization examines the lumber,
bricks, nails, and other building material

• While computer architecture looks at the design of
the house.

Basic Terminology

• Input - Whatever is put
into a computer system.

• Data - Refers to the
symbols that represent
facts, objects, or ideas.

• Information - The
results of the computer
storing data as bits and
bytes; the words,
numbers, sounds, and
graphics.

• Output - Consists of the
processing results
produced by a
computer.

• Processing -
Manipulation of the
data in many ways.

• Memory - Area of the
computer that
temporarily holds data
waiting to be processed,
stored, or output.

• Storage - Area of the
computer that holds
data on a permanent
basis when it is not
immediately needed for
processing.

Basic Terminology

• Assembly language program (ALP) –Programs
are written using mnemonics

• Mnemonic –Instruction will be in the form of
English like form

• Assembler –is a software which converts ALP
to MLL (Machine Level Language)

• HLL (High Level Language) –Programs are
written using English like statements

• Compiler -Convert HLL to MLL, does this job
by reading source program at once

Basic Terminology

• Interpreter – Converts HLL to MLL, does this
job statement by statement

• System software – Program routines which aid
the user in the execution of programs eg:
Assemblers, Compilers

• Operating system – Collection of routines
responsible for controlling and coordinating all
the activities in a computer system

Computers have two kinds of components:

• Hardware,

– consisting of its physical devices (CPU, memory,
bus, storage devices, ...)

• Software,

– consisting of the programs it has (Operating
system, applications, utilities, ...)

All computer functions are:
• Data PROCESSING
• Data STORAGE
• Data MOVEMENT

– Data = Information

• CONTROL--- Coordinates How Information is
Used

• INPUT UNIT:

•Converts the external world data to a binary
format, which can be understood by CPU

– Mouse, Joystick etc

• OUTPUT UNIT:

•Converts the binary format data to a format
that a common man can understand

– Monitor, Printer, LCD, LED etc

CPU

• The Brain of the machine

• carrying out computational task

• ALU, CU, Registers

• ALU Arithmetic and logical operations

• CU Provides control signals in accordance
with some timings which in turn controls the
execution process

• Register Stores data and result and speeds up
the operation

MEMORY

• Stores data, results, programs

• Two classes of storage

(i) Primary

(ii) Secondary

(•) Two types are RAM or R/W memory and
ROM read only memory

(•) ROM is used to store data and program which
is not going to change.

(•) Secondary storage is used for bulk storage or
mass storage

Instruction Codes
• The Internal organization of a digital system is defined by

the sequence of microoperations it performs on data stored
in its registers

• The user of a computer can control the process by means of
a program

• A program is a set of instructions that specify the operations,
operands, and the processing sequence

Instruction Codes
• A computer instruction is a binary code that specifies a

sequence of micro-operations for the computer. Each computer
has its unique instruction set

• Instruction codes and data are stored in memory

• The computer reads each instruction from memory and places
it in a control register

• The control unit interprets the binary code of the instruction
and proceeds to execute it by issuing a sequence of micro-
operations

Instruction Codes

• An Instruction code is a group of bits that instructs the
computer to perform a specific operation (sequence of
microoperations). It is divided into parts (basic part is the
operation part)

• The operation code of an instruction is a group of bits that
defines certain operations such as add, subtract, shift, and
complement

Instruction Codes

• The number of bits required for the operation code depends
on the total number of operations available in the computer

• 2n (or little less) distinct operations  n bit operation code

Instruction Codes

110010??????????

Op code
Control

Unit

Read instruction
from memory

It’s an ADD
operation

Memory

Instruction Codes

• An operation must be performed on some data stored in
processor registers or in memory

• An instruction code must therefore specify not only the
operation, but also the location of the operands (in registers or
in the memory), and where the result will be stored
(registers/memory)

Instruction Codes

• Memory words can be specified in instruction codes by their address

• Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2k registers

• Each computer has its own particular instruction code format

• Instruction code formats are conceived by computer designers who
specify the architecture of the computer

Instruction Codes
Stored Program Organization

• An instruction code is usually divided into operation
code, operand address, addressing mode, etc.

• The simplest way to organize a computer is to have
one processor register (accumulator AC) and an
instruction code format with two parts (op code,
address)

Instruction Codes
Stored Program Organization

Opcode Address

Instruction Format

Binary Operand

Operands
(data)

Processor register
(Accumulator AC)

Memory
4096x16

15 12 11 0

15 0

Instructions
(program)

15 0

0

15

Instruction Codes
Indirect Address

• There are three Addressing Modes used for address portion of
the instruction code:

– Immediate: the operand is given in the address portion
(constant)

– Direct: the address points to the operand stored in the
memory

– Indirect: the address points to the pointer (another address)
stored in the memory that references the operand in
memory

• One bit of the instruction code can be used to distinguish
between direct & indirect addresses

Instruction Codes
Indirect Address

Opcode Address

Instruction Format
15 14 12 0

I
11

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+

AC

+

AC

Direct Address Indirect address

Effective address

Instruction Codes - Indirect Address

• Effective address: the address of the operand in a computation-
type instruction or the target address in a branch-type
instruction

• The pointer can be placed in a processor register instead of
memory as done in commercial computers

 Computer Registers
• Computer instructions are normally stored in

consecutive memory locations and executed
sequentially one at a time

• The control reads an instruction from a specific
address in memory and executes it, and so on

• This type of sequencing needs a counter to calculate
the address of the next instruction after execution of
the current instruction is completed

 Computer Registers

• It is also necessary to provide a register in the control unit for
storing the instruction code after it is read from memory

• The computer needs processor registers for manipulating data
and a register for holding a memory address

List of BC Registers

DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

Registers in the Basic Computer
11 0

PC

15 0
IR

15 0
TR

7 0

OUTR

15 0

DR

15 0
AC

11 0
AR

INPR
0 7

Memory

4096 x 16

S2
S1
S0

Bus

Memory unit
4096 x 16

LD INR CLR

Address
ReadWrite

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC
Adder
and
logic

E

INPR

IR
LD

LD INR CLR

TR

OUTR
LD

Clock

16-bit common bus

7

1

2

3

4

5

6

Computer Registers
Common Bus System

 Computer Registers- Common Bus
System

• S2S1S0: Selects the register/memory that would use
the bus

• LD (load): When enabled, the particular register
receives the data from the bus during the next clock
pulse transition

• E (extended AC bit): flip-flop holds the carry

• DR, AC, IR, and TR: have 16 bits each

• AR and PC: have 12 bits each since they hold a
memory address

 Computer Registers-Common Bus
System

• When the contents of AR or PC are applied to the 16-
bit common bus, the four most significant bits are set
to zeros

• When AR or PC receives information from the bus,
only the 12 least significant bits are transferred into
the register

• INPR and OUTR: communicate with the eight least
significant bits in the bus

 Computer Registers-Common Bus
System

• INPR: Receives a character from the input device
(keyboard,…etc) which is then transferred to AC

• OUTR: Receives a character from AC and delivers it
to an output device (say a Monitor)

• Five registers have three control inputs: LD (load),
INR (increment), and CLR (clear)

• Register  binary counter with parallel load and
synchronous clear

 Computer Registers-Memory Address

• The input data and output data of the memory are
connected to the common bus

• But the memory address is connected to AR

• Therefore, AR must always be used to specify a
memory address

• By using a single register for the address, we
eliminate the need for an address bus that would have
been needed otherwise

 Computer Registers- Memory Address

• Register  Memory: Write operation

• Memory  Register: Read operation (note
that AC cannot directly read from memory!!)

• Note that the content of any register can be
applied onto the bus and an operation can be
performed in the adder and logic circuit during
the same clock cycle

 Computer Registers-Memory Address

• The transition at the end of the cycle transfers
the content of the bus into the destination
register, and the output of the adder and logic
circuit into the AC

• For example, the two microoperations

DR←AC and AC←DR (Exchange)

 can be executed at the same time

• This is done by:

 Computer Registers
Memory Address

• 1- place the contents of AC on the bus
(S2S1S0=100)

• 2- enabling the LD (load) input of DR

• 3- Transferring the contents of the DR through
the adder and logic circuit into AC

• 4- enabling the LD (load) input of AC

• All during the same clock cycle

• The two transfers occur upon the arrival of the
clock pulse transition at the end of the clock
cycle

Memory-Reference Instructions (OP-code = 000 ~ 110)

 Computer Instructions

Basic Computer Instruction code format

15 14 12 11 0
I Opcode Address

Register-Reference Instructions (OP-code = 111, I = 0)

 Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0
Register operation0 1 1 1

15 12 11 0
I/O operation1 1 1 1

BASIC COMPUTER INSTRUCTIONS
 Hex Code
Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

 Computer Instructions
Instruction Set Completeness

• The set of instructions are said to be complete
if the computer includes a sufficient number of
instructions in each of the following
categories:

– Arithmetic, logical, and shift instructions

– Instructions for moving information to and from
memory and processor registers

– Program control instructions together with
instructions that check status conditions

– Input & output instructions

 Timing & Control
• The timing for all registers in the basic

computer is controlled by a master clock
generator

• The clock pulses are applied to all flip-flops
and registers in the system, including the flip-
flops and registers in the control unit

• The clock pulses do not change the state of a
register unless the register is enabled by a
control signal (i.e., Load)

 Timing & Control
• The control signals are generated in the control unit

and provide control inputs for the multiplexers in the
common bus, control inputs in processor registers,
and microoperations for the accumulator

• There are two major types of control
organization:

– Hardwired control

– Microprogrammed control

 Timing & Control
• In the hardwired organization, the control

logic is implemented with gates, flip-flops,
decoders, and other digital circuits.

• In the microprogrammed organization, the
control information is stored in a control
memory (if the design is modified, the
microprogram in control memory has to be
updated)

• D3T4: SC←0

I

The Control Unit for the basic computer

 Hardwired Control Organization

Instruction register (IR)
15 14 13 12 11 - 0

3 x 8
decoder

 7 6 5 4 3 2 1 0

Control
logic
gates

D 0

15 14 2 1 0
4 x 16

Sequence decoder

4-bit
sequence

counter
(SC)

Increment (INR)
Clear (CLR)
Clock

Other inputs

Control
outputs

D

T

T

7

15

0

C l o c k
T 0 T 1 T 2 T 3 T 4 T 0

T 0

T 1

T 2

T 3

T 4

D 3

C L R
S C

- Generated by 4-bit sequence counter and 4x16 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
 Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

 Timing & Control
• A memory read or write cycle will be initiated with

the rising edge of a timing signal

• Assume: memory cycle time < clock cycle time!

• So, a memory read or write cycle initiated by a timing
signal will be completed by the time the next clock
goes through its positive edge

• The clock transition will then be used to load the
memory word into a register

• The memory cycle time is usually longer than the
processor clock cycle  wait cycles

 Timing & Control
• T0: AR←PC

– Transfers the content of PC into AR if timing signal T0 is
active

– T0 is active during an entire clock cycle interval

– During this time, the content of PC is placed onto the bus
(with S2S1S0=010) and the LD (load) input of AR is
enabled

– The actual transfer does not occur until the end of the clock
cycle when the clock goes through a positive transition

– This same positive clock transition increments the
sequence counter SC from 0000 to 0001

– The next clock cycle has T1 active and T0 inactive

 Instruction Cycle

• A program is a sequence of instructions stored
in memory

• The program is executed in the computer by
going through a cycle for each instruction (in
most cases)

• Each instruction in turn is subdivided into a
sequence of sub-cycles or phases

 Instruction Cycle
• Instruction Cycle Phases:

– 1- Fetch an instruction from memory

– 2- Decode the instruction

– 3- Read the effective address from memory if the
instruction has an indirect address

– 4- Execute the instruction

• This cycle repeats indefinitely unless a HALT
instruction is encountered

 Instruction Cycle
Fetch and Decode

• Initially, the Program Counter (PC) is loaded
with the address of the first instruction in the
program

• The sequence counter SC is cleared to 0,
providing a decoded timing signal T0

• After each clock pulse, SC is incremented by
one, so that the timing signals go through a
sequence T0, T1, T2, and so on

 Instruction Cycle
Fetch and Decode

– T0: AR←PC (this is essential!!)

The address of the instruction is moved to AR.

– T1: IR←M[AR], PC←PC+1

The instruction is fetched from the memory to IR ,

and the PC is incremented.

– T2: D0,…, D7←Decode IR(12-14), AR←IR(0-11),
I←IR(15)

BC Instruction cycle: [Fetch Decode [Indirect] Execute]*

• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)
T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

S2

S1

S0

Bus

7Memory
unit

Address
Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

= 0 (direct)

D'7IT3: AR M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

Start
SC  0

AR  PC
T0

IR  M[AR], PC  PC + 1
T1

AR  IR(0-11), I  IR(15)
Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction
SC  0

Execute
input-output

instruction
SC  0

M[AR]AR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction
SC  0

T4

DETERMINE THE TYPE OF INSTRUCTION

REGISTER REFERENCE INSTRUCTIONS

r = D7 I’ T3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11, the ith bit of IR.

- D7 = 1, I = 0
- Register Ref. Instr. is specified in B0 ~ B11 of IR
- Execution starts with timing signal T3

Register Reference Instructions are identified when

r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC’
CME rB8: E  E’
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1
SPA rB4: if (AC(15) = 0) then (PC  PC+1)
SNA rB3: if (AC(15) = 1) then (PC  PC+1)
SZA rB2: if (AC = 0) then (PC  PC+1)
SZE rB1: if (E = 0) then (PC  PC+1)
HLT rB0: S  0 (S is a start-stop flip-flop)

AND to AC
D0T4: DR  M[AR] Read operand
D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC
D1T4: DR  M[AR] Read operand
D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to be completed in a CPU cycle
- The execution of MR Instruction starts with T4

Symbol Operation
Decoder Symbolic Description

AND D0 AC  AC  M[AR]
ADD D1 AC  AC + M[AR], E  Cout
LDA D2 AC  M[AR]
STA D3 M[AR]  AC
BUN D4 PC  AR
BSA D5 M[AR]  PC, PC  AR + 1
ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

5.6 MEMORY REFERENCE INSTRUCTIONS

MEMORY REFERENCE INSTRUCTIONS

 Memory, PC after execution

21

0 BSA 135

Next instruction

Subroutine

20

Return address: PC = 21

AR = 135

136

1 BUN 135

 Memory, PC, AR at time T4

0 BSA 135

Next instruction

Subroutine

20

21

135

PC = 136

1 BUN 135

Memory Memory

LDA: Load to AC
D2T4: DR  M[AR]
D2T5: AC  DR, SC  0

STA: Store AC
D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally
D4T4: PC  AR, SC  0

BSA: Branch and Save Return Address
M[AR]  PC, PC  AR + 1

BSA: executed in a sequence of two micro-operations:
D5T4: M[AR]  PC, AR  AR + 1
D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-Zero
D6T4: DR  M[AR]
D6T5: DR  DR + 1
D6T6: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

Memory Reference Instructions

Memory-reference instruction

DR M[AR] DR M[AR] DR  M[AR] M[AR]  AC
SC  0

AND ADD LDA STA

AC  AC DR
SC <- 0

AC  AC + DR
E  Cout
SC  0

AC  DR
SC  0

D T0 4 D T1 4 D T2 4 D T3 4

D T0 5 D T1 5 D T2 5

PC  AR
SC  0

M[AR]  PC
AR  AR + 1

DR  M[AR]

BUN BSA ISZ

D T4 4 D T5 4 D T6 4

DR  DR + 1

D T5 5 D T6 5

PC  AR
SC  0

M[AR]  DR
If (DR = 0)
then (PC  PC + 1)

SC  0

D T6 6



 Input-Output and Interrupt

• Instructions and data stored in memory must
come from some input device

• Computational results must be transmitted to
the user through some output device

• For the system to communicate with an input
device, serial information is shifted into the
input register INPR

• To output information, it is stored in the output
register OUTR

 Input-Output and Interrupt

Input-output
terminal

Serial
communication

interface Computer
registers and

flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

 Input-Output and Interrupt

• INPR and OUTR communicate with a
communication interface serially and with the
AC in parallel. They hold an 8-bit
alphanumeric information

• I/O devices are slower than a computer system
 we need to synchronize the timing rate
difference between the input/output device and
the computer.

• FGI: 1-bit input flag (Flip-Flop) aimed to
control the input operation

 Input-Output and Interrupt

• FGI is set to 1 when a new information is
available in the input device and is cleared to 0
when the information is accepted by the
computer

• FGO: 1-bit output flag used as a control flip-
flop to control the output operation

• If FGO is set to 1, then this means that the
computer can send out the information from
AC. If it is 0, then the output device is busy
and the computer has to wait!

 Input-Output and Interrupt

• The process of input information transfer:
– Initially, FGI is cleared to 0

– An 8-bit alphanumeric code is shifted into INPR
(Keyboard key strike) and the input flag FGI is set
to 1

– As long as the flag is set, the information in INPR
cannot be changed by another data entry

– The computer checks the flag bit; if it is 1, the
information from INPR is transferred in parallel
into AC and FGI is cleared to 0

 Input-Output and Interrupt
– Once the flag is cleared, new information can be

shifted into INPR by the input device (striking
another key)

• The process of outputting information:

– Initially, the output flag FGO is set to 1

– The computer checks the flag bit; if it is 1, the
information from AC is transferred in parallel to
OUTR and FGO is cleared to 0

– The output accepts the coded information (prints
the corresponding character)

 Input-Output and Interrupt

– When the operation is completed, the output
device sets FGO back to 1

– The computer does not load a new data
information into OUTR when FGO is 0 because
this condition indicates that the output device is
busy to receive another information at the
moment!!

Input-Output Instructions

• Needed for:
– Transferring information to and from AC register

– Checking the flag bits

– Controlling the interrupt facility

• The control unit recognize it when D7=1 and I = 1

• The remaining bits of the instruction specify the
particular operation

• Executed with the clock transition associated with
timing signal T3

• Input-Output instructions are summarized next

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

Input-Output Instructions

Program Interrupt

• The process of communication just described is referred to as
Programmed Control Transfer

• The computer keeps checking the flag bit, and when it finds it
set, it initiates an information transform (this is sometimes
called Polling)

• This type of transfer is in-efficient due to the difference of
information flow rate between the computer and the I/O device

Program Interrupt

• The computer is wasting time while checking the flag instead
of doing some other useful processing task

• An alternative to the programmed controlled procedure is to
let the external device inform the computer when it is ready
for the transfer

• This type of transfer uses the interrupt facility

Program Interrupt

• While the computer is running a program, it does not check
the flags

• Instead:

– When a flag is set, the computer is immediately interrupted
from proceeding with the current program

– The computer stops what it is doing to take care of the
input or output transfer

– Then, it returns to the current program to continue what it
was doing before the interrupt

Program Interrupt

• The interrupt facility can be enabled or disabled via a
flip-flop called IEN

• The interrupt enable flip-flop IEN can be set and
cleared with two instructions (IOF, ION):

– IOF: IEN  0 (the computer cannot be interrupted)

– ION: IEN  1 (the computer can be interrupted)

Program Interrupt
• Another flip-flop (called the interrupt flip-flop

R) is used in the computer’s interrupt facility
to decide when to go through the interrupt
cycle

• FGI and FGO are different here compared to
the way they acted in an earlier discussion!!

• So, the computer is either in an Instruction
Cycle or in an Interrupt Cycle

Program Interrupt
• The interrupt cycle is a hardware

implementation of a branch and save return
address operation (BSA)

• The return address available in PC is stored in
a specific location where it can be found later
when the program returns to the instruction at
which it was interrupted

• This location may be a processor register, a
memory stack, or a specific memory location

Program Interrupt
• For our computer, we choose the memory

location at address 0 as a place for storing
the return address

• Control then inserts address 1 into PC:

– this means that the first instruction of the
interrupt service routine should be stored in
memory at address 1,

– or, the programmer must store a branch
instruction that sends the control to an interrupt
service routine!!

IEN =0

=1

Program Interrupt

R = Interrupt flip-flop

Store return address

=1=0

in location 0
M[0]  PC

Branch to location 1
PC  1

IEN  0
 R  0

Interrupt cycleInstruction cycle

Fetch and decode
instructions

Execute
instructions

R  1

=1

=1
=0

=0

FGI

FGO

R

Flowchart for interrupt cycle

Program Interrupt
• IEN, R  0: no more interruptions can

occur until the interrupt request from the flag
has been serviced

• The service routine must end with an
instruction that re-enables the interrupt (IEN
 1) and an instruction to return to the
instruction at which the interrupt occurred

• The instruction that returns the control to the
original program is "indirect BUN 0"

Program Interrupt

• Example: the computer is interrupted during
execution of the instruction at address 255

 After interrupt cycle

0 BUN 1120
0
1

PC = 256
255

1 BUN 0

 Before interrupt

Main
Program

1120
I/O

Program

0 BUN 1120
0

PC = 1

 256
255

1 BUN 0

Memory

Main
Program

1120
I/O

Program

256

Interrupt Cycle
• The fetch and decode phases of the instruction

cycle must be :

 (Replace T0, T1, T2  R'T0, R'T1, R'T2 (fetch
and decode phases occur at the instruction cycle
when R = 0)

• Interrupt Cycle:

– RT0: AR  0, TR  PC

– RT1: M[AR]  TR, PC  0

– RT2: PC  PC + 1, IEN  0, R  0, SC  0

+

AR
CLR

PCCLR

INR

TRLD

Memory

write

K

J

K

J

S0
S1
S2

2

6

1

7

16-bit common bus

0

0

0

Clock

IEN

R

R
T0

T1

T2

SCCLR

Address

Register transfers for
the Interrupt Cycle

Interrupt

• Further Questions:

– How can the CPU recognize the device requesting an
interrupt?

– Since different devices are likely to require different
interrupt service routines, how can the CPU obtain the
starting address of the appropriate routine in each
case?

– Should any device be allowed to interrupt the CPU
while another interrupt is being serviced?

– How can the situation be handled when two or more
interrupt requests occur simultaneously?

AR  M[AR]Execute
RR

Instruction

Execute
I/O

Instruction

I

PC  PC + 1, IEN  0
R  0, SC  0

D7

AR  IR(0~11), I  IR(15)
D0...D7  Decode IR(12 ~ 14)

M[AR]  TR, PC  0IR  M[AR], PC  PC + 1

AR  0, TR  PCAR  PC

R

start
SC  0, IEN  0, R  0

 Complete Computer Description

(I/O) =1 =0 (Register) (Indir) =1 =0 (Dir)

R’T0

R’T1

R’T2

RT0

RT1

RT2

I

Idle
D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

(Instruction Cycle) =0 =1 (Interrupt Cycle)

(Register or I/O) =1 =0 (Memory Ref)

 D7’T4

Fig 5-15

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14), AR  IR(0 ~ 11), I  IR(15)

AR  M[AR]

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

DR  M[AR]
AC  AC . DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC  AR, SC  0
DR  M[AR]
DR  DR + 1
M[AR]  DR, if(DR=0) then (PC  PC + 1), SC  0

 Complete Computer Description
Fetch

Decode

Indirect

Interrupt:

Memory-Reference:
 AND

 ADD

 LDA

 STA
 BUN
 BSA

 ISZ

R’T0:
R’T1:
R’T2:

D7’IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

T0’T1’T2’(IEN)(FGI + FGO):

 Complete Computer Description
Register-Reference:

 CLA
 CLE
 CMA
 CME
 CIR
 CIL
 INC
 SPA
 SNA
 SZA
 SZE
 HLT

Input-Output:

 INP
 OUT
 SKI
 SKO
 ION
 IOF

D7I’T3 = r
IR(i) = Bi
 r:
rB11:
rB10:
 rB9:
 rB8:
 rB7:
 rB6:
 rB5:
 rB4:
 rB3:
 rB2:
 rB1:
 rB0:

D7IT3 = p
IR(i) = Bi
 p:
pB11:
pB10:
 pB9:
 pB8:
 pB7:
 pB6:

(Common to all register-reference instructions)
(i = 0,1,2, ..., 11)
SC  0
AC  0
E  0
AC  AC’
E  E’
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
If(AC(15) =0) then (PC  PC + 1)
If(AC(15) =1) then (PC  PC + 1)
If(AC = 0) then (PC  PC + 1)
If(E=0) then (PC  PC + 1)
S  0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC  0
AC(0-7)  INPR, FGI  0
OUTR  AC(0-7), FGO  0
If(FGI=1) then (PC  PC + 1)
If(FGO=1) then (PC  PC + 1)
IEN  1
IEN  0

Table

 Design of Basic Computer
1. A memory unit: 4096 x 16.

2. Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and
SC

3. Flip-Flops (Status): I, S, E, R, IEN, FGI, and
FGO

4. Decoders:

1. a 3x8 Opcode decoder

2. a 4x16 timing decoder

5. Common bus: 16 bits

6. Control logic gates

7. Adder and Logic circuit: Connected to AC

 Design of Basic Computer

• The control logic gates are used to control:

– Inputs of the nine registers

– Read and Write inputs of memory

– Set, Clear, or Complement inputs of the flip-flops

– S2, S1, S0 that select a register for the bus

– AC Adder and Logic circuit

 Design of Basic Computer

• Control of registers and memory
– The control inputs of the registers are LD (load),

INR (increment), and CLR (clear)

– To control AR We scan table to find out all the
statements that change the content of AR:

• R’T0: AR  PC LD(AR)

• R’T2: AR  IR(0-11) LD(AR)

• D’7IT3: AR  M[AR] LD(AR)

• RT0: AR  0 CLR(AR)

• D5T4: AR  AR + 1 INR(AR)

 Design of Basic Computer

AR

LD
INR

CLR

Clock

To busFrom bus
D'

I
T

T

R
T
D5
T

7

3
2

0

4

Control Gates associated with AR

 Design of Basic Computer

– To control the Read input of the memory we scan
the table again to get these:

• D0T4: DR  M[AR]

• D1T4: DR  M[AR]

• D2T4: DR  M[AR]

• D6T4: DR  M[AR]

• D7′IT3: AR  M[AR]

• R′T1: IR  M[AR]

–  Read = R′T1 + D7′IT3 + (D0 + D1 + D2 + D6)
T4

 Design of Basic Computer

• Control of Single Flip-flops (IEN for
example)

– pB7: IEN  1 (I/O Instruction)

– pB6: IEN  0 (I/O Instruction)

– RT2: IEN  0 (Interrupt)
• where p = D7IT3 (Input/Output Instruction)

– If we use a JK flip-flop for IEN, the control gate
logic will be as shown in the following slide:

 Design of Basic Computer

D

I

T3

7

J

K

Q IEN
p

B7

B6

T2
R

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q’(t)

JK FF Characteristic Table

 Design of Basic Computer

• Control of Common bus is accomplished by
placing an encoder at the inputs of the bus
selection logic and implementing the logic
for each encoder input

x1
x2
x3
x4
x5
x6
x7

Encoder

S 2

S 1

S 0

Multiplexer

bus select

inputs

 Design of Basic Computer

• To select AR on the bus then x1 must be 1.
This is happen when:

• D4T4: PC  AR

• D5T5: PC  AR

•  x1 = D4T4 + D5T5
x1 x2 x3 x4 x5 x6 x7 S2 S1 S0

selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

 Design of Basic Computer

• For x7:
– X7 = R′T1 + D7′IT3 + (D0 + D1 + D2 + D6)T4 where it

is also applied to the read input

 Design of Accumulator Logic
Circuits associated with AC

All the statements that change the content of AC

16

16

 8

Adder and
logic
circuit

16 ACFrom DR

From INPR

Control
gates

LD INR CLR

16

To bus

Clock

D0T5: AC  AC  DR AND with DR
D1T5: AC  AC + DR Add with DR
D2T5: AC  DR Transfer from DR
pB11: AC(0-7)  INPR Transfer from INPR
rB9: AC  AC’ Complement
rB7 : AC  shr AC, AC(15)  E Shift right
rB6 : AC  shl AC, AC(0)  E Shift left
rB11 : AC  0 Clear
rB5 : AC  AC + 1 Increment

Gate structures for controlling
the LD, INR, and CLR of AC

AC

LD
INR

CLR

Clock

To bus16From Adder
 and Logic

16

AND

ADD

LDA

INPR

COM

SHR

SHL

INC

CLR

D0

D1

D2

B 11

B 9

B 7

B 6

B 5

B 11

r

p

T 5

T 5

 Design of Accumulator Logic

Adder and Logic Circuit

AND

ADD

LDA

INPR

COM

SHR

SHL

J

K

Q
AC(i)

LD

FA

C

C

From
INPR
bit(i)

DR(i) AC(i)

AC(i+1)

AC(i-1)

i

i

i+1

I

REGISTER TRANSFER AND
MICROOPERATIONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

SIMPLE DIGITAL SYSTEMS

• Combinational and sequential circuits can be used to create simple digital
systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of

– the registers they contain, and

– the operations that they perform.

• Typically,

– What operations are performed on the data in the registers

– What information is passed between registers

• The operations on the data in registers are called microoperations.

• The functions built into registers are examples of microoperations

– Shift

– Load

– Clear

– Increment

– …

• An elementary operation performed (during one clock
pulse), on the information stored in one or more
registers

• 1 clock cycle:

• R  f(R, R)
• f: shift, load, clear, increment, add, subtract,

complement,and, or, xor, …

ALU
(f)

Registers
(R)

ORGANIZATION OF A DIGITAL SYSTEM

• Definition of the (internal) organization of a
computer
- Set of registers and their functions

- Micro operations set

Set of allowable micro operations provided by
the organization of the computer

- Control signals that initiate the sequence of micro
operations (to perform the functions)

REGISTER TRANSFER LEVEL

• Viewing a computer, or any digital system, in this way is
called the register transfer level

• This is because we’re focusing on

– The system’s registers

– The data transformations in them, and

– The data transfers between them.

REGISTER TRANSFER LANGUAGE

• Rather than specifying a digital system in words, a specific
notation is used, register transfer language

• For any function of the computer, the register transfer
language can be used to describe the (sequence of)
microoperations

• Register transfer language

– A symbolic language

– A convenient tool for describing the internal organization
of digital computers

– Can also be used to facilitate the design process of digital
systems.

DESIGNATION OF REGISTERS

• Registers are designated by capital letters, sometimes followed by numbers
(e.g., A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Registers and their contents can be viewed and represented in various ways

– A register can be viewed as a single entity:

 MAR

– Registers may also be represented showing the bits of data they contain

• Designation of a register

 - a register

 - portion of a register

 - a bit of a register

• Common ways of drawing the block diagram of a
register

R1
 Register

Numbering of bits

Showing individual bits

Subfields
PC(H) PC(L)

15 8 7 0

7 6 5 4 3 2 1 0

R2
15 0

REGISTER TRANSFER

• Copying the contents of one register to another is a register
transfer

• A register transfer is indicated as

R2  R1

– In this case the contents of register R1 are copied (loaded)
into register R2

– A simultaneous transfer of all bits from the source R1 to
the destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1
are not altered by copying (loading) them to R2

• A register transfer such as

R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the
destination register (R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

CONTROL FUNCTIONS

• Often actions need to only occur if a certain condition is true

• This is similar to an “if” statement in a programming language

• In digital systems, this is often done via a control signal,
called a control function

– If the signal is 1, the action takes place

• This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P = 1) then (R2  R1)

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

• Implementation of controlled transfer

P: R2 R1

• The same clock controls the circuits that generate the control
function and the destination register

• Registers are assumed to use positive-edge-triggered flip-
flops

Block diagram

Timing diagram

Clock

Transfer occurs here

R2

R1

Control
Circuit

LoadP

n

Clock

Load

t t+1

SIMULTANEOUS OPERATIONS

• If two or more operations are to occur simultaneously, they are
separated with commas

P: R3  R5, MAR  IR

• Here, if the control function P = 1, load the contents of R5 into
R3, and at the same time (clock), load the contents of register
IR into register MAR

BASIC SYMBOLS FOR REGISTER TRANSFERS

Capital letters Denotes a register MAR, R2
 & numerals
Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2  R1
Colon : Denotes termination of control function P:
Comma , Separates two micro-operations A  B, B  A

Symbols Description Examples

CONNECTING REGISTRS
• In a digital system with many registers, it is impractical to

have data and control lines to directly allow each register to be
loaded with the contents of every possible other registers

• To completely connect n registers  n(n-1) lines

• O(n2) cost

– This is not a realistic approach to use in a large digital
system

• Instead, take a different approach

• Have one centralized set of circuits for data transfer – the bus

• Have control circuits to select which register is the source, and
which is the destination

BUS AND BUS TRANSFER
Bus is a path(of a group of wires) over which information is transferred, from any of
several sources to any of several destinations.

From a register to bus: BUS  R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x

y
select

0 0 0 0

Register A Register B Register C Register D

Bus lines

TRANSFER FROM BUS TO A DESTINATION REGISTER

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4
Decoder

Load

D 0 D1 D2 D 3z
w

Select E (enable)

Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Select

Enable

0
1
2
3

S0
S1

A0
B0
C0
D0

Bus line for bit 0

BUS TRANSFER IN RTL

• Depending on whether the bus is to be mentioned explicitly or not,
register transfer can be indicated as either

 or

• In the former case the bus is implicit, but in the latter, it is explicitly
indicated

R2 R1

BUS R1, R2  BUS

MEMORY (RAM)
• Memory (RAM) can be thought as a sequential circuits containing

some number of registers

• These registers hold the words of memory

• Each of the r registers is indicated by an address

• These addresses range from 0 to r-1

• Each register (word) can hold n bits of data

• Assume the RAM contains r = 2k words. It needs the following

– n data input lines

– n data output lines

– k address lines

– A Read control line

– A Write control line

data input lines

data output lines

n

n

k

address lines

Read

Write

RAM
unit

MEMORY TRANSFER
• Collectively, the memory is viewed at the register level as a device, M.

• Since it contains multiple locations, we must specify which address in
memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by putting the desired
address in a special register, the Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get sent to the
memory unit’s address lines

AR
Memory

unit

Read

Write

Data inData out

M

MEMORY READ

• To read a value from a location in memory and load it into a register,
the register transfer language notation looks like this:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s output data lines

– These get sent over the bus to be loaded into register R1

R1  M[MAR]

MEMORY WRITE

• To write a value from a register to a location in memory looks like
this in register transfer language:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Write (= 1) gets sent to the memory unit

– The values in register R1 get sent over the bus to the data input lines of the
memory

– The values get loaded into the specified address in the memory

M[MAR]  R1

SUMMARY OF R. TRANSFER MICROOPERATIONS

A  B Transfer content of reg. B into reg. A

AR DR(AD)Transfer content of AD portion of reg. DR into reg. AR

A  constant Transfer a binary constant into reg. A

ABUS  R1, Transfer content of R1 into bus A and, at the same time,

R2 ABUS transfer content of bus A into R2
AR Address register
DR Data register
M[R] Memory word specified by reg. R
M Equivalent to M[AR]

DR  M Memory read operation: transfers content of
 memory word specified by AR into DR

M  DR Memory write operation: transfers content of
 DR into memory word specified by AR

MICROOPERATIONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

ARITHMETIC MICROOPERATIONS

Summary of Typical Arithmetic Micro-Operations

Arithmetic Microoperations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3
R3  R1 - R2 Contents of R1 minus R2 transferred to R3
R2  R2’ Complement the contents of R2
R2  R2’+ 1 2's complement the contents of R2 (negate)
R3  R1 + R2’+ 1 subtraction
R1  R1 + 1 Increment
R1  R1 - 1Decrement

• The basic arithmetic microoperations are
– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are
– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

BINARY ADDER / SUBTRACTOR / INCREMENTER

F A

B 0 A 0

S 0

C 0F A

B 1 A 1

S 1

C 1F A

B 2 A 2

S 2

C 2F A

B 3 A 3

S 3

C 3

C 4

Binary Adder-Subtractor

F A

B 0 A 0

S 0

C 0C 1F A

B 1 A 1

S 1

C 2F A

B 2 A 2

S 2

C 3F A

B 3 A 3

S 3C 4

M

Binary Incrementer

H A
x y

C S

A 0 1

S 0

H A
x y

C S

A 1

S 1

H A
x y

C S

A 2

S 2

H A
x y

C S

A 3

S 3C 4

Binary Adder

Arithmetic Microoperations

ARITHMETIC CIRCUIT

S1
S0
0
1
2
3

4x1MUX

X0

Y0

C0

C1

D0
FA

S1
S0
0
1
2
3

4x1MUX

X1

Y1

C1

C2

D1
FA

S1
S0
0
1
2
3

4x1MUX

X2

Y2

C2

C3

D2
FA

S1
S0
0
1
2
3

4x1MUX

X3

Y3

C3

C4

D3
FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1
Cin

S1 S0 Cin Y Output Microoperation
0 0 0 B D = A + B Add
0 0 1 B D = A + B + 1 Add with carry
0 1 0 B’ D = A + B’ Subtract with borrow
0 1 1 B’ D = A + B’+ 1 Subtract
1 0 0 0 D = A Transfer A
1 0 1 0 D = A + 1 Increment A
1 1 0 1 D = A - 1 Decrement A
1 1 1 1 D = A Transfer A

Arithmetic Microoperations

LOGIC MICROOPERATIONS
Logic Microoperations

• Specify binary operations on the strings of bits in registers

– Logic micro operations are bit-wise operations, i.e., they work on the individual bits
of data

– useful for bit manipulations on binary data

– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can be defined
over two binary input variables

• However, most systems only implement four of these

– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

A B F0 F1 F2 … F13 F14 F15

LIST OF LOGIC MICROOPERATIONS
• List of Logic Microoperations
 - 16 different logic operations with 2 binary vars.
 - n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the
 corresponding 16 logic micro-operations

Boolean
Function

Micro-
Operations Name

x 0 0 1 1
y 0 1 0 1

Logic Microoperations

0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

0 0 F = A  B AND
0 1 F = AB OR
1 0 F = A  B XOR
1 1 F = A’ Complement

S1 S0 Output -operation
 Function table

Logic Microoperations

B
A

S
S

F

1
0

i

i

i 0

1

2

3

4 X 1
MUX

Select

APPLICATIONS OF LOGIC MICROOPERATIONS
Logic Microoperations

• Logic micro operations can be used to manipulate individual bits or a
portions of a word in a register

• Consider the data in a register A. In another register, B, is bit data that
will be used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

– Compare A  A  B

SELECTIVE SET
Logic Microoperations

• In a selective set operation, the bit pattern in B is used to set certain bits
in A

1 1 0 0 At

1 0 1 0 B

1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A gets set to 1, otherwise
that bit in A keeps its previous value

SELECTIVE COMPLEMENT
Logic Microoperations

• In a selective complement operation, the bit pattern in B is used to
complement certain bits in A

1 1 0 0 At

1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

• If a bit in B is set to 1, that same position in A gets complemented from
its original value, otherwise it is unchanged

SELECTIVE CLEAR
Logic Microoperations

• In a selective clear operation, the bit pattern in B is used to clear certain
bits in A

1 1 0 0 At

1 0 1 0 B

0 1 0 0 At+1 (A  A  B’)

• If a bit in B is set to 1, that same position in A gets set to 0, otherwise it
is unchanged

MASK OPERATION
Logic Microoperations

• In a mask operation, the bit pattern in B is used to clear certain bits in A

1 1 0 0 At

1 0 1 0 B

1 0 0 0 At+1 (A  A  B)

• If a bit in B is set to 0, that same position in A gets set to 0, otherwise it
is unchanged

CLEAR OPERATION
Logic Microoperations

• In a clear operation, if the bits in the same position in A and B are the
same, they are cleared in A, otherwise they are set in A

1 1 0 0 At

1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

INSERT OPERATION
Logic Microoperations

• An insert operation is used to introduce a specific bit pattern into A
register, leaving the other bit positions unchanged

• This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired positions

– Example

• Suppose you wanted to introduce 1010 into the low order four
bits of A: 1101 1000 1011 0001 A (Original) 1101
1000 1011 1010 A (Desired)

• 1101 1000 1011 0001 A (Original)

1111 1111 1111 0000 Mask

1101 1000 1011 0000 A (Intermediate)

0000 0000 0000 1010 Added bits

1101 1000 1011 1010 A (Desired)

SHIFT MICROOPERATIONS
Shift Microoperations

• There are three types of shifts

– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into the serial input

Serial
input

• A right shift operation

• A left shift operation
Serial
input

LOGICAL SHIFT
Shift Microoperations

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

• A left logical shift operation:

• In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

• R2  shr R2

• R3  shl R3

0

0

CIRCULAR SHIFT
Shift Microoperations

• In a circular shift the serial input is the bit that is shifted out of the other
end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used

– cil for a circular shift left

– cir for a circular shift right

– Examples:

• R2  cir R2

• R3  cil R3

ARITHMETIC SHIFT
Shift Microoperations

• An arithmetic shift is meant for signed binary numbers (integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• The main distinction of an arithmetic shift is that it must keep the sign of
the number the same as it performs the multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:

0

sign
bit

sign
bit

ARITHMETIC SHIFT
Shift Microoperations

• An left arithmetic shift operation must be checked for the overflow

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left
– ashr for an arithmetic shift right
– Examples:

» R2  ashr R2
» R3  ashl R3

sign
bit

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

Shift Microoperations

S

0
1

H0MUX

S

0
1

H1MUX

S

0
1

H2MUX

S

0
1

H3MUX

Select
0 for shift right (down)
1 for shift left (up)

Serial
input (IR)

A0

A1

A2

A3

Serial
input (IL)

ARITHMETIC LOGIC SHIFT UNIT

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Shift Microoperations

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

• UNIT II ARITHMETIC OPERATIONS
ALU (Arthimetic Logic Unit)

Reference
• Appendix B: The Basics of Logic Design
• Book - David A. Patterson and John L. Hennessey, “Computer

organization and design‟, Morgan kauffman / Elsevier, Fifth
edition, 2014.

1

Logic Gates

3 of 16

AND

Q = A.B

4 of 16

OR

Q = A+B

5 of 16

OR

Q = A+B

6 of 16

NOT (Inversion)

Q = A

7 of 16

Multiplexor

If d == 0
Then c = a
Else if d ==1
Then c = b

Used to select an operation

ALU

ALU definition

• Arithmetic Logic Unit (ALU) - Hardware
 that performs addition, subtraction, and

usually logical operations such as AND and OR.

ALU
- Operation selector – output from multiplexor

a

b
output

Operation selector

ALU symbol

a, b – inputs
ALU operation – operation selector
Carry out – add, sub
Zero – slt,beq,bne
Result – add, sub, and, or ….
Overflow - Exception

Agenda
• Signed Numbers

– 1s complement
– 2s complement

• Binary Addition
• Binary Subtraction
• Multiplication

– Flow chart – algorithm
– Hardware design
– Problem

Reference
• Chapter 2 : Instructions: Language of the Computer

– 2.4 Signed and Unsigned Numbers

• Chapter 3 : Arithmetic for Computers
• Book - David A. Patterson and John L. Hennessey, “Computer

organization and design‟, Morgan kauffman / Elsevier, Fifth
edition, 2014.

13

Signed Numbers

• Unsigned numbers – Ex: 0, 100, 999
• Signed numbers – Ex: -100, 0 , +100
• How computers represent + or – in 0’s and

1’s?
– 1s complement
– 2s complement

1s complement

• Question – find the 1s complement of
100011112 -

• Solution – inverting the bits
1000 11112

0111 00002

2s complement
• Question – find the 2s complement of

100011112 -

• Solution – inverting the bits and adding 1
1000 11112

0111 00002  1s complement

 1  add 1

0111 00012

Another problem
• Question : find 1s and 2s complement for the

following

– 000001102

– 000110002

Binary Addition

A B A+B Carry Out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Binary Addition Problem

 0111 two = 7ten

+ 0110 two = 6ten

= 1101 two = 13ten

Binary Subtraction Problem

• Subtraction via addition using the two’s complement representation
 of 6:

 0000 0000 0000 0000 0000 0000 0000 0111two = 7ten

+ 1111 1111 1111 1111 1111 1111 1111 1010two = –6ten

= 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

Two’s Complement Addition: Verifying
Carry/Borrow method

• Two (n+1)-bit integers: X = xnX’, Y = ynY’

 xn = 0, yn = 0 ok not ok(overflow!)

 xn = 1, yn = 0 ok ok

 xn = 0, yn = 1 ok ok

 xn = 1, yn = 1 not ok(overflow!) ok

• Prove the cases above!
• Prove if there is one more bit (total n+2 then) available for the result then

there is no problem with overflow in add!

Carry/borrow
add X + Y

0  X’ + Y’  2n

(no CarryIn to last bit)
2n  X’ + Y’  2n+1 – 1
(CarryIn to last bit)

Two's Complement Operations
• Now verify the negation shortcut!

– consider X + (X +1) = (X + X) + 1:
 associative law – but what if there is overflow in one of the adds on

either side, i.e., the result is wrong…!
– think minint !
– Examples:

• –0101 = 1010 + 1 = 1011
• –1100 = 0011 + 1 = 0100
• –1000 = 0111 + 1 = 1000

Detecting Overflow
• No overflow when adding a positive and a negative number
• No overflow when subtracting numbers with the same sign
• Overflow occurs when the result has “wrong” sign :

 Operation Operand A Operand B Result Actual
 Indicating without
 Overflow Overflow
 A + B  0(+ve)  0 (+ve)  0 (-ve) +ve
 A + B  0 (-ve)  0 (-ve)  0 (+ve) -ve
 A – B  0 (+ve)  0 (-ve)  0 (-ve) +ve
 A – B  0 (-ve)  0 (+ve)  0 (+ve) -ve

• Consider the operations A + B, and A – B
– can overflow occur if B is 0 ?
– can overflow occur if A is 0 ?

Effects of Overflow
• If an exception (interrupt) occurs

– control jumps to predefined address for exception
– interrupted address is saved for possible resumption

• Don't always want to cause exception on overflow
– add, addi, sub cause exceptions on overflow
– addu, addiu, subu do not cause exceptions on

overflow

 Multiply
• Binary multiple of 2ten x 3ten = 6ten

• Multiplicand – 2

• Multiplier – 3

• Product - 6

 Multiply
• Grade school shift-add method:

 Multiplicand 1000
 Multiplier 1001

 1000
 0000
 0000
 1000
Product 01001000

• m bits x n bits = m+n bit product
• Binary makes it easy:

– multiplier bit 1 => copy multiplicand (1 x multiplicand)
– multiplier bit 0 => place 0 (0 x multiplicand)

x

Multiplication -
Sequential Refined Version

Algorithm

Sequential(Refined) version of Multiplication Algorithm

Done

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Sequential(Refined) Version of Multiplication Problem

Iteration Steps Multiplicand Product

0 Initialize 0010 0000 0011

1 1a. 1=> Prod = Prod + Mcand
2. Shift Right Product

0010
0010

0010 0011
0001 0001

2 1a. 1=> Prod = Prod + Mcand
2. Shift Right Product

0010
0010

0011 0001
0001 1000

3 1a. 0=> No operation
2. Shift Right Product

0010
0010

0001 1000
0000 1100

4 1a. 0=> No operation
2. Shift Right Product

0010
0010

0000 1100
0000 0110

2 x 3 = 6; 0010 x 0011 = 0110

Last Class Summary
• Signed Numbers Representation

– 1s complement
– 2s complement

• Binary Addition
• Binary Subtraction
• Multiplication

– Flow chart – algorithm
– Hardware design - pending
– Problem

Multiplication
• Two versions of multiplication:

– Sequential refined version algorithm
– Sequential first version algorithm

• Booth’s algorithm
– Signed and Unsigned multiplication

Sequential(Refined) Version of Multiplication Hardware

Control
testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Product register is initialized with multiplier on right

Multiplication -
Sequential First Version

Algorithm

Sequential First Version of Multiplication Algorithm

Sequential First Version of Multiplication Problem

2 x 3 = 6; 0010 x 0011 = 0110

Sequential First version of Multiplication Hardware

Multiply in MIPS
• 2 Registers:
• separate pair of 32-bit registers to contain the 64-bit product

called Hi and Lo.
• 4 Instructions:
• multiply (mult)
• multiply unsigned (multu)
• move from lo (mflo) – to place the product into registers
• Move from hi (mfhi) – to place the product into registers

 Booth’s Algorithm –
Both Signed and Unsigned

Multiplication

Reference
• Chapter 6 : Arithmetic

– 6.4 Signed – operand multiplication
• Booth algorithm

• Book – Carl Hamacher, “Computer organization‟, Fifth
edition, Mc Graw Hill.

39

Booth’s algorithm
• 1st step – Find the 2s complement of negative

multiplier
• 2nd step – recode the 2s complement of

negative multiplier
• 3rd step – multiply multiplicand and recoded

multiplier using long hand method

Basic concept - 2s complement
3 bits - Unsigned numbers – 8 - (0-7)
3 bits - Signed numbers – 8 - (-4,3,-2,-1,0,1,2,3)

3 bits - unsigned
numbers

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

3 bits - signed numbers

100 -4

101 -3

110 -2

111 -1

000 0

001 +1

010 +2

011 +3

Example problem
• Multiply +13 x -6
• Where +13 -> multiplicand -> 5bits
• -6 -> multiplier -> 5 bits
1st step -> find the 2s complement of negative multiplier
Assume : 5bit multiplier
 +6 -> 00110 (sign extension)
1s complement -> 11001
Add 1 -> 1

2s complement -> 11010 = -6

Why 5 bits for +13?
• +13 is in which range
• -13 … 0 … +13 = total 27 numbers
• Nearest power of 2 number is 32 = 25

• So 5 bits to represent +13 .

How 5 bits for -6?
• Find binary number of -6?
• Range of -6 is -6…0..+6 = total 13 numbers
• Nearest power of 2 is 24 =16
• 6 -> 0110
• Invert 1001
• +1-> 1
• -6 -> 1010

 11010 -> sign extension (Make -6 extend to 5
 bits)

• 2nd step -> recode the 2s complement of negative multiplier
Booth multiplier recoding table:

 -6 => 1 1 0 1 0 (0)
booth recoded multiplier -6 => 0 -1 +1 -1 0

Problem solving

Multiplier Version of multiplicand
selected by bit iBit I Bit i-1

0 0 0 x M
0 1 +1 x M
1 0 -1 x M
1 1 0 x M

Booth’s Algorithm Problem solving

• 3rd step -> multiply multiplicand and recoded multiplier using
long hand method.

 (+13) 0 1 1 0 1
X (-6) 0 -1 +1 -1 0

 0000000000
 111110011
 00001101
 1110011
 000000

(-78) 1110110010 -> how to verify this result

Booth’s multiplication features

• Handles both signed and unsigned multipliers
uniformly.

• Faster multiplication – fewer additions

• Worst case multiplier
 0 1 0 1 0 1 0 1 0 1 0 1 0 1
+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1
• Ordinary multiplier
 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0
 0 -1 0 0 +1 -1 +1 0 -1 +1 0 0 0 -1 0 0
• Good multiplier
 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1
 0 0 0 +1 0 0 0 0 -1 0 0 0 +1 0 0 -1

How Speed affected by multiplier??

Computer Architecture
Division

1

Last Class Summary

• Booth’s Algorithm

Agenda
• Booth’s algorithm example
– Why 5 bits?
– How to verify the result?

• Division
– Hardware
– Algorithm
– Problem

Basic concept - 2s complement
3 bits - Unsigned numbers – 8 - (0-7)
3 bits - Signed numbers – 8 - (-4,3,-2,-1,0,1,2,3)

3 bits - unsigned
numbers

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

3 bits - signed numbers

100 -4

101 -3

110 -2

111 -1

000 0

001 +1

010 +2

011 +3

Example problem
• Multiply +13 x -6
• Where +13 -> multiplicand -> 5bits
• -6 -> multiplier -> 5 bits
1st step -> find the 2s complement of negative multiplier
Assume : 5bit multiplier
 +6 -> 00110 (sign extension)
1s complement -> 11001
Add 1 -> 1

2s complement -> 11010 = -6

Why 5 bits for +13?
• +13 is in which range
• -13 … 0 … +13 = total 27 numbers
• Nearest power of 2 number is 32 = 25

• So 5 bits to represent +13 .

How 5 bits for -6?
• Find binary number of -6?
• Range of -6 is -6…0..+6 = total 13 numbers
• Nearest power of 2 is 24 =16
• 6 -> 0110
• Invert 1001
• +1-> 1
• -6 -> 1010

 11010 -> sign extension (Make -6 extend to 5
 bits)

Booth’s Algorithm Problem solving

• 3rd step -> multiply multiplicand and recoded multiplier using
long hand method.

 (+13) 0 1 1 0 1
X (-6) 0 -1 +1 -1 0

 0000000000
 111110011
 00001101
 1110011
 000000

(-78) 1110110010 -> how to verify this result

DIVISION

• UNIT II ARITHMETIC OPERATIONS
 Division

Reference
• Chapter 3 : Arithmetic for Computers
• Book - David A. Patterson and John L. Hennessey, “Computer

organization and design‟, Morgan kauffman / Elsevier, Fifth
edition, 2014.

10

Long Hand Divide
 1001 Quotient

Divisor 1000 1001010 Dividend
 –1000
 10
 101
 1010
 –1000
 10 Remainder

• Dividend = (Quotient * Divisor) + Remainder

Division algorithms
1. Restoring
– 1st version
– Improved version

2. Non-Restoring

Restoring Divide version 1 – Algorithm

Restoring Divide Version 1 - Problem
Divide 7ten by 2ten,
0000 0111two by 0010two

Restoring Divide version 1 - Hardware

1-sub

2

3

7

6

Data lines
Control lines

4 -add

5

Observations on Divide Version 1
• Half the bits in divisor always 0

– 1/2 of 64-bit adder is wasted
– 1/2 of divisor register is wasted

• Intuition: instead of shifting divisor to right, shift remainder to left…

• Step 1 cannot produce a 1 in quotient bit – as all bits corresponding to the
divisor in the remainder register are 0 (remember all operands are 32-bit)

• Intuition: switch order to shift first and then subtract – can save 1
iteration…

Restoring Divide – Improved Version
(saves space)

Lo - Quotient

7

2-sub

3

4

5- add

, 6
1

Data lines
Control lines

Hi Lo

Hi - Remainder

start

1. Shift the remainder left 1 bit

2. Left half of remainder = Left half of remainder - Divisor

Test
Remainder

3a. Shift the remainder left 1
bit, setting the rightmost bit

to 1

3a. Restore the original value by
adding the Divisor register to the
left half of the Remainder register
and place the sum in the left half
of the Remainder register. Also
shift the Remainder register to the
left, setting the new rightmost bit
to 0

Remainder >=0
Remainder < 0

32nd repitition ?

Done – shift left half of remainder right 1 bit

No; < 32 repititions

Yes; 32 repititions

Restoring Divide –
Improved Version

Algorithm

Observations on Divide Improved
Version

• Signed divide:
– make both divisor and dividend positive and perform division
– negate the quotient if divisor and dividend were of opposite signs
– make the sign of the remainder match that of the dividend
– this ensures always

• dividend = (quotient * divisor) + remainder
• –quotient (x/y) = quotient (–x/y) (e.g. 7 = 3*2 + 1 & –7 = –3*2

– 1)
• Faster divide:

– Based on Prediction and Moore’s Law.
– SRT division

MIPS instructions
• div (signed), divu (unsigned) –

– with two 32-bit register operands,

– put remainder in Hi register and quotient in Lo;

– overflow is ignored in both cases

• mflo – place the quotient from Lo to general purpose register

• mfhi - place the remainder from Hi to general purpose register

• Example; div $s2, $s1 #$s2/Ss1
• # Lo –quotient
• # Hi - Remainder
• mflo $s3 # $s3 = Lo = quotient
• mfhi $s4 # $s4 = Hi = remainder

MIPS instructions

Non-Restoring Division

Reference:
Chapter 6 : Arithmetic

6.6 Integer Division - Nonrestoring Division

Book – Carl Hamacher, “Computer organization‟,
Fifth edition, Mc Graw Hill.

Non-Restoring Divide - Algorithm
• Do the following n times:

1. If the sign of A is 0, shift A and Q left one bit
position and subtract M from A; otherwise, shift
A and Q left and add M to A.

2. Now, if the sign of A is 0, set q0 to 1; otherwise,
set q0 to 0.

Non restoring divide - problem

• Divide 8 by 3;
• Q - 8 – Dividend - 1000
• M - 3 – Divisor – 00011
• A – 00000 initially
• Where,
• A, Q, M are registers
• A and M are n+1 bits
• Q is n bits

Solution: M = 00011
Iteration Steps A Q

0 Intial 00000 1000

1 1. sign(A) = 0 => a) shift A and Q left. 00001 0000

 b) A = A – M 11110 0000

2. Sign(A) = 1 => Q0 = 0 11110 0000

2 1. sign(A) = 1 => a) shift A and Q left. 11100 0000

 b) A = A + M 11111 0000

2. Sign(A) = 1 => Q0 = 0 11111 0000

3 1. sign(A) = 1 => a) shift A and Q left. 11110 0000

 b) A = A + M 00001 0000

2. Sign(A) = 0 => Q0 = 1 00001 0001

4 1. sign(A) = 0 => a) shift A and Q left. 00010 0010

 b) A = A - M 11111 0010

2. Sign(A) = 1=> Q0 = 0 11111 0010

Quotient – Q – 0010
Remainder = A + M = 11111 + 00011 = 00010

Sub Word Parallelism

SubWord Parallelism
• A subword is a lower precision unit of data contained

within a word.
• In subword parallelism, multiple subwords are

packed into a word and then process whole words.
• Since the same instruction is applied to all subwords

within the word, This is a form of SIMD(Single
Instruction Multiple Data) processing.

• Sub word parallelism or data level parallelism or
vector

SubWord Parallelism
• A 32 bit processor simultaneously execute

operations on 4 eight bit operands or 2 sixteen bit
operands.

• Example: 5 + 5 = 10 and 9 + 9 = 18 parallel operation

5 9 5 9

A1 - 16 bits A2-16 bits B1-16 bits B2-16 bits

10 18
C1-16 bits C2-16 bits

Application of Sub-Word parallelism

• Used in multimedia operations
• which has many sub-word arithmetic operations

(8bit , 16bit and so on)
• ARMv7,ARMv8 – processors have NEON instructions

that support sub-word parallelism

• Example NEON instructions: (128 bit registers)
VADD.F32 - adds 4 32-bit data simultaneously
VMULL.S8 – multiplies 16 8-bit data simultaneously

Floating Point Operations

Floating Point
We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers (in absolute value),

e.g., 0.00000000023

– very large numbers (in absolute value) ,

e.g., –3.15576 * 1046

Floating point

• Eaxmple: –3.15576 * 1046

• Sign = negative – 0 bit
• Fraction = 15576
• Significand = 3.15576
• Exponent = 46

Floating Point - Representation
• Scientific Notation:

A notation that renders numbers with a single
digit to the left of the decimal point.

Convert to scientific notation 00.001two x 2-2

 => 0.0001two x 2-2+1 => 0.0001two x 2-1

• Move n bits to right – add n to exponent

Floating Point - Representation
• Normalized scientific representation:

A number in floating-point notation that has no
leading 0s.

Convert to normalized scientific notation
0.0001two x 2-1

 => 1.0two x 2-1-4 => 1.0two x 2-5

• Move n bits to left – subtract n from exponent

IEEE 754 Floating-point Standard
• IEEE 754 floating point standard:

– single precision: one word

Range of single precision:

Smallest number is -> 2.0ten x 10-38

Largest number is -> 2.0ten x 1038

Overflow – when positive exponent becomes too large to fit
in exponent field

Underflow - when negative exponent becomes too large to
fit in exponent field

31

sign

bits 30 to 23
8-bit exponent

bits 22 to 0

23-bit significand

IEEE 754 Floating-point Standard
– double precision: two words

Range of double precision:

Smallest is -> 2.0ten x 10-308

Largest is -> 2.0ten x 10308

31

sign

bits 30 to 20

11-bit exponent

bits 19 to 0

upper 20 bits of 52-bit significand

bits 31 to 0

lower 32 bits of 52-bit significand

General representation of IEEE 754
Floating-point Standard

 (–1)sign * (1 + fraction) * 2(exponent – bias)

– bias =127 for single precision and
– bias =1023 for double precision

– Biased exponent = exponent - bias

equals biased exponent value

IEEE 754 Floating-point Standard
• Sign bit is 0 for positive numbers, 1 for negative numbers

• Significand:
 Number is assumed normalized and leading 1 bit of significand

left of binary point (for non-zero numbers) is assumed and not
shown

– e.g., significand 1.1001… is represented as 1001…,

- value = (–1)sign * (1 + fraction) * 2exponent value

IEEE 754 Floating-point Standard
• Exponent is biased

– bias of 127 for single precision and 1023 for double
precision

– value = (–1)sign * (1 + significand) * 2(exponent – bias)

– Biased exponent = exponent - bias

equals biased exponent value

Example problem

• Represent –0.75ten in IEEE 754 single precision

Solution:
Step1 : Convert decimal floating to binary normalized
 scientific floating point
Step2 : Write the general representation of IEEE 754
Step3 : Find the sign, fraction, biased exponent
Stpe4 : Draw the IEEE 754 single precision format

Example problem
Step1 : Convert decimal floating to binary normalized
 scientific floating point

decimal: –0.75 = –3/4 = –3/22

binary: –11 x 2-2 = –.11 = –1.1 x 2-1

Step2 : Write the general representation of IEEE 754
(–1)sign * (1 + fraction) * 2(exponent – bias)

Step3 : Find the sign, fraction, biased exponent
Sign = 1
Fraction = 1two =
Significand = 1.1two

Biased exponent = -1ten

Biased exponent = exponent – bias
Exponent = biased exponent + bias

 = (-1) + 127 = 126ten = 01111110two

Example problem
Stpe4 : Draw the IEEE 754 single precision format

1bit-
sign

8 bits -
exponent

23 bits - fraction

1 01111110 10000000000000000000000

Floating Point
 Addition
Algorithm

Floating point addition problem
• Try adding the numbers 0.5ten and 0.4375ten

in binary using the algorithm
1st - Convert the decimal numbers to binary
 numbers.
• 0.5ten = ½ten = 01 two x 2-1 = 0.1 two = 1.0 two x 2-1

• 0.4375ten = 7/16ten = 7/24
ten

 = 111
two x 2-4 = 0.0111 two

 = 1.110 two x 2-2

Floating Point Addition Hardware

Floating Point
Multiplication

Algorithm

Floating Point Complexities
• In addition to overflow we can have underflow (number

too small)

2.0ten x 10-308 – smallest

2.0ten x 10308 – largest

• Accuracy is the problem with both overflow and
underflow because we have only a finite number of bits to
represent numbers that may actually require arbitrarily
many bits

– limited precision  rounding  rounding error

– IEEE 754 keeps two extra bits, guard and round

Usage of guard and round bits

• 2.56ten x 100 + 2.34ten x 102

• Assume only 3 significand bits
• 1st step : 2.56ten x 100 = 0.0256ten x 102

• 2nd step :
 0.0256ten x 102

 2.3400ten x 102

 2.3656ten x 102

• 3rd step : 2.37ten x 102

guard round

Without guard and round bits

• 2.56ten x 100 + 2.34ten x 102

• Assume only 3 significand bits
• 1st step : 2.56ten x 100 = 0.02ten x 102

• 2nd step :
 0.02ten x 102

 2.34ten x 102

 2.36ten x 102

• 3rd step : 2.36ten x 102

Rounding error

• units in the last place (ulp) - The number of bits in error in
the least significant bits of the significand between the actual
number and the number that can be represented.

With guard and round bits - 2.37ten x 102

Without guard and round bits - 2.36ten x 102

so here - it is off by 1 ulps

UNIT III PROCESSOR AND CONTROL UNIT
 Basic MIPS implementation – Building datapath –

Control Implementation scheme – Pipelining –
Pipelined datapath and control – Handling Data
hazards & Control hazards – Exceptions

Reference:
• Chapter 4 – The Processor
• Appendix B – The Basics of Logic Design

– B.7 Clock
– B.8 Memory Elements

• Book - David A. Patterson and John L. Hennessey, “Computer
organization and design‟, Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Basic MIPS implementation

Implementing MIPS
• We're ready to look at an implementation of the MIPS instruction set
• Simplified to contain only

– arithmetic-logic instructions: add, sub, and, or, slt
– memory-reference instructions: lw, sw
– control-flow instructions: beq, j

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd functshamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

Overview implementing MIPS: Fetch/Execute Cycle
• High-level abstract view of fetch/execute implementation

– use the program counter (PC) to read instruction address
– fetch the instruction from memory and increment PC
– use fields of the instruction to select registers to read
– execute depending on the instruction
– repeat…

Overview: Processor Implementation
Styles

• Single Cycle
– perform each instruction in 1 clock cycle
– clock cycle must be long enough for slowest instruction; therefore,
– disadvantage: only as fast as slowest instruction

• Multi-Cycle
– break fetch/execute cycle into multiple steps
– perform 1 step in each clock cycle
– advantage: each instruction uses only as many cycles as it needs

• Pipelined
– execute each instruction in multiple steps
– perform 1 step / instruction in each clock cycle
– process multiple instructions in parallel – assembly line

Basic Implementation of MIPS – with Data Path

Processor

• Two components of processor
– Datapath
– Control

Functional Elements
• Two types of functional elements:

– elements that operate on data - combinational
elements

– elements that contain data - state or sequential
elements

Building Data Path

Data path
• A unit used to operate on or hold data within

a processor.
• The datapath elements include

– instruction and data memories,
– the register file,
– the ALU,
– and adders.

Elements used to fetch instructions
and increment the PC

 3 elements are used to fetch instructions and increment PC:
• Instruction memory

– A state element where instruction is stored.
• PC – program counter

– A state element or register containing the address of the
next instruction to be executed.

• Adder
– an ALU wired to always add its two 32-bit inputs and place

the sum on its output.

Element used to store/fetch
instructions and increment the PC

Datapath: Instruction Store/Fetch
& PC Increment

Animating the Datapath

Instruction <- MEM[PC]
PC <- PC + 4

RD
Memory

ADDR

PC

Instruction

4

ADD

Implementing Datapath for each
instruction classes

• Arithmetic and logical instructions – R-type
• Load store instructions
• Control – conditional
• Control – unconditional instructions - J-Type

I-Type

Elements used in R-Type
instructions

 2 elements are used in R-Type instructions
• Register file

– A state element that consists of a set of registers that can
be read and written by supplying a register number to be
accessed.

• ALU
– A combinational element that performs arithmetic and

logical operations on the input data.

Elements used in R-Type
instructions

Datapath: R-Type Instruction

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3
4

Animating the R-Type Instruction
Datapath

add rd, rs, rt

R[rd] <- R[rs] + R[rt];

5 5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

op rs rt rd functshamt

Operation

ALU Zero

Instruction

34

Implementing Datapath for each
instruction classes

• Arithmetic and logical instructions – R-type
• Load store instructions
• Control – conditional
• Control – unconditional instructions - J-Type

I-Type

Elements used in Load/Store
instructions

 4 elements are used in Load/Store instructions
• Data memory

– The memory unit is a state element with inputs for the
address and the write data, and a single output for the
read result

• Sign Extend
– a 16-bit input that is sign-extended into a 32-bit result

appearing on the output
• Register file
• ALU

Elements used in
Load/Store instructions

Datapath:
Load/Store Instruction

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Two additional elements used
To implement load/stores Datapath

Animating the Load Instruction
Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

lw rt, offset(rs)

R[rt] <- MEM[R[rs] + s_extend(offset)];

Animating the Store Instruction
Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

sw rt, offset(rs)

MEM[R[rs] + sign_extend(offset)] <- R[rt]

Implementing Datapath for each
instruction classes

• Arithmetic and logical instructions – R-type
• Load store instructions
• Control – conditional
• Control – unconditional - J - Type

I-Type

Datapath: Branch Instruction

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

Datapath

No shift hardware required:
simply connect wires from
input to output, each shifted
left 2 bits

Animating the Branch Instruction
Datapath

beq rs, rt, offset

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

E
X
T
N
D

16 32

Zero

ADD

<<2

PC +4 from
instruction
datapath

if (R[rs] == R[rt]) then
 PC <- PC+4 + s_extend(offset<<2)

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Data is either
from ALU (R-type)
or memory (load)

Animating the Datapath:
R-type Instruction

add rd,rs,rt
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Load Instruction

lw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Store Instruction

sw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

MIPS Datapath - Adding instruction
fetch

(R-type & load/store & instruction fetch)

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

Branch taken & not taken
Branch taken
X = 1 ; Y = 2
If X==Y
then

equal
else

not equal

Assign PC:
PC = BTA

Branch not taken
X = 1 ; Y = 1
If X==Y
then

equal
else

not equal

Assign PC:
PC = PC+4

MIPS Datapath : Adding Branch capability
(R-type, Load/Store, Instruction fetch, Branch)

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Instruction address is either
PC+4 or branch target address

Extra adder needed as both
adders operate in each cycle

New multiplexor

Datapath Executing add

add rd, rs, rt

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing lw

lw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing sw

sw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing beq
(Branch Taken : PC = BTA)

beq r1,r2,offset

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Control Implementation Scheme

Processor

• Two components of processor
– Datapath
– Control

• Control:
– Sends control signals to all other units

Control
• Input to control unit

– the instruction opcode bits

• Control unit generates (Output)
– ALU control input
– write enable (possibly, read enable also) signals for each

storage element
– selector controls for each multiplexor

ALU Control

Main
Control

ALU
Control

2

ALUOp

6

Instruction
funct field

4

ALU
control
input

To
ALU

ALUOp generation
by main control

6

Opcode

Instruction ALUOp

Load/Store 00

Branch 01

R-Type 10

Output of ALU control

Setting ALU Control Bits
Instruction AluOp Instruction Funct Field Desired ALU control
opcode operation ALU action input
LW 00 load word xxxxxx add 010

SW 00 store word xxxxxx add 010

Branch eq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 set on less 101010 set on less 111

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

MIPS instruction formats
(Observe the bit positions)

Designing the Main Control

• Observations about MIPS instruction format
– opcode is always in bits 31-26
– two registers to be read are always rs (bits 25-21) and rt

(bits 20-16)
– base register for load/stores is always rs (bits 25-21)
– 16-bit offset for branch equal and load/store is always bits

15-0
– destination register for loads is in bits 20-16 (rt) while for R-

type instructions it is in bits 15-11 (rd) (will require
multiplexor to select)

31-26 25-21 20-16 15-11 10-6 5-0

31-26 25-21 20-16 15-0

opcode

opcode

rs

rs

rt

rt address

rd shamt functR-type

Load/store
or branch

Other Control signal values

• Asserted – value is 0
• Deasserted –value is 1

Data path with control lines

New
multiplexor

Control lines

What are the functions of each control signals??

Effects of seven control signals

0 1

Data path with control unit
PCSrc cannot be
set directly from the
opcode: zero test
outcome is required

PCsrc

Branch condition evaluation

instruction Condition true Condition false
beq Zero =1 Zero = 0
Bnq Zero = 1 Zero = 0

Zero Branch
instruction

Zero AND Branch

1 1 1
0 1 0
0 0 0
1 0 0

Datapath with Control II

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

MIPS datapath with the control unit: input to control is the 6-bit instruction
opcode field, output is seven 1-bit signals and the 2-bit ALUOp signal

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Determining control signals for the MIPS
datapath based on instruction opcode

Control unit – 7 - 1-bit signals
 1 - 2-bit signals

Datapath with Control II (contd)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

PCSrc cannot be
set directly from the
opcode: zero test
outcome is required

Control Signals:
R-Type Instruction

Control signals
shown in blue

1

0

0

0

1

???
Value depends on

funct

0

0

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
lw Instruction

0

Control signals
shown in blue

0
010

1

1

1

0

1

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
sw Instruction

0

Control signals
shown in blue

X
010

1

X

0

1

0

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
beq Instruction

Control signals
shown in blue

X
110

0

X

0

0

0

1 if Zero=1

Datapath with Control III

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

31-26 25-0

opcode addressJump

MIPS datapath extended to jumps: control unit generates new Jump control bit

New multiplexor with additional
control bit Jump

Composing jump
target address

Datapath Executing j

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD

MemRead

Data
Memory

ADDR
MemWrite

5

Instruction I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

0

1

0

1
1

0

10

ALU
Control

Control
Unit

6 6

op I[31:

op I[31:26] funct I[5:0]

ALUOp

2

Branch

M
U
X

0

1

Jump

<<2
26

CONCAT
28jmpaddr I[25:0]

PC+4[31-28]

32

R-type Instruction: Step 1
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Fetch instruction and increment PC count

R-type Instruction: Step 2
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Read two source registers from the register file

R-type Instruction: Step 3
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Data
memory

Read
dataAddress

Write
data

M
u
x

1

Instruction [15 11]

ALU

Shift
left 2

ALU operates on the two register operands

R-type Instruction: Step 4
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

ALU
control

Control

Shift
left 2

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
Address

Write result to register

Single-cycle Implementation Notes

• The steps are not really distinct as each instruction completes in
exactly one clock cycle – they simply indicate the sequence of
data flowing through the datapath

• The operation of the datapath during a cycle is purely
combinational – nothing is stored during a clock cycle

• Therefore, the machine is stable in a particular state at the start
of a cycle and reaches a new stable state only at the end of the
cycle

• Very important for understanding single-cycle computing:
 See our simple Verilog single-cycle computer in the folder

SimpleSingleCycleComputer in Verilog/Examples

Load Instruction Steps
lw $t1, offset($t2)

1. Fetch instruction and increment PC
2. Read base register from the register file: the base register

($t2) is given by bits 25-21 of the instruction
3. ALU computes sum of value read from the register file and

the sign-extended lower 16 bits (offset) of the instruction
4. The sum from the ALU is used as the address for the data

memory
5. The data from the memory unit is written into the register

file: the destination register ($t1) is given by bits 20-16 of the
instruction

Load Instruction
lw $t1, offset($t2)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

ALU
control

Control

Shift
left 2

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1
ALU

Address

Branch Instruction Steps
beq $t1, $t2, offset

1. Fetch instruction and increment PC
2. Read two register ($t1 and $t2) from the register file
3. ALU performs a subtract on the data values from the

register file; the value of PC+4 is added to the sign-
extended lower 16 bits (offset) of the instruction shifted
left by two to give the branch target address

4. The Zero result from the ALU is used to decide which
adder result (from step 1 or 3) to store in the PC

Branch Instruction
beq $t1, $t2, offset

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

Shift
left 2

0M
u
x

0

1

ALU
control

Control

Registers
Write
register

Write
data

Read
data 1

Read
register 1

Read
register 2

Sign
extend

1

ALU
result

Zero

Data
memory

Write
data

Read
dataM

u
x

Read
data 2

Add ALU
result

M
u
x

0

1

M
u
x

1

0

ALU
Address

Implementation: ALU Control Block

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

ALU control logic

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

* *Typo in text
 Fig. 5.15: if it is X
 then there is potential
 conflict between
 line 2 and lines 3-7!

Implementation: Main Control
Block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Signal R- lw sw beq
name format
Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0
RegDst 1 0 x x
ALUSrc 0 1 1 0
MemtoReg 0 1 x x
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOP2 0 0 0 1

In
p

u
ts

O
u

tp
u

ts

Truth table for main control signals

Main control PLA (programmable
logic array): principle underlying
PLAs is that any logical expression
can be written as a sum-of-products

Single-Cycle Design Problems

• Assuming fixed-period clock every instruction datapath uses one clock
cycle implies:
– CPI = 1

– cycle time determined by length of the longest instruction path (load)
• but several instructions could run in a shorter clock cycle: waste of time

• consider if we have more complicated instructions like floating point!

– resources used more than once in the same cycle need to be duplicated
• waste of hardware and chip area

Example: Fixed-period clock vs.
variable-period clock in a

single-cycle implementation
• Consider a machine with an additional floating point unit. Assume functional

unit delays as follows
– memory: 2 ns., ALU and adders: 2 ns., FPU add: 8 ns., FPU multiply: 16 ns., register

file access (read or write): 1 ns.
– multiplexors, control unit, PC accesses, sign extension, wires: no delay

• Assume instruction mix as follows
– all loads take same time and comprise 31%
– all stores take same time and comprise 21%
– R-format instructions comprise 27%
– branches comprise 5%
– jumps comprise 2%
– FP adds and subtracts take the same time and totally comprise 7%
– FP multiplys and divides take the same time and totally comprise 7%

• Compare the performance of (a) a single-cycle implementation using a fixed-
period clock with (b) one using a variable-period clock where each instruction
executes in one clock cycle that is only as long as it needs to be (not really
practical but pretend it’s possible!)

Solution

• Clock period for fixed-period clock = longest instruction time = 20 ns.
• Average clock period for variable-period clock = 8  31% +
 7  21% + 6  27% + 5  5% + 2  2% + 20  7% + 12  7%
 = 7.0 ns.
• Therefore, performancevar-period /performancefixed-period = 20/7 = 2.9

Instruction Instr. Register ALU Data Register FPU FPU Total
 class mem. read oper. mem. write add/ mul/ time
 sub div ns.
Load word 2 1 2 2 1 8
Store word 2 1 2 2 7
R-format 2 1 2 0 1 6
Branch 2 1 2 5
Jump 2 2
FP mul/div 2 1 1 16 20
FP add/sub 2 1 1 8 12

Fixing the problem with single-
cycle designs

• One solution: a variable-period clock with different cycle times for

each instruction class
– unfeasible, as implementing a variable-speed clock is technically

difficult

• Another solution:
– use a smaller cycle time…
– …have different instructions take different numbers of cycles
 by breaking instructions into steps and fitting each step into one cycle
– feasible: multicyle approach!

Summary

• Basic implementation of MIPS
• ALU control

Summary
• Techniques described in this chapter to design datapaths and control are

at the core of all modern computer architecture
• Multicycle datapaths offer two great advantages over single-cycle

– functional units can be reused within a single instruction if they are accessed
in different cycles – reducing the need to replicate expensive logic

– instructions with shorter execution paths can complete quicker by consuming
fewer cycles

• Modern computers, in fact, take the multicycle paradigm to a higher level
to achieve greater instruction throughput:
– pipelining (next topic) where multiple instructions execute simultaneously by

having cycles of different instructions overlap in the datapath
– the MIPS architecture was designed to be pipelined

UNIT III PROCESSOR AND CONTROL UNIT
 Pipelining – Pipelined datapath and control –

Handling Data hazards & Control hazards –
Exceptions.

Reference:
• Chapter 4 – The Processor
• Book - David A. Patterson and John L. Hennessey, “Computer

organization and design‟, Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Overview Of Pipeline

Pipelining
• Start work ASAP!! Do not waste time!

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Assume 30 min. each task – wash, dry, fold, store – and that
separate tasks use separate hardware and so can be overlapped

Pipelined

Not pipelined

Pipelined vs. Single-Cycle Instruction
Execution: the Plan

Instruction
fetch

Reg ALU Data
access

Reg

8 ns
Instruction

fetch
Reg ALU Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Single-cycle

Pipelined

Assume 2 ns for memory access, ALU operation; 1 ns for register access:
therefore, single cycle clock 8 ns; pipelined clock cycle 2 ns.

Computer Architecture
Pipeline

Pipelining: Keep in Mind

• Pipelining does not reduce latency of a single task, it increases
throughput of entire workload

• Pipeline rate limited by longest stage
– potential speedup = number pipe stages
– unbalanced lengths of pipe stages reduces speedup

• Time to fill pipeline and time to drain it – when there is slack
in the pipeline – reduces speedup

Example Problem
• Problem: for the laundry fill in the following table when

1. the stage lengths are 30, 30, 30 30 min., resp.

2. the stage lengths are 20, 20, 60, 20 min., resp.

• Come up with a formula for pipeline speed-up!

Person Unpipelined Pipeline 1 Ratio unpipelined Pipeline 2 Ratio unpiplelined
 finish time finish time to pipeline 1 finish time to pipeline 2
 1
 2
 3
 4

 n

Pipelining MIPS

• What makes it easy with MIPS?
– all instructions are same length

• so fetch and decode stages are similar for all instructions

– just a few instruction formats
• simplifies instruction decode and makes it possible in one stage

– memory operands appear only in load/stores
• so memory access can be deferred to exactly one later stage

– operands are aligned in memory
• one data transfer instruction requires one memory access stage

Pipelining MIPS

• What makes it hard?
– structural hazards: different instructions, at different stages, in the

pipeline want to use the same hardware resource
– control hazards: succeeding instruction, to put into pipeline,

depends on the outcome of a previous branch instruction, already
in pipeline

– data hazards: an instruction in the pipeline requires data to be
computed by a previous instruction still in the pipeline

• Before actually building the pipelined datapath and control we
first briefly examine these potential hazards individually…

Pipeline Hazards

• Structural hazard: inadequate hardware to simultaneously support all
instructions in the pipeline in the same clock cycle

• E.g., suppose single – not separate – instruction and data memory in
pipeline below with one read port
– then a structural hazard between first and fourth lw instructions

• MIPS was designed to be pipelined: structural hazards are easy to
avoid!

2 4 6 8 10 12 14

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Pipelined

Instruction
fetch

Reg ALU
Data

access
Reg

2 nslw $4, 400($0)

Hazard if single memory

Structural Hazards

Data Hazards

• Data hazard: instruction needs data from the result of a previous
instruction still executing in pipeline

• Solution Forward data if possible…

Time
2 4 6 8 10

add $s0, $t0, $t1 IF ID WBEX MEM

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

Instruction pipeline diagram:
shade indicates use –
left=write, right=read

Without forwarding – blue line –
data has to go back in time;
with forwarding – red line –
data is available in time

Data Hazards

• Forwarding may not be enough
– e.g., if an R-type instruction following a load uses the result of the load –

called load-use data hazard
Time

2 4 6 8 10 12 14

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBMEMEX

IF ID WBMEMEX

Time
2 4 6 8 10 12 14

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBMEMEX

IF ID WBMEMEX

bubble bubble bubble bubble bubble

With a one-stage stall, forwarding
can get the data to the sub
instruction in time

Without a stall it is impossible
to provide input to the sub
instruction in time

Reordering Code to Avoid Pipeline Stall
(Software Solution)

• Example:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

• Reordered code:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t0, 4($t1)

sw $t2, 0($t1)

Data hazard

Interchanged

Control Hazards
• Control hazard: need to make a decision based on the result of a previous

instruction still executing in pipeline
• Solution 1 Stall the pipeline

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

4 ns

Instruction
fetch

Reg ALU
Data

access
Reg

2ns

Instruction
fetch

Reg ALU
Data

access
Reg

2ns

2 4 6 8 10 12 14 16
Program
execution
order
(in instructions)

Pipeline stall

bubble

Note that branch outcome is
computed in ID stage with
added hardware (later…)

Control Hazards
• Solution 2 Predict branch outcome

– e.g., predict branch-not-taken :

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch

Reg ALU
Data

access
Reg

2 4 6 8 10 12 14

2 4 6 8 10 12 14

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)

Prediction success

Prediction failure: undo (=flush) lw

Control Hazards
• Solution 3 Delayed branch: always execute the sequentially next

statement with the branch executing after one instruction delay –
compiler’s job to find a statement that can be put in the slot that is
independent of branch outcome
– MIPS does this – but it is an option in SPIM (Simulator -> Settings)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

2 4 6 8 10 12 14

2 ns

(d elayed branch slot)

Program
execution
order
(in instructions)

Delayed branch beq is followed by add that is
independent of branch outcome

Dynamic Branch Prediction

• Prediction of branches at runtime using
runtime information.

• Ex: Restaurant
• Two schemes:

– 1-bit scheme
– 2-bit scheme

1-bit scheme

• branch prediction buffer - Also called branch history table.
• A small memory that is indexed by the lower portion of the

address of the branch instruction and that contains one or
more bits indicating whether the branch was recently taken
or not.

• The memory contains a bit that says whether the branch was
recently taken or not

Branch History Table
Bit indicating
branch taken(1)
or not taken(0)

0
1
0
1

1000
1012

2046
2116

1000 Beq $s2,$s1, exit

1012 Beq $s2,$s1, for

2046 Beq $s2,$s1, else

Assume 0 – bit indicating branch not taken
 1 – bit indicating branch taken

Disadvantage of 1-bit scheme

• What if the branch is taken and not taken the
alternatively?
– Then the prediction table will be wrong always.
– (ie) prediction will be always a failure

Disadvantage example
1000 i=1;
1004 while(i<=9){ 1004
1008 i++;
 }
Initially – bit is set to 1
1st iteration – misprediction(since branch is not taken)
Next 8 iteration – prediction is success
10th - exit iteration – misprediction (since branch is taken)
Disadvantage:

2 Mispredictions out of 10. so 80% accuracy is achieved

Bit indicating branch
taken(1)or not taken(0)

1

2-bit scheme
• A prediction must be wrong twice before the

prediction is changed.
• A branch prediction buffer has 2 bits to store

the history.
Bits indicating branch taken
or not taken

Meaning

00 Strongly Branch not taken

01 Weakly branch not taken

10 Weakly branch taken

11 Strongly branch taken

Finite state diagram

11 10

00 01

Exception

Exception
• Exception – (interrupt) An unscheduled event

that disrupts program execution; used to
detect overflow.

• Interrupt - An exception that comes from
outside of the processor. (Some architectures
use the term interrupt for all exceptions.)

• vectored interrupt – An interrupt for which
the address to which control is transferred is
determined by the cause of the exception.

Difference between exception and interrupt

Exception Interrupt
Unscheduled event Unscheduled event
Invoked Internal (within
processor)

Invoked External (outside
processor)

Ex: Arithmetic overflow Ex: IO device request

Exception

Pipelined datapath and control

Pipelined Datapath
• We now move to actually building a pipelined datapath
• First recall the 5 steps in instruction execution

1. Instruction Fetch & PC Increment (IF)
2. Instruction Decode and Register Read (ID)
3. Execution or calculate address (EX)
4. Memory access (MEM)
5. Write result into register (WB)

• Review: single-cycle processor
– all 5 steps done in a single clock cycle
– dedicated hardware required for each step

• What happens if we break the execution into multiple cycles, but
keep the extra hardware?

Review - Single-Cycle Datapath
“Steps”

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

IF
Instruction Fetch

ID
Instruction Decode

EX
Execute/ Address Calc.

MEM
Memory Access

WB
Write Back

Zero

Pipelined Datapath – Key Idea
• What happens if we break the execution into multiple cycles, but keep the

extra hardware?
– Answer: We may be able to start executing a new instruction at each clock

cycle - pipelining

• …but we shall need extra registers to hold data between cycles – pipeline
registers

Pipelined Datapath

IF/ID

Pipeline registers

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

ID/EX EX/MEM MEM/WB

Zero

64 bits

97 bits 64 bits

128 bits

wide enough to hold data coming in

Pipelined Datapath

IF/ID

Pipeline registers

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

ID/EX EX/MEM MEM/WB

Zero

64 bits

97 bits 64 bits

128 bits

wide enough to hold data coming in

Only data flowing right to left may cause hazard…, why?

Bug in the Datapath

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

Write register number comes from another later instruction!

IF/ID ID/EX EX/MEM MEM/WB

Corrected Datapath

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

EX/MEM MEM/WB

Zero

ID/EXIF/ID

64 bits 133 bits
102 bits 69 bits

Destination register number is also passed through ID/EX, EX/MEM
and MEM/WB registers, which are now wider by 5 bits

Pipelined Example
• Consider the following instruction sequence:

 lw $t0, 10($t1)
 sw $t3, 20($t4)

 add $t5, $t6, $t7

 sub $t8, $t9, $t10

Single-Clock-Cycle Diagram:
Clock Cycle 1

LW

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 2
LWSW

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 3

LWSWADD

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 4

LWSWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 5

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

LWSWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 6

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

SWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 7

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

ADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 8

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

SUB

Alternative View –
Multiple-Clock-Cycle Diagram

IM REG ALU DM REGlw $t0, 10($t1)

sw $t3, 20($t4)

add $t5, $t6, $t7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $t8, $t9, $t10 IM REG ALU DM REG

CC 8

Time axis

Notes
• One significant difference in the execution of an R-type instruction

between multicycle and pipelined implementations:
– register write-back for the R-type instruction is the 5th (the last write-

back) pipeline stage vs. the 4th stage for the multicycle
implementation. Why?

– think of structural hazards when writing to the register file…
• Worth repeating: the essential difference between the pipeline and

multicycle implementations is the insertion of pipeline registers to
decouple the 5 stages

• The CPI of an ideal pipeline (no stalls) is 1. Why?
• The RaVi Architecture Visualization Project of Dortmund U. has

pipeline simulations – see link in our Additional Resources page
• As we develop control for the pipeline keep in mind that the text

does not consider jump – should not be too hard to implement!

Recall Single-Cycle Control – the
Datapath

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

Recall Single-Cycle – ALU Control
Instruction AluOp Instruction Funct Field Desired ALU control
opcode operation ALU action input
LW 00 load word xxxxxx add 010

SW 00 store word xxxxxx add 010

Branch eq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 set on less 101010 set on less 111

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Recall Single-Cycle – Control Signals

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Effect of control bits

Deter-
mining
control
bits

Pipeline Control
• Initial design – motivated by single-cycle datapath control – use the

same control signals
• Observe:

– No separate write signal for the PC as it is written every cycle
– No separate write signals for the pipeline registers as they are written

every cycle
– No separate read signal for instruction memory as it is read every clock

cycle
– No separate read signal for register file as it is read every clock cycle

• Need to set control signals during each pipeline stage
• Since control signals are associated with components active during a

single pipeline stage, can group control lines into five groups according
to pipeline stage

Will be
modified
by hazard
detection
unit!!

Pipelined Datapath with Control I

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

Write

data

Read

data M
u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift
left 2

ALU
result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

Same control
signals as the
single-cycle
datapath

Pipeline Control Signals
• There are five stages in the pipeline

– instruction fetch / PC increment
– instruction decode / register fetch
– execution / address calculation
– memory access
– write back

Execution/Address Calculation

stage control lines
Memory access stage

control lines

Write-back
stage control

lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Nothing to control as instruction memory
read and PC write are always enabled

Pipeline Control Implementation
• Pass control signals along just like the data – extend each pipeline

register to hold needed control bits for succeeding stages

• Note: The 6-bit funct field of the instruction required in the EX stage to
generate ALU control can be retrieved as the 6 least significant bits of
the immediate field which is sign-extended and passed from the IF/ID
register to the ID/EX register

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Datapath with Control II

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Pipelined Execution
and Control

Instruction sequence: Instruction
memory

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15– 0]

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

ALU
control

Shift
left 2

R
e
gW

rit
e

MemRead

Control

ALU

Instruction
[15–11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: before<1> EX: before<2> MEM: before<3> WB: before<4>

MEM/WB

IF: lw $10, 20($1)

000

00

0000

000

00

00
0

0

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0

Data
memory

Address

Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

M
u
x

0

1

Add Add
result

Write
register

Write
data

M
u
x
1

ALU
result

Zero

ALU
control

Shift
left 2

R
e
gW

rit
e

ALU

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: lw $10, 20($1) EX: before<1> MEM: before<2> WB: before<3>

MEM/WB

IF: sub $11, $2, $3

010

11

0001

000

00

00
0

0

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

lw
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

X

10

20

X

1

Instruction
[20–16]

Instruction
[15– 0] Sign

extend

Instruction
[15–11]

20

$X

$1

10

X

M
e
m

W
ri
te

MemRead

M
e
m

W
rit

e

Data
memory

Address

Address

Address

Clock 2

Clock 1

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Label “before<i>” means
i th instruction before
lw

Clock cycle 1

Clock cycle 2

Pipelined Execution
and Control

Instruction sequence:
Instruction

memory

Address

Instruction
[20– 16]

M
em

to
R

eg

Branch

ALUSrc

4

Instruction
[15– 0]

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALU
result

Shift
left 2

R
e
gW

rit
e

MemRead

Control

ALU

Instruction
[15– 11]

EX

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: sub $11, $2, $3 EX: lw $10, . . . MEM: before<1> WB: before<2>

MEM/WB

IF: and $12, $4, $5

000

10

1100

010

11

00
0

1

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

Write
register

Write
data 1

ALU
result

ALU
control

Shift
left 2

R
e
gW

rit
e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: and $12, $2, $3 EX: sub $11, . . . MEM: lw $10, . . . WB: before<1>

MEM/WB

IF: or $13, $6, $7

000

10

1100

000

10

10
1

0

11

1
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

and
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

12

X

X

5

4

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
[15– 11]

X

$5

$4

X

12

M
e
m

W
ri
te

MemRead

M
e
m

W
rit

e

sub

11

X

X

3

2

X

$3

$2

X

11

$1

20

10

M
u
x

0

M
u
x
1

ALUOp

RegDst

ALU
control

M

WB

$3

$2

11

M
u
x

M
u
x

ALU
Address Read

data
Data

memory

10

WB

Zero

Zero

Sign
extend

Sign
extend

Data
memory

Address

Clock 3

Clock 4

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 3

Clock cycle 4

Pipelined Execution
and Control

Instruction sequence: Instruction
memory

Address

Instruction
[20–16]

Branch

ALUSrc

4

Instruction
[15–0]

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALU
result

Shift
left 2

R
e
gW

rit
e

MemRead

Control

ALU

Instruction
[15–11]

EX

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: or $13, $6, $7 EX: and $12, . . . MEM: sub $11, . . . WB: lw $10, . . .

MEM/WB

IF: add $14, $8, $9

000

10

1100

000

10

10
1

0

10

0
0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

ALU
control

Shift
left 2

R
e
gW

rit
e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: add $14, $8, $9 EX: or $13, . . . MEM: and $12, . . . WB: sub $11, . . .

MEM/WB

IF: after<1>

000

10

1100

000

10

10
1

0

10

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

add
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

14

X

X

9

8

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

X

$9

$8

X

14

M
e
m

W
ri
te

MemRead

M
e
m

W
rit

e

or

13

X

X

7

6

X

$7

$6

X

13

$4

M
u
x

0

M
u
x
1

ALUOp

RegDst

ALU
control

M

WB

$7

$6

13

M
u
x

M
u
x

ALU
Read
data

12

WB

11 10

10
$5

12

WB

M
em

to
R

eg

1

1

11

11

Write
register

Write
data

Zero

Zero

Data
memory

Address

Data
memory

Address

Sign
extend

Sign
extend

Clock 5

Clock 6

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 5

Clock cycle 6

Label “after<i>” means
i th instruction after add

Pipelined Execution
 and Control

Instruction sequence: Instruction
memory

Address

Instruction
[20–16]

Branch

ALUSrc

4

Instruction
[15–0]

0

1

Add Add
result

Registers
Write
register

Write
data

ALU
result

Shift
left 2

R
e
gW

rit
e

MemRead

Control

ALU

Instruction
[15–11]

Sign
extend

EX

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<1> EX: add $14, . . . MEM: or $13, . . . WB: and $12, . . .

MEM/WB

IF: after<2>

000

00

0000

000

10

10
1

0

10

0
0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

Zero

ALU
control

Shift
left 2

R
e
gW

rit
e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<2> EX: after<1> MEM: add $14, . . . WB: or $13, . . .

MEM/WB

IF: after<3>

000

00

0000

000

00

00
0

0

10

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[20–16]

Instruction
[15–0] Sign

extend

Instruction
[15–11]

M
e
m

W
ri

te

MemRead

M
e
m

W
rit

e

$8

M
u
x

0

M
u
x
1

ALUOp

RegDst

ALU
control

M

WB

M
u
x

M
u
x

ALU
Read
data

14

WB

13 12

12
$9

14

WB

M
em

to
R

eg

1

0

13

13

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2 Zero

Data
memory

Address

Data
memory

Address

Clock 7

Clock 8

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 8

Clock cycle 7

Pipelined Execution and Control

• Instruction
 sequence:

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

Zero

ALU
control

Shift
left 2

R
eg

W
rit

e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<3> EX: after<2> MEM: after<1> WB: add $14, . . .

MEM/WB

IF: after<4>

000

00

0000

000

00

00
0

0

00

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[20–16]

Instruction
[15–0] Sign

extend

Instruction
[15–11]

MemRead

M
em

W
ri

te

M
u
x

M
u
x

ALU
Read
data

WB

14

14

Write
register

Write
data

Data
memory

Address

Clock 9

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 9

Data Hazards

Revisiting Hazards

• So far our datapath and control have ignored hazards
• We shall revisit data hazards and control hazards and

enhance our datapath and control to handle them in
hardware…

Data Hazards and Forwarding
• Problem with starting an instruction before previous are finished:

– data dependencies that go backward in time – called data hazards

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

$2 = 10 before sub;
$2 = -20 after sub

Software Solution
• Have compiler guarantee never any data hazards!

– by rearranging instructions to insert independent instructions between
instructions that would otherwise have a data hazard between them,

– or, if such rearrangement is not possible, insert nops

• Such compiler solutions may not always be possible, and nops slow the
machine down

 sub $2, $1, $3

 lw $10, 40($3)
 slt $5, $6, $7

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 sub $2, $1, $3

 nop
 nop

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

or

MIPS: nop = “no operation” = 00…0 (32bits) = sll $0, $0, 0

Hardware Solution: Forwarding
• Idea: use intermediate data, do not wait for result to be finally written

to the destination register. Two steps:
1. Detect data hazard
2. Forward intermediate data to resolve hazard

Pipelined Datapath with Control II
(as before)

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Hazard Detection
• Hazard conditions:
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

– Eg., in the earlier example, first hazard between sub $2, $1, $3 and
 and $12, $2, $5 is detected when the and is in EX stage and the
 sub is in MEM stage because

• EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a)

• Whether to forward also depends on:
– if the later instruction is going to write a register – if not, no need to forward,

even if there is register number match as in conditions above
– if the destination register of the later instruction is $0 – in which case
 there is no need to forward value ($0 is always 0 and never overwritten)

Data Forwarding
• Plan:

– allow inputs to the ALU not just from ID/EX, but also later pipeline
registers, and

– use multiplexors and control signals to choose appropriate inputs to
ALU

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Dependencies between pipelines move forward in time

Forwarding
Hardware

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data
memory

M
u
x

Forwarding
unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt
Rt
Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data
memory

EX/MEM

a. No forwarding

Registers

M
u
x

Datapath before adding forwarding hardware

Datapath after adding forwarding hardware

Forwarding Hardware: Multiplexor
Control

Mux control Source Explanation
ForwardA = 00 ID/EX The first ALU operand comes from the register file
ForwardA = 10 EX/MEM The first ALU operand is forwarded from prior ALU result
ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory
 or an earlier ALU result
ForwardB = 00 ID/EX The second ALU operand comes from the register file
ForwardB = 10 EX/MEM The second ALU operand is forwarded from prior ALU result
ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory
 or an earlier ALU result

Depending on the selection in the rightmost multiplexor
(see datapath with control diagram)

Data Hazard: Detection and
Forwarding

• Forwarding unit determines multiplexor control according to the
following rules:

1. EX hazard
 if (EX/MEM.RegWrite // if there is a write…
 and (EX/MEM.RegisterRd  0) // to a non-$0 register…
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) // which matches, then…
 ForwardA = 10

 if (EX/MEM.RegWrite // if there is a write…
 and (EX/MEM.RegisterRd  0) // to a non-$0 register…
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) // which matches, then…
 ForwardB = 10

Data Hazard: Detection and
Forwarding

2. MEM hazard
 if (MEM/WB.RegWrite // if there is a write…
 and (MEM/WB.RegisterRd  0) // to a non-$0 register…
 and (EX/MEM.RegisterRd  ID/EX.RegisterRs) // and not already a register match
 // with earlier pipeline register…
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) // but match with later pipeline register, then…

 ForwardA = 01

 if (MEM/WB.RegWrite // if there is a write…
 and (MEM/WB.RegisterRd  0) // to a non-$0 register…
 and (EX/MEM.RegisterRd  ID/EX.RegisterRt) // and not already a register match
 // with earlier pipeline register…
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) // but match with later pipeline register, then…

 ForwardB = 01

This check is necessary, e.g., for sequences such as add $1, $1, $2; add $1, $1, $3; add $1, $1, $4;
(array summing?), where an earlier pipeline (EX/MEM) register has more recent data

Forwarding Hardware with Control

PC
Instruction

memory

Registers

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Forwarding
unit

IF/ID

In
st

ru
ct

io
n

M
u
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Datapath with forwarding hardware and control wires – certain details,
e.g., branching hardware, are omitted to simplify the drawing
Note: so far we have only handled forwarding to R-type instructions…!

Called forwarding unit, not hazard detection unit,
because once data is forwarded there is no hazard!

Forwarding
Execution example: PC

Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 sub $2, $1, $3

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

10 10

$2

$5

5

2

4

$1

$3

3

1

2

Control

ALU

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

or $4, $4, $2 and $4, $2, $5

ID/EX

sub $2, . . .

EX/MEM

before<1>

MEM/WB

add $9, $4, $2

Clock 4

4

6

10 10

$4

$2

6

2

4

$2

$5

5

2

4

Control

ALU

10

2

WB

M

WB

sub $2, $1, $3
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 3

Clock cycle 4

Forwarding

Execution example
 (cont.):

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2 or $4, $4, $2

ID/EX

and $4, . . .

EX/MEM

sub $2, . . .

MEM/WB

after<1>

Clock 5

4

2

10 10

$4

$2

2

4

9

$4

$2

4

2

2
4

Control

ALU

10

WB

2

1

PC
Instruction

memory

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

after<1>after<2> add $9, $4, $2 or $4, . . .

EX/MEM

and $4, . . .

MEM/WB

Clock 6

10

$4

$2

2

4

9

ALU

10

4

4

WB

4

1

Registers

In
st

ru
ct

io
n

IF/ID

ID/EX

4

Control

sub $2, $1, $3
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 5

Clock cycle 6

Data Hazards and Stalls
• Load word can still cause a hazard:

– an instruction tries to read a register following a load instruction that writes
to the same register

– therefore, we need a hazard detection unit to stall the pipeline after the
load instruction

–

d

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

lw $2, 20($1)
and $4, $2, $5
or $8, $2, $6
add $9, $4, $2
Slt $1, $6, $7

As even a pipeline
dependency goes
backward in time
forwarding will not
solve the hazard

Pipelined Datapath with Control II
(as before)

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Hazard Detection Logic to Stall
• Hazard detection unit implements the following check if to stall

if (ID/EX.MemRead // if the instruction in the EX stage is a load…
 and ((ID/EX.RegisterRt = IF/ID.RegisterRs) // and the destination register
 or (ID/EX.RegisterRt = IF/ID.RegisterRt))) // matches either source register of the
 //instruction in the ID stage, then… stall the pipeline

Mechanics of Stalling
• If the check to stall verifies, then the pipeline needs to stall only 1

clock cycle after the load as after that the forwarding unit can
resolve the dependency

• What the hardware does to stall the pipeline 1 cycle:
– does not let the IF/ID register change (disable write!) – this will cause

the instruction in the ID stage to repeat, i.e., stall
– therefore, the instruction, just behind, in the IF stage must be stalled

as well – so hardware does not let the PC change (disable write!) – this
will cause the instruction in the IF stage to repeat, i.e., stall

– changes all the EX, MEM and WB control fields in the ID/EX pipeline
register to 0, so effectively the instruction just behind the load
becomes a nop – a bubble is said to have been inserted into the
pipeline

• note that we cannot turn that instruction into an nop by 0ing all the bits
in the instruction itself – recall nop = 00…0 (32 bits) – because it has
already been decoded and control signals generated

Hazard Detection Unit

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

0

M
u
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/I

D
W

ri
te

P
C

W
ri
te

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

Datapath with forwarding hardware, the hazard detection unit and
controls wires – certain details, e.g., branching hardware are omitted
to simplify the drawing

Stalling Resolves a Hazard
• Same instruction sequence as before for which forwarding by

itself could not resolve the hazard:

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

lw $2, 20($1)
and $4, $2, $5
or $8, $2, $6
add $9, $4, $2
Slt $1, $6, $7

Hazard detection unit inserts a 1-cycle bubble in the pipeline, after
which all pipeline register dependencies go forward so then the
forwarding unit can handle them and there are no more hazards

Stalling

• Execution example:

Hazard
detection

unit

0

M
u
xIF

/ID
W

ri
te

P
C

W
ri

te

ID/EX.RegisterRt

lw $2, 20($1)

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

2

5
00 11

$2

$5

5

2

4

$1

$X

X

1

2

Control

ALU

M

WB

Hazard
detection

unit

0

M
u
xIF

/I
D

W
ri

te

P
C

W
ri

te

ID/EX.RegisterRt

ID/EX.MemRead

ID/EX.MemRead

M

WB

$1

$X

X

1

2

before<3>

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

ID/EX

EX/MEM

MEM/WB

and $4, $2, $5 lw $2, 20($1) before<1> before<2>

Clock 2

1

1

X

X
11

Control

ALU

M

WB

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 2

Clock cycle 3

Stalling

• Execution example
 (cont.):

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

$2

$5

5

2

2

2

4

WB

Hazard
detection

unit

0

M
u
xIF

/ID
W

ri
te

P
C

W
rit

e

ID/EX.RegisterRt

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 bubble

ID/EX

lw $2, . . .

EX/MEM

before<1>

MEM/WB

Clock 4

2

2

5

5
10

11

00

$2

$5

5

2

4

Control

ALU

M

WB

bubble lw $2, . . .

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

EX/MEM

MEM/WB

add $9, $4, $2

Clock 5

2

2
10 10

11

$4

$2

2

4

4

4

2

4

$2

$5

5

2

4

Control

ALU

0

WB

ID/EX.MemRead

ID/EX.MemRead

or $4, $4, $2

or $4, $4, $2

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 4

Clock cycle 5

Stalling

• Execution example
 (contd).

Registers

In
st

ru
ct

io
n

ID/EX

4

Control

PC
Instruction

memory

PC
Instruction

memory

Hazard
detection

unit

0

M
u
xIF

/I
D

W
rit

e

P
C

W
ri

te

IF
/I

D
W

ri
te

P
C

W
ri

te

ID/EX.RegisterRt

bubble

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2

ID/EX

and $4, . . .

EX/MEM

MEM/WB

Clock 6

4

4

2

2
10 10

$4

$2

2

4

49

$2

2

Control

ALU

10

WB
0

add $9, $4, $2 or $4, . . . and $4, . . .after<2> after<1>

after<1>

Clock 7

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

$4

$4

$2

2

4

4

9

ALU

10

WB

44

4

1

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

or $4, $4, $2

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 6

Clock cycle 7

Control Hazards

Control (or Branch) Hazards
• Problem with branches in the pipeline we have so far is that the

branch decision is not made till the MEM stage – so what instructions,
if at all, should we insert into the pipeline following the branch
instructions?

• Possible solution: stall the pipeline till branch decision is known
– not efficient, slow the pipeline significantly!

• Another solution: predict the branch outcome
– e.g., always predict branch-not-taken – continue with next

sequential instructions
– if the prediction is wrong have to flush the pipeline behind the

branch – discard instructions already fetched or decoded – and
continue execution at the branch target

Predicting Branch-not-taken:
Misprediction delay

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program
execution
order
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

The outcome of branch taken (prediction wrong) is decided only when
beq is in the MEM stage, so the following three sequential instructions
already in the pipeline have to be flushed and execution resumes at lw

Optimizing the Pipeline to Reduce
Branch Delay

• Move the branch decision from the MEM stage (as in our current
pipeline) earlier to the ID stage
– calculating the branch target address involves moving the branch

adder from the MEM stage to the ID stage – inputs to this adder, the
PC value and the immediate fields are already available in the IF/ID
pipeline register

– calculating the branch decision is efficiently done, e.g., for equality
test, by XORing respective bits and then ORing all the results and
inverting, rather than using the ALU to subtract and then test for zero
(when there is a carry delay)

• with the more efficient equality test we can put it in the ID stage without
significantly lengthening this stage – remember an objective of pipeline
design is to keep pipeline stages balanced

– we must correspondingly make additions to the forwarding and hazard
detection units to forward to or stall the branch at the ID stage in case
the branch decision depends on an earlier result

Flushing on Misprediction
• Same strategy as for stalling on load-use data hazard…
• Zero out all the control values (or the instruction itself) in pipeline

registers for the instructions following the branch that are already
in the pipeline – effectively turning them into nops – so they are
flushed
– in the optimized pipeline, with branch decision made in the ID stage,

we have to flush only one instruction in the IF stage – the branch delay
penalty is then only one clock cycle

Optimized Datapath for Branch

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

Branch decision is moved from the MEM stage to the ID stage – simplified drawing
not showing enhancements to the forwarding and hazard detection units

IF.Flush control zeros out the instruction in the IF/ID
pipeline register (which follows the branch)

Pipelined
Branch

• Execution example:
PC

Instruction
memory

4

Registers

Sign
extend

M
u
x

M
u
x

Control

EX

M

WB

M

WB

WB

M
u
x

Hazard
detection

unit

Forwarding
unit

M
u
x

IF.Flush

IF/ID

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8

MEM/WB

EX/MEM

ID/EX

Clock 3

72 44

48 44

28

7

$1

$3

10

48

72

72

0

M
u
x

0

$4

$8

ALU
Data

memory

bubble (nop)lw $4, 50($7)

Clock 4

M
u
x

Shift
left 2

before<1>

beq $1, $3, 7 sub $10, . . . before<1>

before<2>

=

PC Instruction
memory

4

Registers

Sign
extend

M
u
x

M
u
x

Control

EX

M

WB

M

WB

WB

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

MEM/WB

EX/MEM

ID/EX

76 72

76 72

$1

$3

10

76

ALU
Data

memory

M
u
x

Shift
left 2

=

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12 $2, $5
48 or $13 $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7

…
72 lw $4, 50($7)

Clock cycle 4

Clock cycle 3

Optimized pipeline with
only one bubble as a result
of the taken branch

Simple Example: Comparing
Performance

• Compare performance for single-cycle, multicycle, and pipelined
datapaths using the gcc instruction mix
– assume 2 ns for memory access, 2 ns for ALU operation, 1 ns for

register read or write
– assume gcc instruction mix 23% loads, 13% stores, 19% branches, 2%

jumps, 43% ALU
– for pipelined execution assume

• 50% of the loads are followed immediately by an instruction that uses the
result of the load

• 25% of branches are mispredicted
• branch delay on misprediction is 1 clock cycle
• jumps always incur 1 clock cycle delay so their average time is 2 clock

cycles

Simple Example: Comparing
Performance

• Single-cycle (p. 373): average instruction time 8 ns
• Multicycle (p. 397): average instruction time 8.04 ns
• Pipelined:

– loads use 1 cc (clock cycle) when no load-use dependency and 2 cc when
there is dependency – given 50% of loads are followed by dependency
the average cc per load is 1.5

– stores use 1 cc each
– branches use 1 cc when predicted correctly and 2 cc when not – given

25% misprediction average cc per branch is 1.25
– jumps use 2 cc each
– ALU instructions use 1 cc each
– therefore, average CPI is
1.5  23% + 1  13% + 1.25  19% + 2  2% + 1  43% = 1.18
– therefore, average instruction time is 1.18  2 = 2.36 ns

Dynamic Branch Prediction

• Prediction of branches at runtime using
runtime information.

• Ex: Restaurant
• Two schemes:

– 1-bit scheme
– 2-bit scheme

1-bit scheme

• branch prediction buffer - Also called branch history table.
• A small memory that is indexed by the lower portion of the

address of the branch instruction and that contains one or
more bits indicating whether the branch was recently taken
or not.

• The memory contains a bit that says whether the branch was
recently taken or not

Branch History Table
Bit indicating
branch taken(1)
or not taken(0)

0
1
0
1

1000
1012

2046
2116

1000 Beq $s2,$s1, exit

1012 Beq $s2,$s1, for

2046 Beq $s2,$s1, else

Assume 0 – bit indicating branch not taken
 1 – bit indicating branch taken

Disadvantage of 1-bit scheme

• What if the branch is taken and not taken the
alternatively?
– Then the prediction table will be wrong always.
– (ie) prediction will be always a failure

Disadvantage example
1000 i=1;
1004 while(i<=9){ 1004
1008 i++;
 }
Initially – bit is set to 1
1st iteration – misprediction(since branch is not taken)
Next 8 iteration – prediction is success
10th - exit iteration – misprediction (since branch is taken)
Disadvantage:

2 Mispredictions out of 10. so 80% accuracy is achieved

Bit indicating branch
taken(1)or not taken(0)

1

2-bit scheme
• A prediction must be wrong twice before the

prediction is changed.
• A branch prediction buffer has 2 bits to store

the history.
Bits indicating branch taken
or not taken

Meaning

00 Strongly Branch not taken

01 Weakly branch not taken

10 Weakly branch taken

11 Strongly branch taken

Finite state diagram

11 10

00 01

Exception

Exception
• Exception – (interrupt) An unscheduled event

that disrupts program execution; used to
detect overflow.

• Interrupt - An exception that comes from
outside of the processor. (Some architectures
use the term interrupt for all exceptions.)

• vectored interrupt – An interrupt for which
the address to which control is transferred is
determined by the cause of the exception.

Difference between exception and interrupt

Exception Interrupt
Unscheduled event Unscheduled event
Invoked Internal (within
processor)

Invoked External (outside
processor)

Ex: Arithmetic overflow Ex: IO device request

Exception

What happens in a processor when exception
occur?

1. Processor save the address of the offending
instruction in the exception program counter
(EPC)

2. Determine the cause of exception
3. Transfer control to the operating system at

some specified address(based on the cause of
exception)

How to find the cause of exception

• Two methods to detect the cause of
exception:
– Use cause register
– Vectored interrupts

Cause register

• Cause register – stores the reason for
exception

• Ex: arithmetic overflow
• I/O device request

Exception handling using cause register

1. EPC = address of offending instruction
2. Cause register = cause of exception
3. Single entry point for exception handling code. (say 1000)

– Then decode the cause register to move to the specific
exception handling code 1000

Arithmetic
Overflow exception
Handling code

I/O request
Exception
Handling code

Undefined
Instruction
Exception
Handling code

2. Vectored Interrupt

• An interrupt for which the address to which
control is transferred is determined by the
cause of the exception.

Exception handling using Vectored Interrupt

1. EPC = address of offending instruction
2. Refer the vectored interrupt table to find the address of the

specific exception handling code.

8000 0000hex

Undefined
Instruction
Exception
Handling code

Arithmetic overflw
Exception
Handling code

8000 0180hex

Implementing the exception system – using
cause register

• Elements added to implement exception
system:
– Two registers

• Cause register
• EPC register (Exception Program Counter)

– Single entry point – exception handling code
starting address

Exception - Datapath

Arithmetic overflow exception detected
clock cycle 6

overflow

EX

Exception handling of Arthimetic Overflow
 – clock cycle 7

2. All the instruction after
The offending instruction
 are flushed

3. Exception handling
Instruction is fetched and
started to execute 1. Stored EPC and cause register

Summary

• Pipeline
• Pipeline Hazards
• Pipeline Datapath and Control
• Data and Control Hazards

UNIT IV MEMORY AND I/O SYSTEMS
 Memory hierarchy - Memory technologies – Cache

basics – Measuring and improving cache
performance – Virtual memory, TLBs

Reference:
• Chapter 5 – Large and Fast: Exploiting Memory Hierarchy
• Book - David A. Patterson and John L. Hennessey, “Computer

organization and design‟, Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Memory Hierarchy

Principle of Locality

• Temporal locality - (locality in time):
 if an item is referenced, it will tend to be referenced again

soon.
• Spatial locality - (locality in space):
 if an item is referenced, items whose addresses are close

by will tend to be referenced soon

Memory Hierarchy

Hit and Miss
• two adjacent levels – called,

upper (closer to CPU) and
lower (farther from CPU)

• Terminology:
– block: minimum unit of

data to move between
levels

– hit: data requested is in
upper level

– miss: data requested is
not in upper level

Memory Access
• hit rate – Hit memory access / Total memory access
• miss rate – Miss memory access / Total memory access
• Total memory access = Hit memory access + Miss memory

access
• Miss rate = 1 – hit rate
• hit time –time to determine if the access is indeed a hit +

time to access and deliver the data from the upper level to
the CPU

• miss penalty: time to determine if the access is a miss + time
to replace block at upper level with corresponding block at
lower level + time to deliver the block to the CPU

Memory hierarchy

Memory Technology
• SRAM
• DRAM
• Flash memory
• Disk memory

SRAM

• Static random access memory
• Volatile – loses data when there is no power
• Used to make caches
• Very fast
• Very costly

DRAM

• Dynamic random access memory
• Volatile – loses data when there is no power
• Used to make main memory
• Slower than SRAM
• Cheaper than SRAM

Difference between SRAM and DRAM

S.No SRAM DRAM

1 Static Random Access
Memory

Dynamic Random Access
Memory

2 Volatile Volatile

3 Faster Slower

4 Costlier Cheaper than SRAM

5 Less denser Denser than SRAM

6 Used as Cache memory Used as Main memory

DRAM Internal Organisation

Each DRAM – has 4 banks
Each bank – has many rows
Commands :

Pre – Precharge command – opens/close a bank
Act – Activate command – transfer row from bank to buffer

Each buffer – has many columns
Command:

Rd – Read command – read data from buffer column
Wr – Write command – write data to buffer column

Buffers

columns

DDR - DRAM

• DDR – Double Data Rate
– Where data is transferred during both rising and

falling edge of the clock. (20 + 20 = 40Mbps)

Rising edge
20Mbps

Falling edge
20Mbps

DRAM Growth

Flash memory

• EEPROM - Electrically erasable programmable read-only
memory

• Disadvantage: Writes can wear out flash memory bits.
(10,000 writes)

• Solution: (wear levelling)
• Controller - spread the writes by remapping blocks that

have been written many times to less trodden blocks.

Disk Memory

Platter

Read Write
Head

Disk Memory(2)
• Read-write head - To read and write information on a

hard disk, a movable arm containing a small
electromagnetic coil called a read-write head is located
just above each surface.

• Track - One of thousands of concentric circles that
makes up the surface of a magnetic disk.

• Sector - One of the segments that make up a track on a
magnetic disk; a sector is the smallest amount of
information that is read or written on a disk.

• seek - The process of positioning a read/write head
over the proper track on a disk

3 computational times

• Seek time - the time to move the head to the desired
track.

• Rotational latency – Also called rotational delay. The
time required for the desired sector of a disk to rotate
under the read/write head; usually assumed to be half
the rotation time.

• Transfer time - is the time to transfer a block of bits.
– The transfer time is a function of the sector size, the

rotation speed, and the recording density of a track.
– Transfer rates in 2012 were between 100 and 200 MB/sec.

Problem

Cache Basics

Caches
• By simple example

– assume block size = one word of data

• Issues:
– how do we know if a data item is in the cache?
– if it is, how do we find it?
– if not, what do we do?

• Solution depends on cache addressing scheme…

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Reference to Xn

causes miss so
it is fetched from
memory

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

0
01

0
1

0
01

1
1
00

1
01

1
10

1
1

1

Direct Mapped Cache
• Addressing scheme in direct mapped cache:

– cache block address = memory block address mod (no of
blocks in cache)

– 3 fields
• Index
• Tag
• valid

Accessing Cache
• Example:

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(0) Initial state: (1) Address referred 10110 (miss):

 (2) Address referred 11010 (miss):

Index V Tag Data
000 N
001 N
010 Y 11 Mem(11010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

Index V Tag Data
000 N
001 N
010 Y 11 Mem(11010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(3) Address referred 10110 (hit):

Index V Tag Data
000 N
001 N
010 Y 10 Mem(10010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(4) Address referred 10010 (miss): replace

to CPU

Direct Mapped Cache

What kind of locality are we taking advantage of?

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address showing bit positions

Cache with 1024 1-word blocks:
byte offset (least 2 significant bits)
 is ignored and
next 10 bits used to index into cache

Formula
• The size of the block above was one word
• For the following situation:
• 32-bit addresses
• A direct-mapped cache
• The cache size is 2n blocks, so n bits are used for the index
• The block size is 2m words (2m+2 bytes), so m bits are used for

the word within the block, and two bits are used for the byte
part of the address

• size of the tag field = 32 - (n + m + 2)
• The total number of bits in a direct-mapped cache
• For one block = block size(data) + tag size + valid field size
• The total number of bits in a direct-mapped cache is
• 2n * (block size + tag size + valid field size)

Example Problem
• How many total bits are required for a direct-mapped cache with 16

KB of data and 4-word block size, assuming a 32-bit address?

• Cache data = 16 KB = 214 bytes = 212 words =
 = 212 words / 4 words = 210 blocks
• Each cache entry size = block data bits + tag bits + valid bit
 = (4*32) + (32 – 10 – 2 - 2) + 1 = 128 + 18 + 1 = 147 bits
• Therefore, Entire cache size = 210  147 bits = 210  (147) bits = 147

Kbits
– Total cache size -> 147Kbits / 8 = 18.4 Kbytes
– Actual cache size(only data) -> 16Kbytes
– total cache size/actual cache data = 18.4/16 = 1.15
– So 15% increase in the cache size to include tag and valid bits.

Example problem
• Consider a cache with 64 blocks and a block size of 16 bytes.

To what block number does byte address 1200 map?
• Use the formula:

(Block address) modulo (Number of blocks in the cache)
– Block address = byte address/ bytes per block
– = 1200 / 16 = 75
– 75 modulo 64 = 11th block in cache

Example Problem
• How many total bits are required for a direct-mapped cache with 128 KB

of data and 1-word block size, assuming a 32-bit address?

• Cache data = 128 KB = 217 bytes = 215 words = 215 blocks
• Cache entry size = block data bits + tag bits + valid bit
 = 32 + (32 – 15 – 2) + 1 = 48 bits
• Therefore, cache size = 215  48 bits = 215  (1.5  32) bits = 1.5  220 bits

= 1.5 Mbits
– data bits in cache = 128 KB  8 = 1 Mbits
– total cache size/actual cache data = 1.5

Example Problem
• How many total bits are required for a direct-mapped cache with

128 KB of data and 4-word block size, assuming a 32-bit
address?

• Cache size = 128 KB = 217 bytes = 215 words = 213 blocks
• Cache entry size = block data bits + tag bits + valid bit
 = 128 + (32 – 13 – 2 – 2) + 1 = 144 bits
• Therefore, cache size = 213  144 bits = 213  (1.25  128) bits =

1.25  220 bits = 1.25 Mbits
– data bits in cache = 128 KB  8 = 1 Mbits
– total cache size/actual cache data = 1.25

Cache Read Hit/Miss
• Cache read hit: no action needed
• Instruction cache read miss:

1. Send original PC value (current PC – 4, as PC has already been incremented
in first step of instruction cycle) to memory

2. Instruct main memory to perform read and wait for memory to complete
access – stall on read

3. After read completes write cache entry
4. Restart instruction execution at first step to refetch instruction

• Data cache read miss:
– Similar to instruction cache miss
– To reduce data miss penalty allow processor to execute instructions while

waiting for the read to complete until the word is required – stall on use
(why won’t this work for instruction misses?)

Cache Write Hit/Miss

• Write-through scheme
– on write hit: replace data in cache and memory with every write hit to

avoid inconsistency
– on write miss: write the word into cache and memory – obviously no

need to read missed word from memory!
– Write-through is slow because of always required memory write

• performance is improved with a write buffer where words are stored while
waiting to be written to memory – processor can continue execution until
write buffer is full

• when a word in the write buffer completes writing into main that buffer slot
is freed and becomes available for future writes

• DEC 3100 write buffer has 4 words

• Write-back scheme
– write the data block only into the cache and write-back the block to main

only when it is replaced in cache
– more efficient than write-through, more complex to implement

Measuring and Improving cache
performance

Measuring Cache Performance

• Simplified model assuming equal read and write miss penalties:
– CPU time = (execution cycles + memory stall cycles)  cycle time
– Memory stall cycles = reads stall cycles + write stall cycles
– Read stall cycles = reads/program + read miss rate + read miss penalty
– Write stall cycles = writes/program + write miss rate + write miss penalty

– memory stall cycles = memory accesses/program  miss rate  miss penalty
- memory stall cycles = instructions/program  miss/instruction  miss penalty

Where, memory accesses = read memory access + write memory access
 miss rate = read miss rate + write miss rate

 miss penalty = read miss penalty = write miss penalty

Example Problems
• Assume for a given machine and program:

– instruction cache miss rate 2%
– data cache miss rate 4%
– miss penalty always 100 cycles
– CPI of 2 without memory stalls
– frequency of load/stores 36% of instructions

1. How much faster is a machine with a perfect cache that never misses?
2. What happens if we speed up the machine by reducing its CPI to 1

without changing the clock rate?

Solution - 1
• Assume instruction count = I
• memory stall cycles = instructions/program  miss/instruction  miss

penalty
• Instruction miss cycles = I  2%  100 = 2.0  I
• Data miss cycles = I  36%  4%  100 = 1.44  I
• total memory-stall cycles = Instruction miss cycles + Data

miss cycles = 2  I + 1.44  I = 3.44  I
• CPI memory stalls = Basic CPI + memory stall CPI
• = 2 + 3.44 = 5.44
• CPU time = IC x CPI x clock cycles
• CPU time with stalls / CPU time with perfect cache
 = I x 5.44xclock cycles/ I x 2 x clock cycles = 5.44 / 2 = 2.72
• Performance with a perfect cache is better by a factor of

2.72

Solution - 2
• CPI without stall = 1
• CPI with stall = Basic CPI + memory stall CPI
• = 1 + 3.44 = 4.44
• CPU time with stalls / CPU time with perfect cache
 = CPI with stall / CPI without stall
 = 4.44/1
• Performance with a perfect cache is better by a factor of

4.44
• Conclusion: with higher CPI cache misses “hurt more”

than with lower CPI

Average Memory Access Time

• AMAT = Time for a hit + Miss rate x Miss
penalty

39

AMAT – Problem

• Given:
– Clock cycle time = 1ns
– Miss penalty = 20 clock cycles
– Miss rate = 0.05 misses per instruction
– Cache access(hit) time = 1 clock cycle

40

Solution

• AMAT = Time for a hit + Miss rate x Miss
penalty

 = 1 + 0.05 x 20
 = 1 + 1
 = 2 clock cycles
Or clock cycle time = 2 x 1ns = 2ns

41

Cache Read Hit/Miss
• Cache read hit: no action needed
• Instruction cache read miss:

1. Send original PC value to memory
2. Instruct main memory to perform read and wait for

memory to complete access – stall on read
3. After read completes write cache entry
4. Restart instruction execution at first step to refetch

instruction

Cache Write Hit/Miss
• Write-through scheme – write data both in cache and

main memory
– on write hit: replace data in cache and memory with

every write hit to avoid inconsistency
– on write miss: write the word into cache and memory

– obviously no need to read missed word from
memory!

– Write-through is slow because of always required
memory write

• performance is improved with a write buffer
• Write-back scheme

– write the data block only into the cache and write-back
the block to main only when it is replaced in cache

– more efficient than write-through, more complex to
implement

Decreasing Miss Rates with Associative
Block Placment

• Direct mapped: one unique cache location for each memory block
– cache block address = memory block address mod cache size

• Fully associative: each memory block can locate anywhere in cache
– all cache entries are searched (in parallel) to locate block

• Set associative: each memory block can place in a unique set of cache
locations – if the set is of size n it is n-way set-associative
– cache set address = memory block address mod number of sets in cache
– all cache entries in the corresponding set are searched (in parallel) to locate

block
• Increasing degree of associativity

– reduces miss rate
– increases hit time because of the parallel search and then fetch

Decreasing Miss Rates with Associative
Block Placment

1

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1

2
Tag

Data

Search

Fully associativeDirect Mapped 2-way Set Associative Fully Associative

Location of a memory block with address 12 in a cache with 8 blocks
with different degrees of associativity

12 mod 8 = 4 12 mod 4 = 0

Adv and Disadv of mapping
• Direct mapped :

– Adv – easy to search
– Disadv – only one block for multiple data

• Set-Associativity mapped :
– Adv – more than one block for multiple data
– Disadv – search more than one block

• Associativity mapped :
– Adv – all blocks available for data
– Disadv – search all the blocks

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

Decreasing Miss Rates with Associative
Block Placment

One-way set associative

Configurations of an 8-block cache with different degrees of associativity

Example Problems
• Find the number of misses for a cache with four 1-word blocks given the

following sequence of memory block accesses:
0, 8, 0, 6, 8,

 for each of the following cache configurations
1. direct mapped

2. 2-way set associative (use LRU replacement policy)

3. fully associative

• Note about LRU replacement
– in a 2-way set associative cache LRU replacement can be implemented with

one bit at each set whose value indicates the mostly recently referenced
block

Solution

• 1 (direct-mapped)

• 5 misses

 Block address Cache block

 0 0 (= 0 mod 4)
 6 2 (= 6 mod 4)
 8 0 (= 8 mod 4)

Address of memory Hit or Contents of cache blocks after reference

 block accessed miss 0 1 2 3

 0 miss Memory[0]
 8 miss Memory[8]
 0 miss Memory[0]
 6 miss Memory[0] Memory[6]
 8 miss Memory[8] Memory[6]

Block address translation in direct-mapped cache

Cache contents after each reference – red indicates new entry added

Solution (cont.)

• 2 (two-way set-associative)

• Four misses

 Block address Cache set

 0 0 (= 0 mod 2)
 6 0 (= 6 mod 2)
 8 0 (= 8 mod 2)

Address of memory Hit or Contents of cache blocks after reference

 block accessed miss Set 0 Set 0 Set 1 Set 1

 0 miss Memory[0]
 8 miss Memory[0] Memory[8]
 0 hit Memory[0] Memory[8]
 6 miss Memory[0] Memory[6]
 8 miss Memory[8] Memory[6]

Block address translation in a two-way set-associative cache

Cache contents after each reference – red indicates new entry added

Solution (cont.)
• 3 (fully associative)

• 3 misses

Address of memory Hit or Contents of cache blocks after reference

 block accessed miss Block 0 Block 1 Block 2 Block 3

 0 miss Memory[0]
 8 miss Memory[0] Memory[8]
 0 hit Memory[0] Memory[8]
 6 miss Memory[0] Memory[8] Memory[6]
 8 hit Memory[0] Memory[8] Memory[6]

Cache contents after each reference – red indicates new entry added

Implementation of a 4-way - Set-
Associative Cache

Address

22 8

V TagIndex

0

1

2

253

254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0
Address

4-way set-associative cache with 4 comparators and one 4-to-1 multiplexor:
size of cache is 1K blocks = 256 sets * 4-block set size

Set

Decreasing Miss Penalty with Multilevel
Caches

• Add a second-level cache
– primary cache is on the same chip as the processor
– use SRAMs to add a second-level cache, sometimes

off-chip, between main memory and the first-level
cache

– if miss occurs in primary cache second-level cache is
accessed

– if data is found in second-level cache miss penalty is
access time of second-level cache which is much less
than main memory access time

– if miss occurs again at second-level then main memory
access is required and large miss penalty is incurred

Virtual Memory

Virtual Memory
• Motivation: main memory acts as cache for secondary

storage, e.g., magnetic disk
• main memory size  disk size  virtual address space size
• Page table transparently converts a virtual memory address

to a physical memory address,
– if the data is already in main; if not, it issues call to OS to

fetch the data from disk into main
• Virtual memory is organized in fixed-size (power of 2,

typically at least 4 KB) blocks, called pages. Physical
memory is also considered a collection of pages of the same
size.
– the unit of data transfer between disk and physical

memory is a page

Virtual Memory

Physical addresses

Disk addresses

Virtual addresses

Address translation

Mapping of pages from a virtual address to a
physical address or disk address

Virtual Address Physical Address

Page

Main Memory
Virtual
Memory

Secondary Storage

Page Table Implements Virtual to
Physical Address Translation

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page table: page size 4 KB, virtual address space 4 GB,
physical memory 1 GB

Points to start
of page table

Example Problem
• Assume:

– 32-bit virtual address
– 4 KB page size
– 4 bytes per page table entry

• What is the total page table size is we want to be able to access all
of the virtual memory?

Solution

• No. of page table entries = address space size / page size
 = 232 / 212 = 220

• Size of page table = No. of entries  entry size
 = 220  4 bytes = 4 MB (huge!)

• Note, to avoid large page table size:
– each program has its own page table

• page table register points to start of program’s page table
– to reduce storage required per program page table

• page table for a program covers the span of virtual memory containing its
own code and data

• other techniques, e.g., multiple-level page tables, hashing virtual address,
etc.

Page Faults
• Page fault: page is not in memory, must retrieve it from disk

– enormous miss penalty = millions of cycles
– therefore, page size should be large (e.g., 32 or 64 KB)

• to make one trip to disk worth a lot
– reducing page faults is critical

• LRU replacement policy – implemented approximately by
setting a use bit each time a page is accessed, and then
periodically clearing all these bits so that pages accessed in a
fixed time period are known

• fully associative page placement – consequence of page table
– handle faults in software instead of hardware

• as software overhead is still small compared to disk access
time

– using write-through is too expensive, so always use write-back

Resolving Page Faults using the Page
Table to Access Disk

Page table maps virtual page to
either physical page or disk page

Making Address Translation Fast with the
Translation-lookaside Buffer

• A cache for address translations – translation-lookaside buffer (TLB):

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page
addressValid

TLB

1

1

1

1

0

1

Tag
Virtual page

number

Physical p
age

or disk address

Physical memory

Disk storage

On a page reference, first look up the virtual page number in the TLB; if
there is a TLB miss look up the page table; if miss again then true page fault

Summary

• Memory hierarchy
• Cache basics
• Measuring cache perfromance
• Improving cache performance
• Virtual memory

UNIT IV MEMORY AND I/O SYSTEMS
 Input/output system, programmed I/O, DMA and

interrupts, I/O processors.

Reference:
• Chapter 7 – Input Output System
• Book - William Stallings , “Computer Organization and

Architecture‟, 8th Edition.

Input Output System

Need for Input/Output Module

• Wide variety of peripherals
– Delivering different amounts of data
– At different speeds
– In different formats

• All slower than CPU and RAM
• Need I/O modules

Input/Output Module
• Interface to CPU and Memory
• Interface to one or more peripherals

Interface to CPU and Memory

Interface to Peripherals

CPU Memory

Input
device(keyboard)

Output
device(monitor)

I/O module

Generic Model of I/O Module
to
CPU
and
Memory

External Devices

– Monitor Screen
– Printer
– Keyboard
– Modem

External Device Block Diagram

I/O Module Function

• Control & Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection

I/O Steps

• CPU checks I/O module device status
• I/O module returns status
• If ready, CPU requests data transfer
• I/O module gets data from device
• I/O module transfers data to CPU
• Variations for output, DMA, etc.

I/O Function and Steps
I/O

ModuleCPU I/O
Device

1. Request status 2. Request status

3.Return status4.Return status

5. Request data 6. Request data

7.Return data8.Return data

I/O Module Diagram

I/O Module Decisions

• Hide or reveal device properties to CPU
• Support multiple or single device
• Control device functions or leave for CPU
• Also O/S decisions
– e.g. Unix treats everything it can as a file

Programmed I/O

Input Output Techniques

• Programmed I/O
• Interrupt driven I/O
• Direct Memory Access (DMA)

Three Techniques for
Input of a Block of Data

Programmed I/O

• CPU has direct control over I/O
– Sensing status
– Read/write commands
– Transferring data

• CPU waits for I/O module to complete
operation

• Wastes CPU time

Programmed I/O - detail

• CPU requests I/O operation
• I/O module performs operation
• I/O module sets status bits
• CPU checks status bits periodically
• I/O module does not inform CPU directly
• I/O module does not interrupt CPU
• CPU may wait or come back later

I/O Commands

• CPU issues address
– Identifies module (& device if >1 per module)

• CPU issues command
– Control - telling module what to do
• e.g. spin up disk

– Test - check status
• e.g. power? Error?

– Read/Write
• Module transfers data via buffer from/to device

Addressing I/O Devices

• Under programmed I/O data transfer is very
like memory access (CPU viewpoint)

• Each device given unique identifier
• CPU commands contain identifier (address)

I/O Mapping

• Memory mapped I/O
– Devices and memory share an address space
– I/O looks just like memory read/write
– No special commands for I/O

• Large selection of memory access commands available

• Isolated I/O
– Separate address spaces
– Need I/O or memory select lines
– Special commands for I/O

• Limited set

Memory Mapped and Isolated I/O

Interrupt Driven I/O

Interrupt Driven I/O

• Overcomes CPU waiting
• No repeated CPU checking of device
• I/O module interrupts when ready

Interrupt Driven I/O
Basic Operation

• CPU issues read command
• I/O module gets data from peripheral whilst

CPU does other work
• I/O module interrupts CPU
• CPU requests data
• I/O module transfers data

Simple Interrupt
Processing

CPU Viewpoint

• Issue read command
• Do other work
• Check for interrupt at end of each instruction

cycle
• If interrupted:-
– Save context (registers)
– Process interrupt
• Fetch data & store

• See Operating Systems notes

Changes in Memory and Registers
for an Interrupt

Design Issues

• How do you identify the module issuing the
interrupt?

• How do you deal with multiple interrupts?
– i.e. an interrupt handler being interrupted

Identifying Interrupting Module (1)

• Different line for each module
– PC
– Limits number of devices

• Software poll
– CPU asks each module in turn
– Slow

Identifying Interrupting Module (2)

• Daisy Chain or Hardware poll
– Interrupt Acknowledge sent down a chain
– Module responsible places vector on bus
– CPU uses vector to identify handler routine

• Bus Master
– Module must claim the bus before it can raise

interrupt

Multiple Interrupts
1) Implementation of interrupt priority using individual
interrupt-request and acknowledge lines.
– Each line has different priority levels.
– Interrupt acknowledgement will be sent only if it has

highest priority than the one assigned currently.
– Adv – accept interrupt request from some devices based

on priority.
2) Daisy chain
- Adv - fewer lines
3) Arrangement of priority groups
- Adv – combine the advantage of both the above schemes

Example - PC Bus

• 80x86 has one interrupt line
• 8086 based systems use one 8259A interrupt

controller
• 8259A has 8 interrupt lines

Sequence of Events

• 8259A accepts interrupts
• 8259A determines priority
• 8259A signals 8086 (raises INTR line)
• CPU Acknowledges
• 8259A puts correct vector on data bus
• CPU processes interrupt

ISA Bus Interrupt System

• ISA bus chains two 8259As together
• Link is via interrupt 2
• Gives 15 lines
– 16 lines less one for link

• IRQ 9 is used to re-route anything trying to
use IRQ 2
– Backwards compatibility

• Incorporated in chip set

82C59A Interrupt
Controller

Intel 82C55A
Programmable Peripheral Interface

Keyboard/Display Interfaces to
82C55A

DMA

DMA working

Direct Memory Access

• DMA – used to transfer large block of data

• Interrupt driven and programmed I/O require
active CPU intervention
– Transfer rate is limited
– CPU is tied up

DMA Function

• Additional Module (hardware) on bus
• DMA controller takes over from CPU for I/O

Typical DMA Module Diagram

DMA Operation

• CPU tells DMA controller:-
– Read/Write
– Device address
– Starting address of memory block for data
– Amount of data to be transferred

• CPU carries on with other work
• DMA controller deals with transfer
• DMA controller sends interrupt when finished

Memory Cycle Stealing

• DMA controller has higher priority over the
system bus than the processor.
– This causes the DMA controller to steal the

memory clock cycles of the processor.

DMA and Interrupt Breakpoints
During an Instruction Cycle

Aside

• What effect does caching memory have on
DMA?

• What about on board cache?
• Hint: how much are the system buses

available?

DMA Configurations (1)

• Single Bus, Detached DMA controller
• Each transfer uses bus twice
– I/O to DMA then DMA to memory

• CPU is suspended twice

DMA Configurations (2)

• Single Bus, Integrated DMA controller
• Controller may support >1 device
• Each transfer uses bus once
– DMA to memory

• CPU is suspended once

DMA Configurations (3)

• Separate I/O Bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once
– DMA to memory

• CPU is suspended once

Intel 8237A DMA Controller
• Interfaces to 80x86 family and DRAM
• When DMA module needs buses it sends HOLD signal to processor
• CPU responds HLDA (hold acknowledge)

– DMA module can use buses
• E.g. transfer data from memory to disk

1. Device requests service of DMA by pulling DREQ (DMA request) high
2. DMA puts high on HRQ (hold request),
3. CPU finishes present bus cycle (not necessarily present instruction) and puts

high on HDLA (hold acknowledge). HOLD remains active for duration of DMA
4. DMA activates DACK (DMA acknowledge), telling device to start transfer
5. DMA starts transfer by putting address of first byte on address bus and

activating MEMR; it then activates IOW to write to peripheral. DMA
decrements counter and increments address pointer. Repeat until count
reaches zero

6. DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

Fly-By
• While DMA using buses processor idle
• Processor using bus, DMA idle
– Known as fly-by DMA controller

• Data does not pass through and is not stored in DMA chip
– DMA only between I/O port and memory
– Not between two I/O ports or two memory locations

• Can do memory to memory via register
• 8237 contains four DMA channels
– Programmed independently
– Any one active
– Numbered 0, 1, 2, and 3

I/O Channels

• I/O devices getting more sophisticated
• e.g. 3D graphics cards
• CPU instructs I/O controller to do transfer
• I/O controller does entire transfer
• Improves speed
– Takes load off CPU
– Dedicated processor is faster

I/O Channel Architecture

Interfacing

• Connecting devices together
• Bit of wire?
• Dedicated processor/memory/buses?
• E.g. FireWire, InfiniBand

IEEE 1394 FireWire

• High performance serial bus
• Fast
• Low cost
• Easy to implement
• Also being used in digital cameras, VCRs and

TV

FireWire Configuration

• Daisy chain
• Up to 63 devices on single port
– Really 64 of which one is the interface itself

• Up to 1022 buses can be connected with
bridges

• Automatic configuration
• No bus terminators
• May be tree structure

Simple FireWire Configuration

FireWire 3 Layer Stack

• Physical
– Transmission medium, electrical and signaling

characteristics

• Link
– Transmission of data in packets

• Transaction
– Request-response protocol

FireWire Protocol Stack

FireWire - Physical Layer

• Data rates from 25 to 400Mbps
• Two forms of arbitration
– Based on tree structure
– Root acts as arbiter
– First come first served
– Natural priority controls simultaneous requests
• i.e. who is nearest to root

– Fair arbitration
– Urgent arbitration

FireWire - Link Layer

• Two transmission types
– Asynchronous
• Variable amount of data and several bytes of

transaction data transferred as a packet
• To explicit address
• Acknowledgement returned

– Isochronous
• Variable amount of data in sequence of fixed size

packets at regular intervals
• Simplified addressing
• No acknowledgement

FireWire Subactions

InfiniBand

• I/O specification aimed at high end servers
– Merger of Future I/O (Cisco, HP, Compaq, IBM)

and Next Generation I/O (Intel)

• Version 1 released early 2001
• Architecture and spec. for data flow between

processor and intelligent I/O devices
• Intended to replace PCI in servers
• Increased capacity, expandability, flexibility

InfiniBand Architecture

• Remote storage, networking and connection between servers
• Attach servers, remote storage, network devices to central

fabric of switches and links
• Greater server density
• Scalable data centre
• Independent nodes added as required
• I/O distance from server up to

– 17m using copper
– 300m multimode fibre optic
– 10km single mode fibre

• Up to 30Gbps

InfiniBand Switch Fabric

InfiniBand Operation

• 16 logical channels (virtual lanes) per physical
link

• One lane for management, rest for data
• Data in stream of packets
• Virtual lane dedicated temporarily to end to

end transfer
• Switch maps traffic from incoming to outgoing

lane

InfiniBand Protocol Stack

Foreground Reading

• Check out Universal Serial Bus (USB)
• Compare with other communication

standards e.g. Ethernet

