IT16301 —
Computer Organization and

Architecture
Prepared by

N.Uma & V.Ranjith
Assistant professor/IT

Course Qutcomes

CO1 - Build the basic structure of computer,
operations and instructions

CO2 -
CO3 -
contro

Design arithmetic and logic unit
Discuss the pipelined execution and design

unit

CO4 - Evaluate performance of memory systems
COS5 - Construct the parallel processing
architectures

Text Books:

1. M. Moris Mano, “ Computer System
Architecture”, 3rd Edition, Pearson/ PHI, 2007

- 2. David A. Patterson and John L. Hennessey,
“Computer organization and design", Morgan
kauffman / elsevier, Fifth edition, 2014.

Unit 1

BASIC COMPUTER ORGANIZATION AND
DESIGN

» Instruction codes,

> Computer registers,

> computer instructions,

» Timing and Control,

> Instruction cycle,

> Memory-Reference Instructions,
> Input-output and interrupt,

> Complete computer description,

> Design of Basic computer,

- 1 . _* LA 1Y 4 YTy

COMPUTER ORGANISATION AND
ARCHITECTURE

The components from which computers are built, 1.e.,
computer organization.

In contrast, computer architecture 1s the science of
integrating those components to achieve a level of
functionality and performance.

It 1s as 1f computer organization examines the lumber,
bricks, nails, and other building material

While computer architecture looks at the design of
the house.

Basic Terminology

Input - Whatever 1s put
into a computer system.

-Data - Refers to the
symbols that represent
facts, objects, or 1deas.

Basic Terminology

+ Assembly language program (ALP) —Programs
are written using mnemonics

- Mnemonic —Instruction will be 1n the form of

English like form

- Assembler —1s a software which converts ALP

to MLL (Machine Level Language)

Basic Terminology

+ Interpreter — Converts HLL to MLL, does this
job statement by statement

+ System software — Program routines which aid
the user in the execution of programs eg:
Assemblers, Compilers

* Operating system — Collection of routines
responsible for controlling and coordinating all

Computers have two kinds of components:

- Hardware,

— consisting of its physical devices (CPU, memory,
bus, storage devices, ...)

- Software,

— consisting of the programs it has (Operating
system, applications, utilities, ...)

All computer functions are:
* Data PROCESSING

Data STORAGE

Data MOVEMENT

— Data = Information

* CONTROL--- Coordinates How Information is
Used

- INPUT UNIT:

*Converts the external world data to a binary
format, which can be understood by CPU

— Mouse, Joystick etc

- OUTPUT UNIT:

*Converts the binary format data to a format
that a common man can nhder<tand

CPU

- The Brain of the machine

*carrying out computational task

- ALU, CU, Registers

+ ALU Arnthmetic and logical operations

MEMORY

+ Stores data, results, programs
+ Two classes of storage

o Primary

@ Secondary

© Two types are RAM or R/W memory and
ROM read only memory

0 ROM 1s used to store data and program which
1S not going to change.

Instruction Codes

The Internal organization of a digital system 1s defined by
the sequence of microoperations 1t performs on data stored
In 1ts registers

The user of a computer can control the process by means of
a program

A program 1s a set of instructions that specify the operations,
operands, and the processing sequence

Instruction Codes

A computer instruction 1s a binary code that specifies a
sequence of micro-operations for the computer. Each computer
has 1ts unique instruction set

Instruction codes and data are stored in memory

The computer reads each instruction from memory and places
it 1n a control register

The control unit interprets the binary code of the instruction
and proceeds to execute 1t by issuing a sequence of micro-
operations

Instruction Codes

An Instruction code 1s a group of bits that instructs the
computer to perform a specific operation (sequence of
microoperations). It is divided into parts (basic part i1s the
operation part)

The operation code of an instruction 1s a group of bits that
defines certain operations such as add, subtract, shift, and
complement

Instruction Codes

The number of bits required for the operation code depends
on the total number of operations available in the computer

2n (or little less) distinct operations = n bit operation code

Instruction Codes

.- .
Read instruction

from memory

Instruction Codes

An operation must be performed on some data stored in
processor registers or in memory

An 1instruction code must therefore specify not only the
operation, but also the location of the operands (in registers or
in the memory), and where the result will be stored
(registers/memory)

Instruction Codes

Memory words can be specified in instruction codes by their address

Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2k registers

Each computer has its own particular instruction code format

Instruction code formats are conceived by computer designers who
specify the architecture of the computer

Instruction Codes
Stored Program Organization

* An instruction code 1s usually divided into operation
code, operand address, addressing mode, etc.

The simplest way to organize a computer 1s to have
one processor register (accumulator AC) and an

instruction code format with two parts (op code,
address)

Instruction Codes
Stored Program Organization

15 12 11 Memory

Instruction Format

Instruction Codes
Indirect Address

There are three Addressing Modes used for address portion of
the nstruction code:

- Immediate: the operand i1s given in the address portion
(constant)

— Direct: the address points to the operand stored in the
memory

— Indirect: the address points to the pointer (another address)
stored 1n the memory that references the operand in
memory

One bit of the instruction code can be used to distinguish
between direct & indirect addresses

Instruction Codes
Indirect Address

Instruction Format

15 14 12 11

22

457

Direct Address

o| AbD |

457

Operand

35

300

1350

Indirect addrgss

1] ADD | 300

1350

Operand

4

Effective address

Instruction Codes - Indirect Address

Effective address: the address of the operand in a computation-
type instruction or the target address in a branch-type
instruction

The pointer can be placed in a processor register instead of
memory as done in commercial computers

Computer Registers

Computer instructions are normally stored 1n
consecutive memory locations and executed
sequentially one at a time

The control reads an instruction from a specific
address 1n memory and executes it, and so on

This type of sequencing needs a counter to calculate
the address of the next instruction after execution of
the current instruction 1s completed

Computer Registers

It 1s also necessary to provide a register in the control unit for
storing the instruction code after it is read from memory

The computer needs processor registers for manipulating data
and a register for holding a memory address

Registers in the Basic Computer

11 0

[ec]

11 0

[a]
15 0
[®]
15 0 15 0
I
7 0o 7 0 15 0
[ourr | [iner |

List of BC Registers

m

Bus

wn
o

!

Address
Write Read
> 1
LD INR CLR
2
LD INR CLR
3

LD INR CLR

:E.im o4 Computer Registers
LD INR CLR Common Bus System

[ineR |
>LD— aE
j———

LD INR CLR

— Clock
LD

— 16-bit common bus —

Computer Registers- Common Bus

System

S2S1S0: Selects the register/memory that would use
the bus

+ LD (load): When enabled, the particular register
receives the data from the bus during the next clock
pulse transition

+ E (extended AC bit): flip-flop holds the carry
- DR, AC, IR, and TR: have 16 bits each
* AR and PC: have 12 bits each since they hold a

memory address

Computer Registers-Common Bus

System

* When the contents of AR or PC are applied to the 16-
bit common bus, the four most significant bits are set
to zeros

* When AR or PC receives information from the bus,

only the 12 least significant bits are transferred into
the register

INPR and OUTR: communicate with the eight least
significant bits in the bus

Computer Registers-Common Bus

System
INPR: Receives a character from the input device

(keyboard,...etc) which 1s then transferred to AC

OUTR: Receives a character from AC and delivers it
to an output device (say a Monitor)

 Five registers have three control mnputs: LD (load),
INR (increment), and CLR (clear)

* Register = binary counter with parallel load and

Computer Registers-Memory Address

The mput data and output data of the memory are
connected to the common bus

But the memory address 1s connected to AR

Therefore, AR must always be used to specify a
memory address

By using a single register for the address, we

alitminate the nead far arn addrece hiie that vwnaiild have

Computer Registers- Memory Address

+ Register 2 Memory: Write operation

+ Memory -2 Register: Read operation (note
that AC cannot directly read from memory!!)

 Note that the content of any register can be
applied onto the bus and an operation can be
performed 1n the adder and logic circuit during
the same clock cycle

Computer Registers-Memory Address

+ The transition at the end of the cycle transfers
the content of the bus into the destination
register, and the output of the adder and logic
circuit into the AC

* For example, the two microoperations

DR«—AC and AC—DR (Exchange)

can be executed at the same time

Computer Registers

Memory Address

+ 1- place the contents of AC on the bus
(S2S1S0=100)

- 2- enabling the LD (load) input of DR

+ 3- Transferring the contents of the DR through
the adder and logic circuit into AC

* 4- enabling the LD (load) mput of AC

Computer Instructions

Basic Computer Instruction code format

Memory-Reference Instructions (OP-code =000 ~ 110)

15 14 1211 0

Register-Reference Instructions (OP-code =111, 1=0)
15 1211 0

Input-Output Instructions (OP-code =111,1=1)
15 1211 0

BASIC COMPUTER INSTRUCTIONS

Computer Instructions
Instruction Set Completeness
* The set of instructions are said to be complete
if the computer includes a sufficient number of
instructions 1 each of the following
categories:

— Arithmetic, logical, and shift instructions

— Instructions for moving information to and from
memory and processor registers

Timing & Control

- The timing for all registers in the basic
computer 1s controlled by a master clock
generator

 The clock pulses are applied to all flip-flops
and registers in the system, including the flip-
flops and registers 1n the control unit

 The clock pulses do not change the state of a
register unless the register 1s enabled by a

Timing & Control

The control signals are generated in the control unit
and provide control inputs for the multiplexers 1n the
common bus, control inputs in processor registers,
and microoperations for the accumulator

There are two major types of control
organization:

— Hardwired control

— Microprogrammed control

Timing & Control

* In the hardwired organization, the control
logic 1s implemented with gates, flip-flops,
decoders, and other digital circuits.

* In the microprogrammed organization, the
control information 1s stored in a control
memory (1f the design 1s modified, the
microprogram 1n control memory has to be
updated)

- D3T4: SC—0

The Control Unit for the basic computer

Instruction register (IR)

Other inputs

Control
outputs

e————— Increment (INR)
<—— (lear (CLR)
@ Clock

Hardwired Control Organization

- Generated by 4-bit sequence counter and 4x16 decoder
- The SC can be incremented or cleared.

- Example: T10,T1,72,73,T4,7T0,T1,...
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4:SC«0

TO T1 T2 T3 T4 TO

o FLFL L L L

TO

T1 \

T2 '\

T3 \

T4 \

D3

wm o

O

Timing & Control

- A memory read or write cycle will be mnitiated with

the rising edge of a timing signal

* Assume: memory cycle time < clock cycle time!

So, a memory read or write cycle 1nitiated by a timing
signal will be completed by the time the next clock
goes through its positive edge

The clock transition will then be used to load the

Timing & Control

TO: AR—PC

— Transfers the content of PC into AR if timing signal TO 1s
active

— TO 1s active during an entire clock cycle interval

— During this time, the content of PC 1s placed onto the bus
(with S2S1S0=010) and the LD (load) input of AR 1is
enabled

— The actual transfer does not occur until the end of the clock

Instruction Cycle

A program 1s a sequence of instructions stored
In memory

+ The program 1s executed in the computer by
going through a cycle for each instruction (in
most cases)

- Each 1nstruction in turn i1s subdivided into a

sequence of sub-cycles or phases

Instruction Cycle

* Instruction Cycle Phases:

— 1- Fetch an instruction from memory
— 2- Decode the instruction

— 3- Read the effective address from memory 1f the
instruction has an indirect address

— 4- Execute the instruction

- This cvcle repeats indefinitelv unless a HALT

Instruction Cycle
Fetch and Decode

- Imitially, the Program Counter (PC) 1s loaded
with the address of the first instruction in the
program

- The sequence counter SC 1s cleared to O,
providing a decoded timing signal TO

- After each clock pulse, SC 1s incremented by
one, so that the timing signals go through a

Instruction Cycle

Fetch and Decode
- TO: AR«—PC (this 1s essential!!)

The address of the instruction 1s moved to AR.

- T1: IR—MJ[AR], PC—PC+1
The instruction 1s fetched from the memory to IR ,

and the PC i1s incremented.

- T2: DO,..., D7<—Decode IR(12-14), AR<—IR(0-11),
[«IR(15)

BC Instruction cycle: [Fetch Decode [Indirect] Execute]*

¢ Fetch and Decode TO: AR « PC (S05152=010, T0=1)
T1:IR < M [AR], PC« PC+1 (S0S1S2=111, T1=1)
T2: DO, ..., D7 « Decode IR(12-14), AR « IR(0-11), | « IR(15)

Tl

,]

S2

-
S0

»| Memory >
unit

Address
E I Read
> AR 11

N

TO * || !! »1s1 Bus

LD

> PC A >2

e—

INR

> R A 5

$

LD

—— Clock

Common bus

D'7IT3:

D'71'T3:

D7I'T3:
D7IT3:

gtca:io DETERMINE THE TYPE OF INSTRUCTION

Y4

TO
AR <« PC

‘ T1

IR « M[AR]_, PC« PC+1

v 12

Decode Opcode in IR(12-14),
AR « IR(0-11), 1< IR(15)

(Register or1/0) =1 $ = 0 (Memory-reference)

(1/0)=1 = 0 (register) (indirect) = 1 | = 0 (direct)
y I3 y I3 I3
Execute Execute AR < MJ[AR] Nothing_l
input-output register-reference ‘ ‘
instruction instruction
SC « 0 SC « O Execute T4
memory-reference
instruction
SC « 0
y
AR < M[AR]
Nothing

Execute a register-reference instr.
Execute an input-output instr.

REGISTER REFERENCE INSTRUCTIONS

Register Reference Instructions are identified when

-D7=1,1=0
- Register Ref. Instr. is specified in BO ~ B11 of IR
- Execution starts with timing signal T3

r=D7 I’ T3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11, the ith bit of IR.

r: SC«0
CLA rB11: AC<«0
CLE rB}l0: E<O
CMA rB9: AC « AC’
CMErBS3: E«F
CIR rBY: AC « shr AC, AC(15) « E, E < AC(0)
CiL rBé: AC « shl AC, AC(0) « E, E « AC(15)
INC rBb: AC—AC+1
SPA rB4: if (AC(15) = 0) then (PC < PC+1)
SNA rB3: if (AC(15) = 1) then (PC <« PC+1)
SZA rB2: if (AC = 0) then (PC < PC+1)
SZE rB]: if (E = 0) then (PC < PC+1)
HLT rB0: S < 0 (Sis a start-stop flip-flop)

5.6 MEMORY REFERENCE INSTRUCTIONS

Operation
Decoder

ND DO | AC« ACA M[AR]

DD D1 | AC« AC+ M[AR], E « Cout

DA D2 | AC <« MI[AR]

TA D3| M[AR] « AC

UN D4 PC« AR

SA D5| M[AR] « PC,PC«— AR+1
SZ D6| M[AR] « M][AR]+1, if M[AR] + 1 =0 then PC « PC+1

Symbol Symbolic Description

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when | = 0, or during timing signal T3 when 1 =1

- Memory cycle is assumed to be short enough to be completed in a CPU cycle

- The execution of MR Instruction starts with T4

AND to AC
DOT4: DR <« M[AR] Read operand
DOT5: AC« ACADR,SC«0 AND with AC
ADD to AC
D1T4: DR <« M[AR] Read operand

D1T5: AC < AC + DR, E « Cout, SC < 0 Add to AC and store carry in E

MEMORY REFERENCE INSTRUCTIONS

LDA: Load to AC

D2T4: DR « M[AR]

D2T5: AC<«DR,SC«0
STA: Store AC

D3T4: MI[AR] « AC,SC«0
BUN: Branch Unconditionally

DAT4: PC<« AR,SC« 0

BSA: Branch and Save Return Address
M[AR] < PC,PC<— AR +1

Memory, PC, AR at time T4

20 | O BSA 135
Return address: PC = 21

Next instruction

AR =135
136 Subroutine
1 BUN 135
Memory

20
21

135
PC=136

Memory, PC after execution

0 BSA 135

Next instruction

21

Subroutine

|

1 BUN 135

Memory

Memory Reference Instructions

BSA: executed in a sequence of two micro-operations:
D5T4: M[AR]«< PC, AR« AR+1
D5T5: PC« AR,SC«0

ISZ: Increment and Skip-if-Zero
D6T4: DR <« M[AR]
D6T5: DR« DR+1
D6T6: M[AR] <« DR, if (DR=0) then (PC«—PC+1), SC«<0

Memory-reference instruction

AND ADD LDA STA
DR €MI[AR] DR €MI[AR] DR € M[AR] MIAR] € AC
SC €0
1 DoT 5 v DTy v _Dg
AC € AC ADR AC € AC + DR AC € DR
SC<-0 E € Cout SC€0
&0
BUN BSA ISZ
l DgT 4 l D5T 4 DeT 4
PC € AR M[AR] € PC DR € M[AR]
SC €0 AR € AR +1
l DsT 5 v DeTs
PC € AR DR € DR+1
SC €0
\ 4 DeT ¢
M[AR] € DR
If (DR = 0)

then (PC €< PC+1)

SC€0

Input-Output and Interrupt

+ Instructions and data stored in memory must
come from some input device

 Computational results must be transmitted to
the user through some output device

 For the system to communicate with an input
device, serial information 1s shifted into the
input register INPR

Input-Output and Interrupt

Input-output
terminal

Printer

Serial
communication
interface

registers and
Computer
flip-flops

Receiver
interface

<—— outrR | |FGO]

Keyboard

I AC |

Transmitter
interface

—{_neR | [Fal]

— Serial Communications Path
=t Parallel Communications Path

Input-Output and Interrupt

- INPR and OUTR communicate with a

communication interface serially and with the
AC 1 parallel. They hold an &-bit
alphanumeric information

+ I/O devices are slower than a computer system
- we need to synchronize the timing rate
difference between the input/output device and
the computer.

Input-Output and Interrupt

- FQGI 1s set to 1 when a new information 1is

available 1n the mput device and 1s cleared to 0
when the information 1s accepted by the
computer

- FGO: 1-bit output flag used as a control flip-
flop to control the output operation

- If FGO 1s set to 1, then this means that the
computer can send out the information from

 p—a —~—

Input-Output and Interrupt

* The process of mput information transfer:
— Initially, FGI 1s cleared to 0

— An 8-bit alphanumeric code is shifted into INPR
(Keyboard key strike) and the input flag FGI 1s set
to 1

— As long as the flag 1s set, the information in INPR
cannot be changed by another data entry

Input-Output and Interrupt

— Once the flag 1s cleared, new information can be
shifted into INPR by the imnput device (striking
another key)

+ The process of outputting information:

— Initially, the output flag FGO 1s set to 1

— The computer checks the flag bit; if 1t 1s 1, the
information from AC 1s transferred in parallel to

OUTR and FGO 1s cleared to 0

Input-Output and Interrupt

- When the operation 1s completed, the output
device sets FGO back to 1

— The computer does not load a new data
information mmto OUTR when FGO 1s 0 because
this condition indicates that the output device is
busy to receive another information at the

moment!!

Input-Output Instructions

Needed for:

— Transferring information to and from AC register
— Checking the flag bits
— Controlling the interrupt facility

The control unit recognize it when D7=1 and I = 1

The remaining bits of the instruction specify the
particular operation

Input-Output Instructions

Program Interrupt

The process of communication just described is referred to as
Programmed Control Transfer

The computer keeps checking the flag bit, and when it finds it
set, 1t initiates an information transform (this 1s sometimes
called Polling)

This type of transfer is in-efficient due to the difference of
information flow rate between the computer and the I/O device

Program Interrupt

The computer i1s wasting time while checking the flag instead
of doing some other useful processing task

An alternative to the programmed controlled procedure is to
let the external device inform the computer when it 1s ready
for the transfer

This type of transfer uses the interrupt facility

Program Interrupt

While the computer 1s running a program, it does not check
the flags

Instead:

— When a flag 1s set, the computer 1s immediately interrupted
from proceeding with the current program

— The computer stops what 1t 1s doing to take care of the
input or output transfer

— Then 1t returne to the current nroocram to continue what 1t

Program Interrupt

The interrupt facility can be enabled or disabled via a
flip-flop called IEN

The interrupt enable flip-flop IEN can be set and
cleared with two instructions (IOF, ION):

— IOF: IEN < 0 (the computer cannot be interrupted)
— ION: IEN € 1 (the computer can be interrupted)

Program Interrupt

+ Another flip-flop (called the interrupt flip-flop
R) is used 1n the computer’s interrupt facility
to decide when to go through the interrupt
cycle

FGI and FGO are different here compared to
the way they acted 1n an earlier discussion!!

Program Interrupt

+ The 1interrupt cycle 1s a hardware
implementation of a branch and save return
address operation (BSA)

- The return address available in PC 1s stored in

a specific location where it can be found later
when the program returns to the instruction at
which 1t was interrupted

 This location may be a processor register, a

Program Interrupt

For our computer, we choose the memory
location at address 0 as a place for storing
the return address

Control then inserts address 1 into PC:

— this means that the first instruction of the
interrupt service routine should be stored in
memory at address 1,

- or, the programmer must store a branch
1nstruct10n that sends the control to an interrupt

Program Interrupt

R = Interrupt flip-flop

Program Interrupt

IEN, R € 0: no more interruptions can
occur until the interrupt request from the flag
has been serviced

- The service routine must end with an

instruction that re-enables the interrupt (IEN
< 1) and an instruction to return to the
instruction at which the interrupt occurred

- The 1nstruction that returns the control to the

original program 1s "indirect BUN 0"

Program Interrupt

Example: the computer 1s interrupted during
execution of the instruction at address 255

Memory
Before interrupt After interrupt cycle
0 0 256
1 |0 __BUN 1120 PC=1 |0 __BUN 1120
Main Main
255 Program 255 Program
PC = 256 256
1120 1120
I/0 I/0
Program Program
|1 BUN 0 1 __BUN 0

Interrupt Cycle

* The fetch and decode phases of the instruction
cycle must be :

(Replace TO, T1, T2 = R'TO, R'T1, R'T2 (fetch
and decode phases occur at the instruction cycle
when R = 0)

+ Interrupt Cycle:
- RT0: AR « 0, TR « PC

TNrE 4 N AT A TX21 . la mB B h n Wal . ra\

Interrupt

Further Questions:

How can the CPU recognize the device requesting an
interrupt?

Since different devices are likely to require different
interrupt service routines, how can the CPU obtain the
starting address of the appropriate routine in each
case?

Should any device be allowed to interrupt the CPU
while another interrupt is being serviced?

How can the situation be handled when two or more
interrupt requests occur simultaneously?

Complet Description

(Instruction Cycle) =0 (Interrupt Cycle)

l R'TO

R'T1 RT1

R'T2 RT2

(Register or 1/0) =1$=0 (Memory Ref)

=0 (Register) (Indir) =1 (Dir)

(1/0

y v7’'I'T3

A\ 4 v

D7'T4

Complete Computer Description

Complete Computer Description

Design of Basic Computer

A memory unit: 4096 x 16.

Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and
SC

Flip-Flops (Status): L, S, E, R, IEN, FGI, and
FGO

Decoders:
1. a3x8 Opcode decoder

2. a4x16 timing decoder
Common bus: 16 bits

Control logic gates

Adder and T anoice civenniite C oannoctead to A C

Design of Basic Computer

The control logic gates are used to control:

— Inputs of the nine registers

— Read and Write inputs of memory

- Set, Clear, or Complement inputs of the flip-flops
- S2, S1, SO that select a register for the bus

- AC Adder and Logic circuit

Design of Basic Computer

Control of registers and memory

The control inputs of the registers are LD (load),
INR (increment), and CLR (clear)

To control AR We scan table to find out all the
statements that change the content of AR:

R’T0: AR « PC LD(AR)
R’T2: AR« IR(0-11) LD(AR)

D’7IT3: AR« M[AR] LD(AR)
RT0: AR« 0 CLR(AR)
D5T4: AR« AR+1 INR(AR)

Design of Basic Computer

o From bus ——% To bus
7T L

TI3 _l_ LD Clock

TZ INR
CLR

R —>o-
To
D5
T4

Design of Basic Computer

— To control the Read input of the memory we scan
the table again to get these:

DOT4: DR € M[AR]
D1T4: DR € M[AR]
D2T4: DR ¢ M[AR]

D6T4: DR € M[AR]
D7'IT3: AR € M[AR]
R'T1: IR € M[AR]

- 2> Read=R'T1 +D7'IT3 + (D0 + D1 + D2+ D6)
T4

Design of Basic Computer

Control of Single Flip-flops (IEN for
example)

pB7: IEN € 1 (I/O Instruction)
pB6: IEN < 0 (I/O Instruction)

RT2: IEN € 0 (Interrupt)
where p = D7IT3 (Input/Output Instruction)

If we use a JK flip-flop for IEN, the control gate
logic will be as shown 1n the following slide:

Design of Basic Computer

IEN

J K Q(t+1)
0 0 Q(t)

0 1 0

1 0 1

1 1 Q(t)

JK FF Characteristic Table

Design of Basic Computer

Control of Common bus 1s accomplished by
placing an encoder at the inputs of the bus
selection logic and implementing the logic
for each encoder input

Design of Basic Computer

To select AR on the bus then x1 must be 1.
This 1s happen when:

D4T4: PC € AR
D5TS: PC € AR

— x1 =D4T4 + D5T5

Design of Basic Computer

For x/:

— X7=R'T1+D7IT3+ (D0 + D1 + D2 + D6)T4 where it
is also applied to the read input

Design of Accumulator Logic

Circuits associated with AC

16

16

From DR

To bus
From INPR

All the statements that change the content of AC

Design of Accumulator Logic

Gate structures for controlling
the LD, INR, and CLR of AC

1
ot Lage —~—+ Tobus
Do AND Clock
Tsg
D4q ADD
D, LDA =
Ts
p INPR
B11
r COM
Bg
SHR
B7
SHL
Bg
INC
Bs
CLR
B11

Adder and Logic Circuit

iiﬁ

DR(i) Ac(i)

AND

LD

5‘)" L

v ADD

* C o LDA .

YLy

REGISTER TRANSFER AND
MICROOPERATIONS

* Register Transfer Language

» Register Transfer

* Bus and Memory Transfers

» Arithmetic Microoperations

* Logic Microoperations

SIMPLE DIGITAL SYSTEMS

Combinational and sequential circuits can be used to create simple digital
systems.

These are the low-level building blocks of a digital computer.
Simple digital systems are frequently characterized in terms of
— the registers they contain, and
— the operations that they perform.
Typically,
— What operations are performed on the data in the registers
— What information is passed between registers
The operations on the data in registers are called microoperations.

The functions built into registers are examples of microoperations

— Shift

T - 1

An elementary operation performed (during one clock
pulse), on the information stored 1n one or more
registers

1 clock cycle:

1 |

Registers ‘ Ly
g | (f)
! |
R € f(R, R)

f: shift, load, clear, increment, add, subtract,
complement,and, or, xor, ...

ORGANIZATION OF A DIGITAL SYSTEM

* Definition of the (internal) organization of a
computer

- Set of registers and their functions

- Micro operations set

Set of allowable micro operations provided by
the organization of the computer

- Control signals that initiate the sequence of micro
operations (to perform the functions)

REGISTER TRANSFER LEVEL

Viewing a computer, or any digital system, in this way 1s
called the register transfer level

This 1s because we’re focusing on
— The system’s registers
— The data transformations in them, and

— The data transfers between them.

REGISTER TRANSFER LANGUAGE

Rather than specifying a digital system in words, a specific
notation is used, register transfer language

For any function of the computer, the register transfer
language can be used to describe the (sequence of)
microoperations

Register transfer language
— A symbolic language

— A convenient tool for describing the internal organization
of digital computers

— (Can al<o be u<ed to facilitate the de<ion nroces< of dioital

DESIGNATION OF REGISTERS

Registers are designated by capital letters, sometimes followed by numbers
(e.g., A, R13,IR)

Often the names indicate function:
- MAR - memory address register
- PC - program counter

- IR - 1nstruction register

Registers and thejr contents can be viewed and represented in various ways

— A register can be viewed as a single entity:

MAR

— Poaoaadictoara rmraxr alena e rarnrocantad chavrii1ma the lhite AF Aata thayr ~Aanta 11

Designation of a register
- a register
- portion of a register

- a bit of a register

Common ways of drawing the block diagram of a

register

Register

R1

15

R2

Numbering of bits

Showing individual bits

Z_6

24

3

2

1

0

15

8

7

PC(H)

PC(L)

Subfields

REGISTER TRANSFER

Copying the contents of one register to another is a register
transfer

A register transfer 1s indicated as

R2 « R1

— In this case the contents of register R1 are copied (loaded)
into register R2

— A simultaneous transfer of all bits from the source R1 to
the destination register R2, during one clock pulse

— Note that this 1s a non-destructive; 1.e. the contents of R1
are not altered by copying (loading) them to R2

A register transfer such as

R3 « R5

Implies that the digital system has

— the data lines from the source register (R5) to the
destination register (R3)

— Parallel load 1n the destination register (R3)

— Control lines to perform the action

CONTROL FUNCTIONS
Often actions need to only occur if a certain condition is true
This 1s similar to an “i1f” statement in a programming language

In digital systems, this 1s often done via a control signal,
called a control function

— If the signal is 1, the action takes place

This 1s represented as:

P: R2 <RI

Which means “if P = 1, then load the contents of register R1 into
register R2”, 1.e.,1f (P=1) then (R2 <« R1)

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

Block dagB@ <R 1

Timing diagram

Control
Circuit

p

Load

Clock

Load

f"'

N |
> R? 4«9 ok

Transfer occurs here

The same clock controls the circuits that generate the control
function and the destination register

Registers are assumed to use positive-edge-triggered flip-

flops

SIMULTANEOUS OPERATIONS

If two or more operations are to occur simultaneously, they are
separated with commas

P: R3 < R5, MAR « IR

Here, 1f the control function P = 1, load the contents of R5 into

R3, and at the same time (clock), load the contents of register
IR into register MAR

BASIC SYMBOLS FOR REGISTER TRANSFERS

Symbols Description Examples
Capital letters Denotes a register MAR, R2
& numerals
Parentheses () Denotes a part of a register R2(D-7), R2(L)
Arrow <« Denotes transfer of information R2 < R1
Colon Denotes termination of control function P:
Comma , Separates two micro-operations A<B, B« A

CONNECTING REGISTRS

In a digital system with many registers, it is impractical to
have data and control lines to directly allow each register to be
loaded with the contents of every possible other registers

To completely connect n registers = n(n-1) lines
O(n2) cost

— This 1s not a realistic approach to use in a large digital
system

Instead, take a different approach
Have one centralized set of circuits for data transfer — the bus

Have control circuits to select which register 1s the source, and
which is the destination

BUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is transferred, from any of
several sources to any of several destinations.

From a register to bus: BUS « R

I Reqister A I I Reaqister BI I Reaqister QI I Reqister D I

‘ ! ' '
v

Bus lines

ill \BAA **** ;**
T Tver Jver e

_[°m; [ik [°m& [“m&
SSfs

S)e;lpr"r L
v b

4-line bus

TRANSFER FROM BUS TO A DESTINATION REGISTER

Bus lines
A\ 4 . \ 4 } v v) Load
Reg. RO I™ Reg. R1 Reg. R2 Reg.R3 I™
|
Do D1 Dy D3
—> _
W —
Decoder

Three-State Bus Buffers

Output Y=A if C=1

Normal input A [~ o .
l:l High-impedence if C=0
Control input C

Bus line with three-state buffers

N~ Bus line for bit 0
A0 L]
B0 >—
O “T 1~
DO LT
0— o™
Select g1 — %
2

Enable —

BUS TRANSFER IN RTL

Depending on whether the bus 1s to be mentioned explicitly or not,
register transfer can be indicated as either

R2 <~ R1

or

BUS <~ R1, R2 <~ BUS

In the former case the bus is implicit, but in the latter, it is explicitly
indicated

MEMORY (RAM)

Memory (RAM) can be thought as a sequential circuits containing
some number of registers

These registers hold the words of memory

Each of the r registers is indicated by an address
These addresses range from O to r-1

Each register (word) can hold n bits of data

Assume the RAM contains r = 2k words. It needs the followinglata input lines

- n data input lines { n
- n data output lines address lines
Kk
-k address lines Read > RAM
unit
- A Read control line Write >
— A Write control line i n

data output lines

MEMORY TRANSFER

Collectively, the memory is viewed at the

Since it contains multiple locations, we
memory we will be using

register level as a device, M.

must specify which address in

This 1s done by indexing memory references

Memory i1s usually accessed in computer systems by putting the desired
address in a special register, the Memory Address Register (MAR, or AR)

M

When memory is au%i the content
memory unit’s address lines

Memory [Read

5 of thie M[I&.R_gﬁt Welt to the

|

Data out Data in

MEMORY READ

To read a value from a location in memory and load it into a register,
the register transfer language notation looks like this:

R1 < M[MAR]

This causes the following to occur
— The contents of the MAR get sent to the memory address lines
- ARead (= 1) gets sent to the memory unit
— The contents of the specified address are put on the memory’s output data lines

— These get sent over the bus to be loaded into register R1

MEMORY WRITE

To write a value from a register to a location in memory looks like
this in register transfer language:

M[MAR] < R1

This causes the following to occur
— The contents of the MAR get sent to the memory address lines
— A Write (= 1) gets sent to the memory unit

— The values in register R1 get sent over the bus to the data input lines of the
memory

— The values get loaded into the specified address in the memory

SUMMARY OF R. TRANSFER MICROOPERATIONS

A<— B Transfer content of reg. B into reg. A
AR <— DR(AD)Transfer content of AD portion of reg. DR into reg. AR

A <— constant Transfer a binary constant into reg. A

ABUS <— R1, Transfer content of R1 into bus A and, at the same time,
R2 <— ABUS transfer content of bus A into R2

AR Address register

DR Data register

MIR] Memory word specified by reg. R

M Fquivalent to M[AR]

DR<— M Memory read operation: transfers content of

memory word specified by AR into DR

M <— DR Memory write operation: transfers content of
DR into memory word specified by AR

MICROOPERATIONS

Computer system microoperations are of four types:

- Register transfer microoperations
- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic Microoperations

ARITHMETIC MICROOPERATIONS

The basic arithmetic microoperations are
- Addition
— Subtraction
— Increment

- Decrement

The additional arithmetic microoperations are
— Add with carry

— Subtract with borrow
~ Transfer/Load Summary of Typical Arithmetic Micro-Operations

— | etc. ..R3« R1+R2 Contents of R1 plus R2 transferred to R3
R3« R1-R2 Contents of R1 minus R2 transferred to R3

R2 < R2 Complement the contents of R2

R2 < R2'+1 2's complement the contents of R2 (negate)
R3 <~ R1+ R2’H{1 subtraction

Rl«<— R1+1 Increment

R1 < R1-1Degrement

Arithmetic Microoperations

BINARY ADDER / SUBTRACTOR / INCREMENTER

Binary Adder v v v v v v 2 |

P y y 7

C4 S3 S2 S1 SO

Binary Adder-Subtractor

B3 A3 B2 A2 B1 Al BO A0

NI

FA <1 FA 21 FA <1 FA &
£ v v v v
C4 S 3 S 2 S 1 S0
Binary Incrementer A2 Al A0 1
I I e I A IR A
HAy HAy HAy HAy
C S C S @ S C S
4 S1

C

(2]
o

ARITHMETIC CIRCUIT

Arithmetic Microoperations

Cin
AO X0 co
3 FA o0
YQ C
3—65(
Al X1 c1
2 FA Pt
Y1 y)
B1 I & gl\ﬂ C
A2 X2 c2
3 FA ”
B2 1 5. gl\ﬂﬁ& Y2 C3
ENAALTANS
A3 X3 c3
z &
B3 — g I\% P ﬁﬂL
(3 IVI /A Cout
S1 SO Cin Y Output Microoperation
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B’ D=A+PB Subtract with borrow
0 1 1 B’ D=A+B+1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 3 3 3 Bty Feaacferry

Logic Microoperations

LOGIC MICROOPERATIONS

Specify binary operations on the strings of bits in registers

— Logic micro operations are bit-wise operations, i.e., they work on the individual bits
of data

— useful for bit manipulations on binary data

— useful for making logical decisions based on the bit value

There are, in THCH ST C}%f% TS hat can be defined

over two binaffy 18pubw dbldDbe T 1
0O 110 O O : 1 1 1
1 0|0 O 1...0 1 1
1 110 1 Q .1 0 1

However, most systems only implement four of these

A = TN 7 N —~ s 7 N T N TN 7~ N\ —~ < M T N\ T

Logic Microoperations

LIST OF LOGIC MICROOPERATIONS

List of Logic Microoperations

- 16 different logic operations with 2 binary vars.
- n binary vars = 7 2 Tunctions

Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

x]0011 Boolean Micro-

yv|]0101 Function Operations Name
000¢(FO =0 F«0 Clear
0001 F1 =xy F«<AAB AND
001¢(F2 =xy' F<«< AAPB
0011 F3 =x F<— A Transfer A
010¢(F4 =x'y F< AAB
0101 F5 =y F«<B Transfer B
011¢ F6 =x®vy F<—ADB Ekclusive-OR
0111 F7 =x+vy F«<AvVvB OR
100¢(F8 =(x+vy)' |F«< (AvBY) NOR
1001 FO =(x®y)' | F«< (A®B) Exclusive-NOR
101¢(F10 =y F<« B Complement B
1011 Fll=x+Yy' F«<AvVB
110¢(F12 =X F« A Complement A
1101 F13=x"+y F«< AVB
111¢ F14 = (xy)' F < (A AB) NAND
1111 F15=1 F<«alll's Settoall 1's

Logic Microoperations

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

J

1
_[4X] | Fi
| MUX
=
2
|> 3 Select

Function table

S1 SO Output u-operation
O 0 F=AAB AND
O 1] F=AvB OR
1 0| F=A®B XOR
1 1 F=A Complement

Logic Microoperations

APPLICATIONS OF LOGIC MICROOPERATIONS

Logic micro operations can be used to manipulate individual bits or a
portions of a word 1n a register

Consider the data in a register A. In another register, B, 1s bit data that
will be used to modify the contents of A

— Selective-set A—A+B

- Selective-complement A<« A®B

- Selective-clear A<« A<B’

— Mask (Delete) A«<A-*B

— Clear A< ADB

— Insert A< (A*B)+C

Logic Microoperations

SELECTIVE SET

In a selective set operation, the bit pattern in B is used to set certain bits
in A

1100 At

1010 B
1110 Atrl (A< A+B)

If a bit in B 1s set to 1, that same position in A gets set to 1, otherwise
that bit in A keeps its previous value

Logic Microoperations

SELECTIVE COMPLEMENT

In a selective complement operation, the bit pattern in B is used to
complement certain bits in A

1100 At

1010 B

0110 Atvl (A< A @ B)

If a bit in B 1s set to 1, that same position in A gets complemented from
its original value, otherwise it is unchanged

Logic Microoperations

SELECTIVE CLEAR

In a selective clear operation, the bit pattern in B 1s used to clear certain
bits in A

1100 At

1010 B

0100 Atsl (A< A - B

If a bit in B 1s set to 1, that same position in A gets set to 0, otherwise it
is unchanged

Logic Microoperations

MASK OPERATION

In a mask operation, the bit pattern in B is used to clear certain bits in A

1100 At

1010 B

1000 Attl (A< A - B)

If a bit in B 1s set to 0, that same position in A gets set to 0, otherwise it
is unchanged

Logic Microoperations

CLEAR OPERATION

In a clear operation, if the bits in the same position in A and B are the
same, they are cleared in A, otherwise they are set in A

[E—
[E—
-
-
2>
—

p—
()
[{ =Y
()
o

0110 Atvl (A< A @ B)

Logic Microoperations

INSERT OPERATION

An insert operation i1s used to introduce a specific bit pattern into A
register, leaving the other bit positions unchanged

This 1s done as
— A mask operation to clear the desired bit positions, followed by

— An OR operation to introduce the new bits into the desired positions

— Example

 Suppose you wanted to introduce 1010 into the low order four
bits of A: 1101 1000 1011 0001 A (Original) 1101
1000 1011 1010 A (Desired)

1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask

1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits

4 4 N 1 4 NN/ 1T NN 1 1 4 ™ 1 N A /TN 4 1\

Shift Microoperations

SHIFT MICROOPERATIONS

There are three types of shifts
~ Logical shifi
~ Circular shifi
— Arithmetic shift
What differentiates them 1s the information that goes into the serial input

* A right shift operation

Serial
input \
Inpu » > » > » > > —>
A left shift operation
Serial
input

> < < < < < < < /
] < T T T T T <

Shift Microoperations

LOGICAL SHIFT

In a logical shift the serial input to the shift is a 0.

A right log(i)cal shift operation:

\ » N N
>

\ 4
\ 4
\ 4
\ 4
\ 4
l

A
A
A
A
A
A
L

eration!:

>

A left logical shif

In a Register Transfer Language, the following notation is used

— shl for alogical shift left

Shift Microoperations

CIRCULAR SHIFT

In a circular shift the serial input is the bit that is shifted out of the other
end of the register.

A right circular shift operation:

» [[
> > »

Y
A 4
Y
A 4
Y

A
A
A
A
A
A

A left circularsh ' eratlOR:

In a RTL, the following notation is used
— cil for a circular shift left

— cir for a circular shift right

Shift Microoperations

ARITHMETIC SHIFT

An arithmetic shift is meant for signed binary numbers (integer)

An arithmetic left shift multiplies a signed number by two
An arithmetic right shift divides a signed number by two

The main distinction of an arithmetic shift is that it must keep the sign of
the number the same as it performs the multiplication or division

A right arithmetic shift operation:

[[
» »

\ 4
Y
\ 4
Y
\ 4

™ SiglT \
p1t
0
Slg < < < < < < < <—/

bit]
A left arithmetic shift operation:

Shift Microoperations

ARITHMETIC SHIFT

An left arithmetic shift operation must be checked for the overflow

0
Sigf < < < < < < < «—
bit
%_ Before the shift, if the leftmost two
y v bits differ, the shift will result in an

overflow

* In a RTL, the following notation is used
— ashl for an arithmetic shift left
— ashr for an arithmetic shift right
— Examples:
» R2 <« ashr R2
» R3 <« ashl/R3

Shift Microoperations

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

A0

Al

A2

A3

0 for shift right (down)

Serial
input (IR) Select) for shift left (up)
S
0 Mux
1
S
0 Mux
1
S
0 Mux
1
S
0 Mux
1
Serial

input (IL)

HO

H1

H2

H3

ARITHMETIC

LOGIC SHIFT

UNIT

S3
s2 ii
S1
SO
Arithmetic |2
Circuit
‘ Select
0 4x1[—¢.
Ci+1 1 MUX I:I
2
| 3
8. Logic E |
i :)
A Circuit
) shr
N shi
Ai+1
§3 S2 S1 SO Cin Operation Functipn
0 0 O 0 0 F=A Transfer A
0 O 0 O 1 F=A+41 Increment A
0 0O 0 1 0 F=A+B Additign
0 0 O 1 1 F=A+B+1 Addwith cafry
0 0 1 0 0 F=A+B’ Subtract with borrow
0 0 1 0 1 F=A+#B+1 Subtraction
0 0 1 1 0 F=A-1 Decrement A
0 0 1 1 1 F=A TransferA
0 1 0 0 X F=AAB AND
0 1 0 1 X F=AVB OR
0 1 1 0 X F=A®B XOR
0 1 1 1 X F=A Complement A
1 0 X X X F=shiA Shift right Ainto F
1 1 X X X F =shilA Shift left A into F

Shift Microoperations

* UNIT Il ARITHMETIC OPERATIONS
ALU (Arthimetic Logic Unit)

Reference
* Appendix B: The Basics of Logic Design

* Book - David A. Patterson and John L. Hennessey, “Computer
organization and design", Morgan kauffman / Elsevier, Fifth
edition, 2014.

Logic Gates

AND

Input A | Input B |Output Q
0 0 0
1 0 0
0 1 0
1 1 1

OR

Q=A+B

Input A | Input B |{Output Q
0 0 0
1 0 1
0 1 1
1 1 1

OR

Q=A+B

Input A | Input B |{Output Q
0 0 0
1 0 1
0 1 1
1 1 1

NOT (Inversion)

_a |c=a
0 1
1 0

|V|u|tip|ex0r ““

0 3
1 b
d
=0 Ifd==
—* C Thenc=a
b —1 Else if d ==
_/ Thenc=Db

Used to select an operation

Zof16

ALU

ALU definition

* Arithmetic Logic Unit (ALU) - Hardware

that performs addition, subtraction, and
usually logical operations such as AND and OR.

ALU

- Operation selector — output from multiplexor

OperatiorI selector

[

, " output

ALU symbol

a, b — inputs

ALU operation — operation selector
Carry out — add, sub

Zero — slt,beq,bne

Result — add, sub, and, or
Overflow - Exception

> ALU

T

—— Tl
—= Hasult

— Cverflow

CarryQut

Agenda

Signed Numbers

— 1s complement

— 2s complement
Binary Addition
Binary Subtraction
Multiplication

— Flow chart — algorithm

— Hardware design
— Problem

Reference

* Chapter 2 : Instructions: Language of the Computer
— 2.4 Signed and Unsigned Numbers

* Chapter 3 : Arithmetic for Computers

* Book - David A. Patterson and John L. Hennessey, “Computer
organization and design", Morgan kauffman / Elsevier, Fifth
edition, 2014.

Signed Numbers

* Unsigned numbers — Ex: 0, 100, 999
* Signed numbers — Ex: -100, 0, +100

* How computers represent + or —in 0’s and
1’s?
— 1s complement

— 2s complement

1s complement

* Question - find the 1s complement of
10001111, -

* Solution —inverting the bits
1000 1111,

2s complement

* Question — find the 2s complement of
10001111, -

* Solution —inverting the bits and adding 1
1000 1111,

0111 0000, -> 1s complement
1 —>add1l

0111 0001,

Another problem

* Question : find 1s and 2s complement for the
following

— 00000110,

— 00011000,

Binary Addition

A B A+B Carry Out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Binary Addition Problem

0111 two = 7ten
+ 0110 two = o6ten

= 1101 two = 13ten

Binary Subtraction Problem

* Subtraction via addition using the two’s complement representation
of 6:

0000 0000 0000 0000 0000 0000 0000 Ollltwo = "/ten
+ 1111 1111 1111 1111 1111 1111 1111 1010two = -—-6bten

= 0000 0000 0000 0000 0000 0000 0000 000ltwo = lten

Two’s Complement Addition: Verifying
Carry/Borrow method

* Two (n+1)-bitintegers: X=x X, Y=y Y

Carry/borrow 0<X +Y < 2" 2"<X' +Y <2m-1
add X + Y (no Carryln to last bit) | (Carryln to last bit)
x=0,vy=0 ok not ok(overflow!)
x =1,y =0 ok ok
Xx.=0,vy=1 ok ok
x =1,y =1 not ok(overflow!) ok

* Prove the cases above!

* Prove if there is one more bit (total n+2 then) available for the result then
there is no problem with overflow in add!

Two's Complement Operations

* Now verify the negation shortcut!
— consider X + (X +1) = (X + X) + 1:

associative law — but what if there is overflow in one of the adds on
either side, i.e., the result is wrong...!

— think minint !

— Examples:
* -0101=1010+1=1011
* -1100=0011+1=0100
* -1000=0111+1=1000

Detecting Overflow

* No overflow when adding a positive and a negative number
* No overflow when subtracting numbers with the same sign
* OQverflow occurs when the result has “wrong” sign :

Operation, Operand A, Operand B Result Actual
Indicating without
Overflow Overflow
A+B > 0(+ve) >0 (+ve) <0 (-ve) +ve
A+B <0 (-ve) <0 (-ve) >0 (+ve) -ve
A—-B >0 (+ve) <0 (-ve) <0 (-ve) +ve
A-B <0 (-ve) >0 (+ve) >0 (+ve) -ve

Consider the operations A+ B,and A—B
— can overflow occur if Bis 0 ?
— can overflow occurifAis0 ?

Effects of Overflow

* If an exception (interrupt) occurs
— control jumps to predefined address for exception
— interrupted address is saved for possible resumption

* Don't always want to cause exception on overflow
— add, addi, sub cause exceptions on overflow

— addu, addiu, subu do not cause exceptions on
overflow

Multiply

* Binary multiple of 2ten x 3ten = 6ten
* Multiplicand — 2

* Multiplier — 3
* Product - 6

Multiply

* Grade school shift-add method:
Multiplicand 1000

Multiplier X1 001
1000
0000
0000
1000
Product 01001000

* m bits x n bits = m+n bit product

* Binary makes it easy:
— multiplier bit 1 => copy multiplicand (1 x multiplicand)
— multiplier bit 0 => place 0 (0 x multiplicand)

Multiplication -
Sequential Refined Version
Algorithm

Sequential(Refined) version of Multiplication Algorithm

(st)

<
<«

v

= 1%’h =0
\4
1a. Add multiplicand to the left half of

the product and place the result in
the left half of the Product register

v v

2. Shift the Product register right 1 bit

l

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Sequential(Refined) Version of Multiplication Problem

2X3=6; 0010x 0011 =0110
Initialize 0010 0000 0011
1 1a. 1=> Prod = Prod + Mcand 0010 0010 0011
2. Shift Right Product 0010 0001 0001
2 1a. 1=> Prod = Prod + Mcand 0010 0011 0001
2. Shift Right Product 0010 0001 1000
3 1a. 0=> No operation 0010 0001 1000
2. Shift Right Product 0010 0000 1100
4 1la. 0=> No operation 0010 0000 1100

2. Shift Right Product 0010 0000 0110

Last Class Summary

Signed Numbers Representation
— 1s complement

— 2s complement
Binary Addition
Binary Subtraction
Multiplication

— Flow chart — algorithm

— Hardware design - pending
— Problem

Multiplication

* Two versions of multiplication:
— Sequential refined version algorithm
— Sequential first version algorithm

* Booth’s algorithm

— Signed and Unsigned multiplication

Sequential(Refined) Version of Multiplication Hardware

Multiplicand

l32 bits
N
32-bit ALU
|

Shift right Control
Product Write ::@

64 bits
v\

Product register is initialized with multiplier on right

Multiplication -
Sequential First Version
Algorithm

Sequential First Version of Multiplication Algorithm

—

PMultiplierd = 1 1. Test MultiplierD = O

Muliiplierd
ki

1a. Add multiplicand to product and
place the result in Product register

'

2. 8hift the Multiplicand register left 1 bit

L J
3. 5hift the Multiplier register right 1 bit

Mo: = 3Z repetitions
JZ2nd repetition?

Yes: 32 repetitions

Sequential First Version of Multiplication Problem

2x3=6; 0010 x 0011 =0110
-—m—
Initial values 0000 0010 0000 0000
1 1a: 1 — Prod = Prod + Mcand DEI:Li Q000 0010 0000 0010
2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010
2 la: 1 = Prod = Prod + Mcand 0001 Q000 0100 0000 0110
2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 000D Q000 1000 0000 0110
3 1: 0 = No operation 0000 Q000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110
4 1: 0 = No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier Q000 0010 0000 0000 0110

Sequential First version of Multiplication Hardware

-
Multiplicand
Shift lefl |--—j
54 bits
— -
Multiplier
64-bit ALU Shift right |~e—
32 bits

"..--'-
Product | Control test Y&
Write

|54 bits

Multiply in MIPS

2 Registers:

separate pair of 32-bit registers to contain the 64-bit product
called Hi and Lo.

4 Instructions:

multiply (mult)

multiply unsigned (multu)

move from lo (mflo) — to place the product into registers
Move from hi (mfhi) — to place the product into registers

Booth’s Algorithm —
Both Sighed and Unsighed
Multiplication

Reference

* Chapter 6 : Arithmetic

— 6.4 Signed — operand multiplication
* Booth algorithm
* Book — Carl Hamacher, “Computer organization™, Fifth
edition, Mc Graw Hill.

Booth’s algorithm

* 1ststep — Find the 2s complement of negative
multiplier

* 2" step —recode the 2s complement of
negative multiplier

* 3" step — multiply multiplicand and recoded
multiplier using long hand method

Basic concept - 2s complement
3 bits - Unsigned numbers —8 - (0-7)
3 bits - Signed numbers -8 -(-4,3,-2,-1,0,1,2,3)

3 bits - unsigned
numbers ﬁ\
000 0

3 bits - signed numbers

101 -3
001 1

110 -2
010 2
011 3 \jll 1
100 4 00 0
110 6 ono +2
111 7 11 +3

Example problem

* Multiply +13 x -6
* Where +13 -> multiplicand -> 5bits
. -6 -> multiplier ->5 bits
15t step -> find the 2s complement of negative multiplier
Assume : 5bit multiplier

+6 -> 00110 (sign extension)
1s complement -> 11001
Add 1 -> 1

2s complement -> 11010 = -6

Why 5 bits for +137?

+13 is in which range

-13 ... 0 ... +13 = total 27 numbers
Nearest power of 2 numberis 32 = 2°
So 5 bits to represent +13 .

How 5 bits for -67?

Find binary number of -67?
Range of -6 is -6...0..+6 = total 13 numbers
Nearest power of 2 is 24=16
6-> 0110
Invert 1001
+1-> 1
-6-> 1010
11010 -> sign extension (Make -6 extend to 5
bits)

Problem solving

* 2ndstep ->recode the 2s complement of negative multiplier
Booth multiplier recoding table:

Bit | Bit i-1 selected by bit i
0 0 OxM

0 1 +1x M

1 0 -1x M

1 1 0xM

6 = 11 0 1 0 (0
booth recoded multiplier -6 => 0 -1 +1 -1 0

Booth’s Algorithm Problem solving

* 3rdstep -> multiply multiplicand and recoded multiplier using
long hand method.

(+13) 01 1 01

X (-6) 0-1+1-1 0
0000000000
111110011
00001101
1110011
000000

(-78) 1110110010 -> how to verify this result

Booth’s multiplication features

* Handles both signed and unsigned multipliers
uniformly.

* Faster multiplication — fewer additions

How Speed affected by multiplier??

* Worst case multiplier
01010101 010101
+1-1+1-1+1 -1+1-1+1-1 +1-1+1-1
* Ordinary multiplier
1100010110111100
0-100+1-1+10-1+1000-100
* Good multiplier

000 0111110000111
000+10000-1000+100 -1

Computer Architecture
Division

Last Class Summary

* Booth’s Algorithm

Agenda

* Booth’s algorithm example
— Why 5 bits?
— How to verify the result?
* Division
— Hardware
— Algorithm
— Problem

Basic concept - 2s complement
3 bits - Unsigned numbers —8 - (0-7)
3 bits - Signed numbers -8 -(-4,3,-2,-1,0,1,2,3)

3 bits - unsigned
numbers ﬁ\
000 0

3 bits - signed numbers

101 -3
001 1

110 -2
010 2
011 3 \jll 1
100 4 00 0
110 6 ono +2
111 7 11 +3

Example problem

* Multiply +13 x -6
* Where +13 -> multiplicand -> 5bits
. -6 -> multiplier ->5 bits
15t step -> find the 2s complement of negative multiplier
Assume : 5bit multiplier

+6 -> 00110 (sign extension)
1s complement -> 11001
Add 1 -> 1

2s complement -> 11010 = -6

Why 5 bits for +137?

+13 is in which range

-13 ... 0 ... +13 = total 27 numbers
Nearest power of 2 numberis 32 = 2°
So 5 bits to represent +13 .

How 5 bits for -67?

Find binary number of -67?
Range of -6 is -6...0..+6 = total 13 numbers
Nearest power of 2 is 24=16
6-> 0110
Invert 1001
+1-> 1
-6-> 1010
11010 -> sign extension (Make -6 extend to 5
bits)

Booth’s Algorithm Problem solving

* 3rdstep -> multiply multiplicand and recoded multiplier using
long hand method.

(+13) 01 1 01

X (-6) 0-1+1-1 0
0000000000
111110011
00001101
1110011
000000

(-78) 1110110010 -> how to verify this result

DIVISION

* UNIT Il ARITHMETIC OPERATIONS
Division

Reference
* Chapter 3 : Arithmetic for Computers

* Book - David A. Patterson and John L. Hennessey, “Computer
organization and design", Morgan kauffman / Elsevier, Fifth
edition, 2014.

Divisor 1000

Long Hand Divide

1001 Quotient

|lOOlOlO Dividend
—1000.
10
101
1010
-1000
10 Remainder

* Dividend = (Quotient * Divisor) + Remainder

Division algorithms

1. Restoring
— Istversion

— Improved version

2. Non-Restoring

Restoring Divide version 1 — Algorithm

il
-

1. Subtract the Divisor reqgister from the
Remainder register and place the
result in the Remainder register

Remainder =0 Remainder < 0

Test Remainder

Y

2a. Shift the Quotient register to the l=ft, 2b. Restore the original value by adding
setting the new rightmaost bit to 1 the Divisor register to the Remainder

register and placing the sum in the
Remainder register. Also shift the
Cluotient register to the left, setiing the
new least significant bit to 0

Y Y

3. Shift the Divisor register right 1 bit

l

Mo: = 33 repetitions

33rd repetition?

Yes: 33 repetitions

Restoring Divide Version 1 - Problem

Divide 7, by 2

ten’
0000 0111, by 0010,
——mm—

Initial values 0010 0000 0000 0111
1: Rem = Rem - Div 0000 0010 D000 (1110 0111
2b: Rem <0 = +Div, sl Q, Q0 =0 Q000 0010 0000 2000 011
3: Shift Div right 0000 0001 D000 0000 0111
1: Rem = Rem - Div 0000 0001 0000 111 011
2b: Rem < 0 = +Div, sl Q, Q0 =0 0000 0001 0000 2000 011
3: Shift Div right 0000 Q000 1000 0000 0111
1: Rem = Rem — Div 0000 0000 1000 111 1111
2b: Rem <0 = +Div, sl Q, Q0 =0 0000 0000 1000 2000 011
3: Shift Div right 0000 2000 0100 0000 0111
1: Rem = Rem — Div 0000 Q000 0100 [C000 o¢
2a: Remz0=3slQ,Q0=1 0004 Q000 0100 0000 0011
3: Shift Div right 0001 Q000 0010 0000 0011
1: Rem = Rem — Div 0001 0000 0010 (G000 D001
2a: Remz0=slQ,Q0=1 2011 0000 0010 0000 0001
3: Shift Div right 0011 Q000 D001 0000 0001

Restoring Divide version 1 - Hardware

—> Data lines

il —> (Control lines
Divisor
Shift right |-+—
154 bits 7
Y o
_/ % 1-sub Quotient
64-bit ALU 4 -add Shift left |-4—
32 bits 6
|
Remainder 0) Cm
Write 5 test

64 bits T

Observations on Divide Version 1

Half the bits in divisor always O
— => 1/2 of 64-bit adder is wasted
— => 1/2 of divisor register is wasted

Intuition: instead of shifting divisor to right, shift remainder to left...

Step 1 cannot produce a 1 in quotient bit — as all bits corresponding to the
divisor in the remainder register are O (remember all operands are 32-bit)

Intuition: switch order to shift first and then subtract — can save 1
iteration...

Restoring Divide — Improved Version

(saves space) —> Data lines
—> Control lines

LIVISOr

Lo - Quotient

i 32 bits
4 2-sub
12-hit ALU 5- add
yie
=hift right |- 7
Hi Remainder [.o Shift left |1
I',-'l'-.'. -+ -'1
. _ L 3,6
/ 64 bits

/ 2

Hi - Remainder

Restoring Divide —

2. Left half of remainder = Left half of remainder - Divisor =

Remainde

3a. Shift the remainder left 1
bit, setting the rightmost bit
tol

Improved Version ;
A|gorithm 1. Shift the remainder left 1 bit

Test
Remainder

Remainder <0

|
3a. Restore the original value by
adding the Divisor register to the
left half of the Remainder register
and place the sum in the left half
of the Remainder register. Also

shift the Remainder register to the
left, setting the new rightmost bit

No; < 32 repititions

32" repitition ?

Yes; 32 repititions

Done — shift left half of remainder right 1 bit

Observations on Divide Improved
Version

* Signed divide:
— make both divisor and dividend positive and perform division
— negate the quotient if divisor and dividend were of opposite signs
— make the sign of the remainder match that of the dividend
— this ensures always
* dividend = (quotient * divisor) + remainder

* —quotient (x/y) = quotient (—x/y) (e.g. 7=3*2+1 & -7 =-3*2
— 1)

* Faster divide:

— Based on Prediction and Moore’s Law.
— SRT division

MIPS instructions
div (signed), divu (unsigned) —
— with two 32-bit register operands,
— put remainder in Hi register and quotient in Lo;
— overflow 1s 1gnored in both cases
mflo — place the quotient from Lo to general purpose register
mfhi - place the remainder from Hi to general purpose register
Example; div $s2, $sl #9s2/Ssl
Lo —quotient
Hi - Remainder
mflo $s3 # $s3 = Lo = quotient

mfhi Ss4 # Ss4 = Hi = remainder

MIPS Instructions

I Lrbl-d“.-l

Arithmetic — . , -
multiply Wit §s52, 953 Hi, Lo=$57 x §5. 64-bit signed product in Hi, Lo

multiply unsigned ity 4o o —— 64-bit unsigned product in Hi, Lo
= . DA - } L . .
divide 11 §57 853 Lo=9§52 / §s3, Lo = quotient, Hi = remainge

Nt ang remaHA

divide unsigned Jiv - $52, 95! Lo=$57/ $53, Unsigned quotie

move from Hi nfhi §s] fs1 =Hi Used to get copy of Hi
move from Lo iflc b3l fsl=1Lo Used to get copy of Lo

Non-Restoring Division

Reference:
Chapter 6 : Arithmetic

6.6 Integer Division - Nonrestoring Division

Book — Carl Hamacher, “Computer organization®,
Fifth edition, Mc Graw Hill.

Non-Restoring Divide - Algorithm

* Do the following n times:

1. If the sign of Ais O, shift A and Q left one bit
position and subtract M from A; otherwise, shift

A and Q left and add M to A.

2. Now, if the sign of Ais O, set g0 to 1; otherwise,
set g0 to O.

Non restoring divide - problem

Divide 8 by 3;

Q- 8 —Dividend - 1000
M - 3 — Divisor — 00011
A — 00000 initially
Where,

A, Q, M are registers

A and M are n+1 bits

Q is n bits

Solution: M = 00011
Iteration | Steps A Q
0 Intial 00000 1000
1 1. sign(A) =0=>a) shift A and Q left. 00001 0000
b) A=A-M 11110 0000
2. Sign(A)=1=>Q0=0 11110 0000
2 1. sign(A) =1 =>a)shift Aand Q left. 11100 0000
b) A=A+M 11111 0000
2. Sign(A)=1=>Q0=0 11111 0000
3 1. sign(A) =1 => a) shift A and Q left. 11110 0000
b) A=A+M 00001 0000
2. Sign(A)=0=>Q0=1 00001 0001
4 1. sign(A) = 0 => a) shift A and Q left. 00010 0010
b) A=A-M 11111 0010
2. Sign(A)=1=>Q0=0 11111 0010
Quotient — Q — 0010

Remainder=A+M=11111+00011=00010

Sub Word Parallelism

SubWord Parallelism

A subword is a lower precision unit of data contained
within a word.

In subword parallelism, multiple subwords are
packed into a word and then process whole words.

Since the same instruction is applied to all subwords
within the word, This is a form of SIMD(Single
Instruction Multiple Data) processing.

Sub word parallelism or data level parallelism or
vector

SubWord Parallelism

* A 32 bit processor simultaneously execute

operations on 4 eight bit operands or 2 sixteen bit
operands.

* Example:5+5=10and9+9 = 181Parallel operation
Al -16 bits A2-16 bits B1-16 bits 2-16 bits

E A N B :
Status
Status
Opcode Y
C1-16 bits ‘ C2-16 bits
0 | 18

Application of Sub-Word parallelism

* Used in multimedia operations

* which has many sub-word arithmetic operations
(8bit , 16bit and so on)

* ARMv7,ARMv8 — processors have NEON instructions
that support sub-word parallelism

* Example NEON instructions: (128 bit registers)
VADD.F32 - adds 4 32-bit data simultaneously
VMULL.S8 — multiplies 16 8-bit data simultaneously

Floating Point Operations

Floating Point

We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers (in absolute value),

e.g., 0.00000000023

— very large numbers (in absolute value) ,

e.g., —3.15576 * 10

Floating point

Eaxmple: —3.15576 * 104
Sign = negative — 0 bit
Fraction = 15576
Significand = 3.15576
Exponent =46

Floating Point - Representation

* Scientific Notation:

A notation that renders numbers with a single
digit to the left of the decimal point.

Convert to scientific notation 00.001,_ _x 2+
=>(0.0001_, x2*' =>0.0001_ x2"!

* Move n bits to right — add n to exponent

Floating Point - Representation

* Normalized scientific representation:
A number 1n floating-point notation that has no
leading Os.

Convert to normalized scientific notation
0.0001, x 2!

=>1.0,,,x 214 =>1.0,,x2°

two two

* Move n bits to left — subtract n from exponent

|EEE 754 Floating-point Standard

* |EEE 754 floating point standard:

— single precision: one word

31 bits 30 to 23 bits 22 to 0

sign | 8-bit exponent 23-bit significand

Range of single precision:

Smallest number is -> 2.0, x 10
Largest numberis->2.0,x 103

Overflow — when positive exponent becomes too large to fit
in exponent field

Underflow - when negative exponent becomes too large to
fit in exponent field

|EEE 754 Floating-point Standard

— double precision: two words

31 bits 30 to 20 bits 19 to O

sign | 1ll1-bit exponent upper 20 bits of 52-bit significand

bits 31 to 0

lower 32 bits of 52-bit significand

Range of double precision:

Smallest is -> 2.0, x 103

Largest is -> 2.0, x 1038

General representation of IEEE 754
Floating-point Standard

equals biased exponent value
/_A_\

(_I)Sign % (1 + fraction) % 7 (exponent — bias)

— bias =127 for single precision and
— bias =1023 for double precision

— Biased exponent = exponent - bias

IEEE 754 Floating-point Standard

* Sign bit is 0 for positive numbers, 1 for negative numbers

* Significand:

Number 1s assumed normalized and leading 1 bit of significand
left of binary point (for non-zero numbers) 1s assumed and not
shown

— e.g., significand 1.1001... 1s represented as 1001...,

- value = (_1)sign * (1 + fraCtiOn) * 7 exponent value

IEEE 754 Floating-point Standard

* Exponent is biased

— bias of 127 for single precision and 1023 for double
precision
equals biased exponent value
/_/%

— value = (~1)%" * (1 + significand) * 2(xponent—biay

— Biased exponent = exponent - bias

Example problem

* Represent—0.75,_in IEEE 754 single precision

Solution:

Stepl : Convert decimal floating to binary normalized
scientific floating point

Step2 : Write the general representation of IEEE 754

Step3 : Find the sign, fraction, biased exponent

Stpe4 : Draw the IEEE 754 single precision format

Example problem

Step1 : Convert decimal floating to binary normalized
scientific floating point
decimal: -0.75 = -3/4 = -3/2°2
binary: -11 x 272 = -,11 = -1.1 x 27!

Step2 : Write the general representation of IEEE 754
(_l)sign *k (1 + ﬁ-action) k 2(exponent—bias)

Step3 : Find the sign, fraction, biased exponent
Sign = 1
Fraction=1__ =

two

Significand = 1.1, _
Biased exponent = -1, __
Biased exponent = exponent — bias

Exponent = biased exponent + bias
= (-1) + 127 = 126___ = 01111110__

ten

Example problem

Stpe4 : Draw the IEEE 754 single precision format

1 [01111110 [10000000000000000000000
lét- 8 bits - 23 bits - fraction
exponent

sign

Start

Floating Point
Addition 1. Compars the e:-cp-:m:ntr. of the two numbars:

shift thea amallss numbar b thee right until ks
exporsamt would mestch the larger e ponsanit

Algorithm |

3. Hormalize the sum, either shiftimg ight =nd
imcramanting the expomnant or shifimg =it
amd decrameanting the expomesnt

Crwarflow or res

-

4. Round the significand o the spproprniats
numb-er of bit=

Still mormmealized ™™

Floating point addition problem

* Try adding the numbers 0.5ten and 0.4375ten
in binary using the algorithm

15t - Convert the decimal numbers to binary
humbers.
« 0.5,.=%_.,=01__x2*=01=10, Xx2%
« 04375, _=7/16, =7/2%
=111, x2* =0.0111__
=1.110,, x 27

Floating Point Addition Hardware

Sign | Exponant Fraction Sign | Exponsnit Fraction
| L
v Compare
Smell AL
sxponents
Exgpoinea it
differance
L) L d ¥ L) Y
C o 1)= ={_ 0 1:||-~f-:-1"
Shiift smaller
mumbar right

Shift right

o l

a &
w’”‘” Add

&

¥ ¢ EERA
—h--:_ [0] 1 _: l:- o = 1 ::l
¥ v
ey t " - . -
ncrement or b= Shift keft or right Normalize

—
decrement

¥
Rliwumd

b Rounding hardwsre

Fraction

Sign | Ewxponent

1. Add the biased exponents of the teo

Floating Point
Multiplication i s ey
Algorithm i

2. Normalize the product if necessary, shifting
it mght and incremanting the axponent

Owvarflow or Yes

-

4. Rowund the significand to the sppropriats
numiber of bits

g Lo

Still mormzlized ™

fas

L. Saft the sxgn of the product to positva if the
signs of the aniginal operands arse the same;
iff theay differ maks the sign negatiee

Floating Point Complexities

* In addition to overflow we can have underflow (number
too small)

2.0, X 107°% — smallest
2.0, x 10°% —|argest

* Accuracy is the problem with both overflow and
underflow because we have only a finite number of bits to
represent numbers that may actually require arbitrarily
many bits

— limited precision = rounding = rounding error

— |EEE 754 keeps two extra bits, guard and round

Usage of guard and round bits
¢ 2.56,_ x10°+2.34 _ x10°

* Assume only 3 significand bits
e 1ststep:2.56, x 10°= 0.02?7ten X 102

o 2nd step : guard found
0.0256, x 107

2.3400, X 10?2

o Ad ctan* 2727 v 1N2

Without guard and round bits
¢ 2.56,_ x10°+2.34 _ x10°

* Assume only 3 significand bits
* 1ststep:2.56, x 10°=0.02,__ x 10°

* 2" step:
0.02,. x 10’
2.34._ x10°

o Ad ctan * 2 A v 1N2

Rounding error

* units in the last place (ulp) - The number of bits in error in
the least significant bits of the significand between the actual
number and the number that can be represented.

With guard and round bits - 2.37___ x 102
Without guard and round bits - 2.36,_ x 10?

so here - it is off by 1 ulps

UNIT 11l PROCESSOR AND CONTROL UNIT

Basic MIPS implementation — Building datapath —
Control Implementation scheme — Pipelining —
Pipelined datapath and control — Handling Data
hazards & Control hazards — Exceptions

Reference:
* Chapter 4 — The Processor

* Appendix B —The Basics of Logic Design
— B.7 Clock
— B.8 Memory Elements
* Book - David A. Patterson and John L. Hennessey, “Computer

organization and design", Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Five Classic Components of a Computer

W, F10CE550r

Basic MIPS implementation

Implementing MIPS

* We're ready to look at an implementation of the MIPS instruction set
* Simplified to contain only

— arithmetic-logic instructions: add, sub, and, or, slt

— memory-reference instructions: 1w, sw

— control-flow instructions: beqg,

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

| 6 bits Imlﬂl) 16 bits .
rt of f set I-Format

26 bits .
J-Format

addr ess

Overview implementing MIPS: Fetch/Execute Cycle

* High-level abstract view of fetch/execute implementation
— use the program counter (PC) to read instruction address
— fetch the instruction from memory and increment PC
— use fields of the instruction to select registers to read
— execute depending on the instruction

- repeat.
4—-\\\ \‘\
P
L IS
Data \\\
Register #
| PC 1> Address Instruction Registers />ALU | Address
Register # Data
Instruction g T s
memory Register # T / "
= Data

Overview: Processor Implementation
Styles

* Single Cycle
— perform each instruction in 1 clock cycle
— clock cycle must be long enough for slowest instruction; therefore,
— disadvantage: only as fast as slowest instruction
* Multi-Cycle
— break fetch/execute cycle into multiple steps
— perform 1 step in each clock cycle
— advantage: each instruction uses only as many cycles as it needs
* Pipelined
— execute each instruction in multiple steps
— perform 1 step / instruction in each clock cycle
— process multiple instructions in parallel —assembly line

Basic Implementation of MIPS — with Data Path

_ Branch
M |
u
X
4 — \
de ~ Add M
T il u =1
1 x e
M
ALU operation
Data |
WiemWri
o~ Reqgister # Mer e
= PC (@=| Address Instruction re— Registers >ALL.I = Address
i M
_ o= Register # Zero Data
Instruction u memor -
memory e~ Register # poqyyrite || * y
= Data
MemRead

! Control

-~ /-

Processor

* Two components of processor
— Datapath
— Control

Functional Elements

* Two types of functional elements:

— elements that operate on data - combinational
elements

— elements that contain data - state or sequential
elements

Building Data Path

Data path

* A unit used to operate on or hold data within
a processor.

* The datapath elements include
— instruction and data memories,
— the register file,

— the ALU,
— and adders.

Elements used to fetch instructions
and increment the PC

3 elements are used to fetch instructions and increment PC:

Instruction memory
— A state element where instruction is stored.
* PC-program counter

— A state element or register containing the address of the
next instruction to be executed.

* Adder

— an ALU wired to always add its two 32-bit inputs and place
the sum on its output.

Element used to store/fetch
instructions and increment the PC

Instruction
address

memory

Instruction

Instruction

%

a. Instruction memory

— PC

b. Program counter

.""-\..
",

-

>Adcl Suml—

~
.-"---.l
_,,,f
L~

c. Adder

Datapath: Instruction Store/Fetch
& PC Increment

Read
address

Instruction -

Instruction
memory

Animating the Datapath

PC

ADD

Instruction <- MEM[PC]
PC<-PC+4

J ADDR

Memory

RD

== |nstruction

Implementing Datapath for each
instruction classes

Arithmetic and logical instructions — R-type

Load store instructions
— I-Type

Control — conditional

—_—

Control — unconditional instructions - J-Type

Elements used in R-Type
instructions

2 elements are used in R-Type instructions

Register file

— A state element that consists of a set of registers that can
be read and written by supplying a register number to be
accessed.

* ALU

— A combinational element that performs arithmetic and
logical operations on the input data.

Elements used in R-Type
instructions

.2 | Read
register 1 Read
Register 2 Read data 1
numbers | register 2
5 Write Registers
L : register Read
5
| Write Ll
Data -:l | patg
"
FegWrite

a. Registers

> Data

-_H_] |
> ALU a1y
reau@
—_— - -'""-F-F-F
b, ALL

Datapath: R-Type Instruction

Instruction

Read
register 1

Read

register 2
Registers

Write

register

Write
data

Read
data 1

Read
data 2

Animating the R-Type Instruction
Datapath

add rd, rs, rt

rd [shamt] funct] R[rd] <- R[rs] + R[rt];

Instruction
op I rs I rt

Operation

RN1 RN2 WN

RD1
Register File

WD

— Zero

RD2
RegWrite

?

Implementing Datapath for each
instruction classes

Arithmetic and logical instructions — R-type

Load store instructions
= I-Type

Control — conditional

—_—

Control — unconditional instructions - J-Type

Elements used in Load/Store
instructions

4 elements are used in Load/Store instructions
* Data memory

— The memory unit is a state element with inputs for the
address and the write data, and a single output for the
read result

* Sign Extend

— a 16-bit input that is sign-extended into a 32-bit result
appearing on the output

* Register file
* ALU

Elements used In
Load/Store instructions

L =it -
o | = 18N L

—| Address oo —~ f _\\.

data] ,
16 | o \ 32
\ Sign- | .
Data | extend |
Write memory \ /
data '\K__ ;,f'

4. Data memory unit b. Sign extension unit

- Address

Write
data

Read
data

Data
memory

a. Data memory unit

Two additional elements used

Datapath:

16 32

\ Sign
extend

b. Sign-extension unit

To implement load/stores

Instruction
———

Load/Store Instruction

Read
register 1 Read
Read data 1
register 2
.. Registers

Write
register Read
Write data 2
data

16 .

\ | Sign

N “lextend

N

>ALU ALU

Zero|—>

result

/

32

Read
Address data
Data
memol
Write &4
"| data

Datapath

Animating the Load Instruction
Datapath

lwrt, offset(rs)

op I rs I rt Ioffset/i_mmediate

Operation
3

° R[rt] <- MEM[R[rs] + s_extend(offset)];
1 T3

RN1 RN2 WN
] _ RD1 Zero
Register File
WD ‘
MemWrite
_ RD2 | ADDR
RegWrite

Memo
D ry RD

?

16
MemRead

f

OZ=Xm

Animating the Store Instruction
Datapath

op I rs I rt Ioffset/immediate Sw rt, OffSGt(I‘S)

°® MEM[R]rs] + sign_extend(offset)] <- R[rt]

Operation

RN1 RN2 WN
_ _ RD1
Register File

=1 WD

Zero

:

MemWrite
ADDR

Memo
WD ry RD =

RegWrite

16

MemRead

f

Implementing Datapath for each
instruction classes

Arithmetic and logical instructions — R-type

Load store instructions
— I-Type

Control — conditional

il

Control —unconditional -] -Type

Datapath: Branch Instruction

PC + 4 from instruction datapath ==
No shift hardware required:
simply connect wires from o > Add Sum Branch target
input to output, each shifted
left 2 bits -
Read
Instruction register 1 Read ‘
Read data 1
register 2
Registers ALU Zero To branch.
Write control logic
register Read
Write data 2
data
16 _ 32
\ .| Sign
N |extend

Datapath

Animating the Branch Instruction
Datapath

. . PC +4 from
op I rs I rtAI offset/immediate instruction

6 datapath

_l 5 Operation @
RN1T RN2 WN N

D1

R
Register File Zero
WD

RD2
RegWrite
$16 32 beq rs, rt, of f set
“ if (R[rs] == R[rt]) then

PC <- PC+4 + s_extend(offset<<?2)

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Read . .| ALU operation
register 1 Read -3 l : L
. T ViemWrite
data 1 i e
: e Zerol—» emtoRe
Instruction register 2 - AL ;__IE;--.;;_L { |
s Registers po.q a ALU Address Head 17
rite data 2 result|] data [| m
register "I_";' N, e u
s X 3 =T X
| Write — 1 - 0
4| data s Data B
ReqWrite ‘ 7% g E‘"rrt”e memory
i s ata
‘\".
16 bl Sign- I',_\iz_ MemRead
. extend |
II"\ f
j W 4
Data is either

from ALU (R-type)
or memory (load)

Animating the Datapath:

R-type Instruction

add rd, rs,rt

Instruction
32 6 iS is is Operation
3
RN1 RN2 WN \a
RD1 |
Register File ALU [Zero
» WD > !
RD2 MemWrite
ADDR
RegWrite - / ™
f Data
E 4 Memory RD
16 32 ALUSrc
> T P WD
g MemRead

T

MemtoReg

Animating the Datapath:
Load Instruction

Instruction lwrt,offset(rs)
32 5 5 5 Operation
. :
RN1 RN2 WN
RD1 |
Register File ALU [Zero
B WD > !
RD2 Memirite MemtoReg
RegWrite - / =P ADDR Dat
ata
f f

Memory RD
16

WD

MemRead

T

OZ-4Xm
w
N
C
(2]
=
(2]
A 4

Animating the Datapath:
Store Instruction

Instruction swrt,of fset(rs)
2k 5 5 5 Operation
§ F & ;
RN1 RN2 WN
RD1 |
Register File ALU [Zero
» WD > !
RD2 Memirite MemtoReg
RegWrite - / =P ADDR Dat
ata
f f

Memory RD
16

WD

MemRead

T

OZ-4Xm
w
N
C
2
=
0
A 4

IVIIFO Datapadin - Adding instruction
fetch
(R-type & load/store & instruction fetch)

>Add

4

Read Registers |

X 3

register 1 AN

PCkb» Read

address Read thea1d >
Instruction register 2 e Zero

Write Read DALU ALUL. | Agdress Read |,
register data 2 result data M

Instruction :

ucti > Write . Data)Lé
_| Write memory

l data
16 [sign \32 |
\

™\ extend

xc

Branch taken & not taken

Branch taken
X=1;Y=2
If X==Y
then

equal
else

not equal

Assign PC:
PC = BTA

Branch not taken
X=1;Y=1
If X==Y
then
equal
else
not equal

Assign PC:
PC=PC+4

MIPS Datapath : Adding Branch capability
(R-type, Load/Store, Instruction fetch, Branch)

\//

Add

PCSr New multiplexor

|
N\

Ny ® ® Read
address
A Instruction
Instruction
memory

Instruction address is either
PC+4 or branch target address

3] ALU operation

Reqisters
| Read
register 1 Read
Read data 1
register 2
I Write Read
register data 2
Write
> data
RegWrite|
1\6; Sign
* | extend

xc

\ Extra adder needed as both

adders operate in each cycle

Address Read
data

Data
Write memory

data

| MemWrite

MemtoReg

-

xc<

MemRead

Datapath Executing add

_’;l}

PC

=

ADDR

Instruction
Memory

RD

add rd, rs,

l P
ADD
—> <<z —
Instruction Pesre
[16 is IS is Operation
3
RN1 RN2 WN \(
RD1 >
Register File ALU [> Zero
—> WD > ¢
= MemWrite
Re gWrite
T Data
E Memory RD
16 X |32 ALUSrc
p| T »| WD
r t g MemRead

Datapath Executing 1w

PC

>m
>

lwrt,of fset(rs)

PCSrc

g ALU — Zero

y

°- P
- — <<z —
Instruction
ADDR . RDJ 32 16 5 5 5 Operation
Instruction 3
Memory RN1 RN2 WN
] _ RD1
Register File
—»| WD >
RD2
RegWrite > /
T e
16 X |32 ALUSrc
> T
N
D

MemWrite
=9 ADDR MemtoReg
Data
Memory RP M
P WD X
MemRead

Datapath Executing sw

—{=) —

ADD
4 —p >
PC —»@—» 1
Instruction PCSre

— $1 ADDR RDp=2¢ n 5 5 5 Operation
Instruction i I i 3
Memory RN1 RN2 WN \(
RD1 _
Register File ALY | > Zero
—»lwo > y
RD2 - MemWrite MemtoReg
RegWrite -’/ <5 ADDR
Data
T /e 4 Memory RP
& T » WD
N MemRead
sw rt,of fset(rs) 0 ——

Datapath Executing beqg
(Branch Taken : PC = BTA)

.;}
4_./

PC .
Instruction
— »{ ADDR _ RD} T = = s
Instruction
Memory RN1 RN2 WN
. . RD1
Register File
—{ WD

’ ro
>
RD2 B Wemirite MemtoReg
RegWrite > / > ADDRD .
ata
T E 3 Memory RD
16 X 132 ALUSrc
» T »| WD
N MemRead
beq rl,r2, offset D —1—

Control Implementation Scheme

Processor

* Two components of processor
— Datapath

— Control

* Control:

— Sends control signals to all other units

Control

* Input to control unit
— the instruction opcode bits

* Control unit generates (Output)
— ALU control input

— write enable (possibly, read enable also) signals for each
storage element

— selector controls for each multiplexor

ALUOp generation ALU ContrOI

by main control

Load/Store
Branch 01
R-Type 10

N\ R P > 10
Opcode N Control Contr ALU N\ ALU
control
Output of ALU control input
| ALU control lines | Function | 2
Instructio

0000 AND ield

0001 OR

0010 add v

0110 subtract

0111 set on less than

1100 NOR

Setting ALU Control Bits

Instruction | AluOp | Instruction | Funct Field | Desired ALU control
opcode operation ALU action input
LW 00 load word XX KXXXX add 010
SW 00 store word XXXXXX add 010
Branch eg | 01 branch eqg XXXKXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 set on less| 101010 set on less 111
ALUOp Funct field Operation
ALUOpP1 | ALUOPO|[F5(F4|F3|F2|F1|FO0

0 0 X X[X| X[X[X 010

0 1 XXX XXX 110

1 X X X|0[0]01]0 010

1 X X1 X|0[0]11]0 110

1 X X1 X|10([(1]1010 000

1 X X X|0[1]0]1 001

1 X X1 X[110[11/(0 111

Truth table for ALU control bits

MIPS instruction formats
(Observe the bit positions)

Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
a. R-type instruction

Field 350r43 Is rt address

Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0
c. Branch instruction

Designing the Main Control

R-type | opcode rs rt rd shamt funct
31-26 25-21 20-16 15-11 10-6 5-0
Load/store opcode rs rt address
or branch 31-26 25-21 20-16 15-0

* (Observations about MIPS instruction format
— opcode is always in bits 31-26

— two registers to be read are always rs (bits 25-21) and rt
(bits 20-16)

— base register for load/stores is always rs (bits 25-21)

— 16-bit offset for branch equal and load/store is always bits
15-0

— destination register for loads is in bits 20-16 (rt) while for R-

type instructions it is in bits 15-11 (rd) (will require
multiplexor to select)

Other Control signal values

* Asserted —valueis O
* Deasserted —valueis 1

Data path with control lines

Control lines

G
PCSrc
.‘r—\ 7o
M
>A=:Id l . .
X
ALU
i >Addre5u|t 1
RegWrite -
Instruction [25:21 :
PC Read :] = Iri;eg?sdtem MemWrite
| P ®* address T i dﬁfa? <
nstructon e ea ata : g —
Instruction _I | i) s
o M| | Write Read | .| 0 ALLl" Address %ﬁg B
'"nﬁg;girgn Instruction [15:11]| % [7] register data 2 M e M
L & e 1
/| Write X e | ;
A‘* data Registers i
. | Write mamary
N 4/ data
eW_ Instruction [15:0] 16 Sign- 32
multiplexor B
MemRead
Instruction [5:0]
ALUOp

What are the functions of each control signals??

Effects of seven control signals

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSTrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input

input comes from the ALU.

comes from the data memory.

Data path with control unit

PC

’J o J RegDst

Branch

Y

f-'H“-__\\\

ALU 1

/h.ﬂ

vy

MemRead

kg2 ©

PCSrc cannot be

set directly from the
opcode: zero test
outcome is required

>Addresult
P(src
j "‘\? /

Instruction [31-26] | MemtoReg

= Control

ALUOpD

{ MemWrite

/ ALUSrc

k o / RegWrite

Read

address

Instruction
[31-0]

Instruction
Memory

Instruction [25—21] Read
I\ -

| register 1 poog
Read data 1

register 2

Write
register

Instruction [20—16]

__I | : T
M Read
data 2

Instruction [15-11] | % }’

Write
data Registers

.-\1|_/#

16

Instruction [15-0] Slgn y 3

2

o/

Write

data

Address

Read
data

'
szg:“

Data
memory

| exte?

Instruction [5-0]

[ALU |
\control|

% r
™

Branch condition evaluation

M Condition true Condition false

Zero =1 Zero=0
Bnq Zero=1 Zero=0

Branch Zero AND Branch
instruction

© O O ¥

1
1
0
0

, O O B

Datapath with Control Il

Gy |

xcZ ©

Add ALY

result
Add
4 —

Instruction [31 -26]
St it SN

Instruction [25 -21] Read
PC Read register 1
address Read
Instruction [20 -16] Read data 1
; register 2
'”StE‘éﬁt})&‘] Registers Read ALU AlU

N

0
M Write data 2 It Address Read| /)
Instruction u register resu data M
memory Instruction [15 -11 X " u
[] 1) > g\;rtl;e Data X
memory —»{ 0
Write

data
Instruction [15 -0] 1\6 Sign 3\2
\ @ \

Instruction [5-0]

MIPS datapath with the control unit: input to control is the 6-bit instruction
opcode field, output is seven 1-bit signals and the 2-bit ALUOp signal

Determining control signals for the MIPS
datapath based on instruction opcode

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc | Req |Write | Read | Write | Branch | ALUOp1 [ALUp0
R-format 1 0 0 1 0 0 0 1 0
Lw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Control unit — 7 - 1-bit signals
1 - 2-bit signals

Datapath with Control Il (contd)

PCSrc cannot be

PC

/

>Add

Instruction [31 -26]

4] —]
Read
address
Instruction
[31-0]
Instruction
memory

Instruction [25 -21]

Control

RegDst
Branch

ALU
>Add result

MemRead

N

set directly from the
opcode: zero test
outcome is required

MemtoReg

ALUOp

MemWrite

/ ALUSIc

RegWrite

Read

Instruction [20 -16]

register 1 Read

Read data 1

Instruction [15 -11]

S, xc=Z@

Instruction [15 -0]

register 2
Registers Read

Write data 2
register

Write
data

- xcz°)

Zero
ALU aALu

result

16 [\32
A Sign |\

\@\

Instruction [5-0]

Address

Write
data

Read
data

Data

memory |—>
I

Oxec=z—

Control Signals:
R-Type Instruction

PC

>®
>

)

rs rt rd
I[25:21] 1I[20:16] I[15:11]
Instruction g @_.
»| ADDR RD [=F
Instruction i PPN Valuefdepends on
Memory 16 5 RegDst gperation unct
3
RN1 RN2 WN
RD1 P

Register File ALU [Zero 0

== WD 0] > ¢
immediate/ = MemWrite

offset > RD2 ADDR
I[15:0] RegWrite - >
Data
t E fs Memory RD
ALU
1 16 ¥ 32 Orc » wo
. N MemRead
Control signals D)
shown in blue

MemtoReg

Control Signals:
1w Instruction

4 rs rt rd > E
I[25:21] TI[20:16] I[15:11]
PC Instruction \ l / ' @_. PCSrc

ADDR RD I

Instruction ¥ 010
Memory 16 | . ~RegDst g6 ration
5 5 5 0 s
RN1 RN2 WN
RD1 =
Register File ALU zero 0
> WD
immediate/ @ M ¢ ; 1
emWrite
offset __ RD2 , ADDR MemtoReg
I[15:0] RegWrite - Dat
= ata
) E 3 Memory RD
1 16 X |32 ALUSrc WD
o T
. N 1 MemRead
Control signals D T
shown in blue 1

Control Signals:
sw Instruction

4 rs rt rd >
I[25:21] 1I[20:16] I[15:11] f
PC | Instruction > PCSrc
ADDR RD =2 0
Instruction
Memory 16 " ~ RegDst O(p)e:!'aQon
RN1 RN2 WN
RD1)
Register File Zero 1
—»| WD Il
immediate/ MemWrite X
offset > RD2 I ADDR MemtoReg
I[15:0] RegWrite Data
t ﬂ Memory RD
O 16 | X |32
o T WD @
. N MemRead
Control signals w e"‘fea
shown in blue 0

Control Signals:
beqg Instruction

ADD
4 - rs rt rd
I[25:21] TI[20:16] I[15:11] ‘
I I Instruction ’ -
21 ADDR RD =2 if Zero=1
Instruction 110
Memo , - RegDst .
ry 16 o Operation
[3
RN1T RN2 WN |
. . RD1 ’ - 0
Register File ALU -ero
—»1 WD 0] ¢
imnediate/ = MemWrite X
offset RD2 ! ADDR MemtoReg
I[15:0] RegWrite .
¥ Data
E 3 Memory RD
O 16 X |32 ALUSrc
o T 0 1 WD 0
. N MemRead
Control signals D e'"fea
shown in blue 0

Jump

Datapath with Control Il

Instruction [15-0]

\'@\

Instruction [5- 0]

-

Oxecz

opcode address
31-26 o 25-0 . - o
Composing jump New multiplexor with additional
target address\ control bit Jump
N
Instruction [25-0] | @\ Jump address [31-0]
\ \
26 @28 0 I—. 1
PC+4 [31-28]) S M M
u u
\ X X
ALU
Add rosult '\1/ "0
>Add
Jump
4 —
Instruction [31-26]
Control
Instruction [25—21] Read
| pc Read register 1
address Read
Instruction [20— 16] Read data 1
: [register 2
Instrgctlon 0 ~ Registers Read 0 ALU ALU Read
! M Write data 2 " result »| Address ea
Instruction u register M data
memory Instruction [15-11] | X - .
nstruction [] 1 g\gtge X Data
1
) memory
Write
data
16) 32
\ Sign |\

MIPS datapath extended to jumps: control unit generates new Jump control bit

Datapath Executing 7

PC

jmpaddr I1[25:0

CONCAT
ADD 26
YN 7\
4 { Control [ALUOPL [Ay
\ Unit | "2 7| Control |
\ / o /
op 6¥I[31:26] funct¥6I[5:0]
ADDR RD
. 32 Instruction I
Instruction
Memory
16 5
RN1 RN2 WN
op |[31Z]] RD1
Register File
—»{ WD g ¢
RD2 B MemWrite
ADDR
RegWrite Dat
ata
1
16 | X |32 rc
T P! WD
N MemRead
i f

MemtoReg

g

R-type Instruction: Step 1
add St1, St2, St3 (active = bold)

PC

N

>Add

4 —]
Read
address
Instruction
[31-0]
Instruction
memory

0
M
u
X
ALU
Add result !
Instruction [31—26]
Control
Instruction [25-21] Read
register 1 Read
Instruction [20- 16] Read data 1
register 2
0 _ Registers Read >ALU ALU
M Write data 2 0 result Address Read
u register M data
u
Instruction [15—11 X -
nstruction [] 1 \éVnte A Data
ata 1
) memory
Write
data
Instruction [15-0] 1\6 [Sign ?(2
N Tlextend [Y

Instruction [5—0]

r control

Oxec=z =

Fetch instruction and increment PC count

R-type Instruction: Step 2

add St1, St2, St3 (active = bold)

PC

Add
4
Read
"| address
Instruction
Instruction
memory

0
M
— u
X
ALU
Add result {
|
Instruction [31-26]
Control
Instruction [25-21] Read
register 1 Read
Instruction [20— 16] Read data 1
] register 2
0 Registers Read) ALU ALu Read
Write N ea
’\Lfl register data 2 M result Address data
) u
Instruction [15—11 X ;
[] ; \é\;ré]e X Data
—>\1) memory
Write
data
Instruction [15-0] 1\6 Sign 3\2

\@\

Instruction [5—0]

Oxc=Z—

Read two source registers from the register file

R-type Instruction: Step 3
add St1, St2, St3 (active = bol

OxcZ—

pr—
Add
4 —
Instruction [31 -26]
Control ALUOp
Instruction [25 -21] Read
Read register 1
address 9 Read
Instruction [20 -16] Read data 1
: | register 2
lnStEgﬁtlo(?] 0 ~ Registers Read ALU ALy Read
. M Write data 2 0 result Address data [
Instruction u register M
memory) B X) u
Instruction [15 -11] 1 Write X Data
data 1 memory
Write
data
Instruction [15 0] 1\6 Sign :iz
N Tlextend | M
pp
Instruction [5-0]

ALU operates on the two register operands

R-type Instruction: Step 4

add St1, St2, St3 (active = bold)

— PC

N

> Add

Read
address

Instruction
[B1-
Instruction
memory

0
M
u
X
ALU
Add result !
RegDst
Instruction [31 -26]
Control ALUOp
RegWrite
Instruction [25 -21] Read
register 1 Read
Instruction [20 -16] Read data 1
| register 2
0 ~ Registers Read ALU ALU
M Write data 2 0 result Address %ead
u register M ata
) u
Instruction [15 -11 X ;
[] 1 Write X Data
data 1
) memory
Write
"| data
Instruction [15-0] 1\6 Sign ?{2

Write result to register

N Tlextend [N

Instruction [5-0]

Oxecz

Single-cycle Implementation Notes

* The steps are not really distinct as each instruction completes in
exactly one clock cycle — they simply indicate the sequence of
data flowing through the datapath

* The operation of the datapath during a cycle is purely
combinational — nothing is stored during a clock cycle

* Therefore, the machine is stable in a particular state at the start
of a cycle and reaches a new stable state only at the end of the
cycle

* Very important for understanding single-cycle computing:

See our simple Verilog single-cycle computer in the folder
SimpleSingleCycleComputer in Verilog/Examples

Load Instruction Steps
lw St1, offset(St2)

Fetch instruction and increment PC

Read base register from the register file: the base register
(St2) is given by bits 25-21 of the instruction

ALU computes sum of value read from the register file and
the sign-extended lower 16 bits (offset) of the instruction

The sum from the ALU is used as the address for the data
memory

The data from the memory unit is written into the register
file: the destination register (St1) is given by bits 20-16 of the
instruction

Load Instruction
lw St1, offset(

St2)

/

N

Add

Read
address

Instruction
[3

Instruction
memory

0
M
u
X
ALU
Add result !
MemRead
Instruction [31-26] MemtoReg
Control ALUOp
ALUSrc
RegWrite
Instruction [25—21] Read
register 1 Read
Instruction [20—16] Read data 1
| register 2
0 _ Registers Read Vs >ALU ALU
M Write data 2 0 result Address Read 1
u register M data M
u
Instruction [15-11] | X Write x u
U s 1 2|
Write v
"| data
Instruction [15-0] 1\6 Sign % }
N lextend | M

Instruction [5- 0]

Branch Instruction Steps
beq St1, St2, offset

Fetch instruction and increment PC
Read two register (St1 and S$t2) from the register file

ALU performs a subtract on the data values from the
register file; the value of PC+4 is added to the sign-
extended lower 16 bits (offset) of the instruction shifted
left by two to give the branch target address

The Zero result from the ALU is used to decide which
adder result (from step 1 or 3) to store in the PC

Branch Instruction
beq St1, St2, offset

/

>Add

4 iy
Read
address
Instruction
[31-0]
Instruction
memory

>0
M
e | u
X
ALU
Add result !
Branch |
Instruction [31-26] .
Control ALUOp
Instruction [25—21] Read
register 1 Read
Instruction [20—16] Read data 1 .
I register 2
0 Registers Read
Write 0 Read
'\le register data 2 M resul fdress data
u
Instruction [15—11] X Write X
1 data 1 e
Write memory
data
. 16
Instruction [15—0] \ Sign |\
N Tlextend [M

Instruction [5—- 0]

Oxc=z—

Implementation: ALU Control Block

ALUOp Funct field Operation
ALUOp1 |ALUOpPO|F5(F4|F3|F2|F1|F0
0 0 XX X[X[X]|X 010
0* 1 IxdxdxdxIxIx] 110 *Typo in text
then there is potential
] X X1 X10101110 110 conflict between
1 X X X]10111010 000 line 2 and lines 3-7!
1 X X1 X|0[(1]10]1 001
1 X X1 X11[(01110 111
Truth table for ALU control bits
l
ALUOpO
ALUOp1
F3 —
F2 . -
F (5-0) | —Di
F1
—1)
FO) 1 J

ALU control logic

Implementation: Main Control

Signal R-

name format

Opb5

Op4

Op3

Op2

Opl

. OpO

/[RegDst

ALUSrc

MemtoReg

RegWrite

< MemRead
MemWrite
Branch
ALUOpl

\ ALUOPZ

Inputs

Outputs

0

O R OO O OOk OO o o

OO0 O0ORrRFRPRERPPRORREOOOR E

O

7
S

OO OOX P X PRFEORKR OR

O

Block

Inputs

o
¢,
Q

)

R O F OO O X OX OO0 Fr oo o

Truth table for main control signals

Op5
Op4
Op3

Op2
Op1
Op0 * .
£ 000 ololl ooo og
JUUU
R-format Iw S beq RegDst
) ALUSrc
MemtoReg
) RegWrite
MemRead
MemWrite
Branch
ALUOp1
ALUOpPO

Main control PLA (programmable
logic array): principle underlying
PLAs is that any logical expression
can be written as a sum-of-products

Single-Cycle Designh Problems

* Assuming fixed-period clock every instruction datapath uses one clock
cycle implies:
— CPI=1
— cycle time determined by length of the longest instruction path (load)

* but several instructions could run in a shorter clock cycle: waste of time

* consider if we have more complicated instructions like floating point!

— resources used more than once in the same cycle need to be duplicated

* waste of hardware and chip area

Example: Fixed-period clock vs.
variable-period clock in a
single-cycle implementation

Consider a machine with an additional floating point unit. Assume functional
unit delays as follows

— memory: 2 ns., ALU and adders: 2 ns., FPU add: 8 ns., FPU multiply: 16 ns., register
file access (read or write): 1 ns.

— multiplexors, control unit, PC accesses, sign extension, wires: no delay
Assume instruction mix as follows

— all loads take same time and comprise 31%

— all stores take same time and comprise 21%

— R-format instructions comprise 27%

— branches comprise 5%

— jumps comprise 2%

— FP adds and subtracts take the same time and totally comprise 7%

— FP multiplys and divides take the same time and totally comprise 7%
Compare the performance of (a) a single-cycle implementation using a fixed-
period clock with (b) one using a variable-period clock where each instruction

executes in one clock cycle that is only as long as it needs to be (not really
practical but pretend it’s possible!)

Solution

Instruction Instr. Register ALU Data Register FPU FPU Total
class mem. read oper. mem. write add/ mul/ time
sub div ns.
Load word 2 1 2 2 1 8
Store word 2 1 2 2 7
R-format 2 1 2 0 1 6
Branch 2 1 2 5
Jump 2 2
FP mul/div 2 1 16 20
FP add/sub 2 1 1 8 12

* Clock period for fixed-period clock = longest instruction time = 20 ns.
* Average clock period for variable-period clock =8 x 31% +
7%x21%+6%x27%+5%x5%+2%x2%+20%x7%+12 x 7%
= 7.0 ns.
* Therefore, performance,, _..../performance;, ., ...«= 20/7 = 2.9

Fixing the problem with single-
cycle designs

* One solution: a variable-period clock with different cycle times for
each instruction class

— unfeasible, as implementing a variable-speed clock is technically
difficult

* Another solution:
— use a smaller cycle time...
— ...have different instructions take different numbers of cycles
by breaking instructions into steps and fitting each step into one cycle
— feasible: multicyle approach!

Summary

* Basic implementation of MIPS
* ALU control

Summary

Techniques described in this chapter to design datapaths and control are
at the core of all modern computer architecture
Multicycle datapaths offer two great advantages over single-cycle

— functional units can be reused within a single instruction if they are accessed
in different cycles — reducing the need to replicate expensive logic

— instructions with shorter execution paths can complete quicker by consuming
fewer cycles

Modern computers, in fact, take the multicycle paradigm to a higher level
to achieve greater instruction throughput:

— pipelining (next topic) where multiple instructions execute simultaneously by
having cycles of different instructions overlap in the datapath

— the MIPS architecture was designed to be pipelined

UNIT 11l PROCESSOR AND CONTROL UNIT

Pipelining — Pipelined datapath and control —
Handling Data hazards & Control hazards —
Exceptions.

Reference:
* Chapter 4 — The Processor

* Book - David A. Patterson and John L. Hennessey, “Computer
organization and design", Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Overview Of Pipeline

Pipelining
* Start work ASAP!! Do not waste time!

__6PM 7 8 9 10 11 12 1 2AM

Time o T T
Task
order —

» @oem ipel

' Not pipelined
doel
Ve s,

c EE
Ve JoEl

o}

Assume 30 min. each task — wash, dry, fold, store — and that

separate tasks use separate hardware and so can be overlapped
6 PM 7 8 9 10 11 12 1 2 AM

Time_m | l | | "

Task
order
5] o
A .
=
sll .—/
=——/
 —
E’
Of
—
——
@'
ol .—'
—
 —)
E'

Pipelined

w

(@)

@)

Pipelined vs. Single-Cycle Instruction
Execution: the Plan

Program
execution i 2 4 6 8 10 12 14 16 18
order Time l T T T I I . , :
(in instructions) - _
w$1,10030) [V Regl AU | DA | Reg Single-cycle
’ fetch access
W $2,200(80) 8 >instruction| o [, | Data [
' ns fetch 9 access 9
Iw $3, 300($0) N 8ns Ins]:[éLtJé:rt:on
«— .
8 ns

\

A

Assume 2 ns for memory access, ALU operation; 1 ns for register access:
therefore, single cycle clock 8 ns; pipelined clock cycle 2 ns.

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

v

2 4 6 8 10 12 14
t i t t t t t >
Instruction Data
fetch Reg ALU access Reg - -
— — Pipelined
nstruction ata
2ns fetch Reg ALU access Reg
—P] :
Instruction Data
2ns fetch Reg ALU access Reg

2ns

2ns

2ns

2ns

2ns

— P ¢— P — > —>

Computer Architecture
Pipeline

Pipelining: Keep in Mind

Pipelining does not reduce latency of a single task, it increases
throughput of entire workload

Pipeline rate limited by longest stage
potential speedup = number pipe stages

unbalanced lengths of pipe stages reduces speedup

Time to fill pipeline and time to drain it — when there is slack
in the pipeline — reduces speedup

Example Problem

* Problem: for the laundry fill in the following table when
1. the stage lengths are 30, 30, 30 30 min., resp.
2. the stage lengths are 20, 20, 60, 20 min., resp.

Person Unpipelined Pipeline 1 Ratio unpipelined Pipeline 2 Ratio unpiplelined
finish time finish time | to pipeline 1 finish time | to pipeline 2

S W N

* Come up with a formula for pipeline speed-up!

Pipelining MIPS

What makes it easy with MIPS?

— all instructions are same length
* so fetch and decode stages are similar for all instructions
— just a few instruction formats
* simplifies instruction decode and makes it possible in one stage
— memory operands appear only in load/stores
* so memory access can be deferred to exactly one later stage
— operands are aligned in memory
* one data transfer instruction requires one memory access stage

Pipelining MIPS

* What makes it hard?
— structural hazards: different instructions, at different stages, in the
pipeline want to use the same hardware resource

— control hazards: succeeding instruction, to put into pipeline,
depends on the outcome of a previous branch instruction, already

in pipeline
— data hazards: an instruction in the pipeline requires data to be
computed by a previous instruction still in the pipeline

* Before actually building the pipelined datapath and control we
first briefly examine these potential hazards individually...

Pipeline Hazards

Structural Hazards

* Structural hazard: inadequate hardware to simultaneously support all
instructions in the pipeline in the same clock cycle

* E.g., suppose single — not separate — instruction and data memory in
pipeline below with one read port

— then a structural hazard between first and fourth 1w instructions

Program

i 2 4 6 8 10 12 14
execution Time : : ’ , , , , >
order
(in instructions) E

Instruction Data S~
Iw $1, 100(30) fetch Regl ALU access | o9 Pipelined
¢ ™ Instruction Data
v $2,20080) 2ns fetch "9 MY [access [0 Hazard if single memory
> :
iw $3, 300($0) 2ns | "en| |Res| AU | s [Res
< »| Instruction | 2—] Data
Iw $4, 400($0) 2ns fetch < [Reg| AL access | Re9
\4

— P P ¢— P ¢—r—>
2ns 2ns 2ns 2ns 2ns

* MIPS was designed to be pipelined: structural hazards are easy to
avoid!

Data Hazards

* Data hazard: instruction needs data from the result of a previous
instruction still executing in pipeline

* Solution Forward data if possible...

\4

Time T T T T T
Instruction pipeline diagram:

add $s0, $t0, $t1 IF 0D % MEM WB shade indicates use —

left=write, right=read

Program
execution 2
order Time T

Without forwarding — blue line —

4
T
(in instructions)
add $s0, $t0, $t1 | IF — 1D —MEM»— WB e
data has to go back in time;
L

with forwarding — red line —
data is available in time

E MEM WB

, sub $t2, $t3 IF

Data Hazards

* Forwarding may not be enough
— e.g., if an R-type instruction following a load uses the result of the load —

called load-use data hazard

. 2 4 6 8 10 12 14
Program Tlme T T T T T T T >
execution
order
(in instructions)
Without a stall it is im ibl
Iw 20($t1) IF o D MEMp~— WBL OLI. d S a > poss ble
2~ to provide input to the sub
instruction in time
sub $t2, $s0, $t3 IF 4':’ ID MEM— WB
] 2 4 6 8 10 12 14
Program Time T ' T T T T ' >
execution
order
(in instructions) . .
- With a one-stage stall, forwarding
w550, 20(8t1) | IF] MEM-—— W8 can get the data to the sub
instruction in time

v sub $t2, $t3 IF AEED E% MEM WB

Reordering Code to Avoid Pipeline Stall
(Software Solution)

Example:
1w $St0, 0(stl)
1w St2, 4(stl) <
Data hazard
sw St2, 0(s$tl) <D
sw St0, 4(Stl)

<
j Interchanged
<

Control Hazards

* Control hazard: need to make a decision based on the result of a previous
instruction still executing in pipeline

* Solution 1 Stall the pipeline

Program
execution
order

(in instructions)

Time

add $4, $5, $6

lw $3, 300($0)

v

2 4 6 8 10 12 14 16
T T T T T >
Ins]frtticrglon Reg| ALU Data | pqg Note that branch outcome is
ete access | — computed in ID stage with
i added hardware (later...
< »| Instruction Reg /- ALU Data Reg ()
2ns fetch access
Instruction Data
fetch Reg ALU access Reg
«—
2ns

Pipeline stall

Control Hazards

Solution 2 Predict branch outcome
— e.g., predict branch-not-taken :
Program
execution) 2 4 6 8 10 12 14
order Time T T T T T T T >
(in instructions)
Instruction Data
add $4, $5, $6 fetch Reg ALU access Reg
Ins;[ruction Reg ALU Data Reg
2ns etch access
Instruction Data
| Iw $3, 300($0) totch | R€9 ALU access | R€9
Prediction success
Program
execution] 2 4 6 8 10 12 14
order Time ' T T | i >
(in instructions)
add $4, $5 .$6 Instruction Reg ALU Data Reg
fetch access
Instruction Data
¢ 2 > fetch Reg ALU access Reg
ns
Instruction Data
\ fetch Reg ALU access Reg

Prediction failure: undo (=flush) 1w

Control Hazards

* Solution 3 Delayed branch: always execute the sequentially next
statement with the branch executing after one instruction delay —
compiler’s job to find a statement that can be put in the slot that is
independent of branch outcome

— MIPS does this — but it is an option in SPIM (Simulator -> Settings)

Program
execution . 2 4 6 8 10 12 14
order Time I I I T T T | >
(in instructions)
Instruction Data
fatch Reg ALU ACCESS Reg
e | RS AW | access | R0
(d elayed branch slot) 2ns
Instruction Data
! lw $3, 300($0) fetch Reg| ALU access | R€9
“«—>
2ns

Delayed branch beqg is followed by add that is
independent of branch outcome

Dynamic Branch Prediction

* Prediction of branches at runtime using
runtime information.

* Ex: Restaurant
* Two schemes:

— 1-bit scheme
— 2-bit scheme

1-bit scheme

* branch prediction buffer - Also called branch history table.

* Asmall memory that is indexed by the lower portion of the
address of the branch instruction and that contains one or
more bits indicating whether the branch was recently taken
or not.

* The memory contains a bit that says whether the branch was
recently taken or not

Branch History Table

Bit indicating

branch taken(1)

or not taken(0)
1000 O 1000 Beq $s2,$sl, exit
1012 1 1012 Beqg S$s2,$sl, for
2046 0O 2046 Beq $s2,5$s1, else
2116 1

Assume 0 — bit indicating branch not taken
1 — bit indicating branch taken

Disadvantage of 1-bit scheme

* What if the branch is taken and not taken the
alternatively?

— Then the prediction table will be wrong always.
— (ie) prediction will be always a failure

Disadvantage example

Bit indicating branch

1000 i=1; taken(1)or not taken(0)
1004 while(i<=9){ 1004 1
1008 i++;

}

Initially — bit is setto 1
1st iteration — misprediction(since branch is not taken)
Next 8 iteration — prediction is success
10 - exit iteration — misprediction (since branch is taken)
Disadvantage:

2 Mispredictions out of 10. so 80% accuracy is achieved

2-bit scheme

* A prediction must be wrong twice before the
prediction is changed.

* A branch prediction buffer has 2 bits to store
the history.

Bits indicating branch taken Meaning
or not taken

00 Strongly Branch not taken
01 Weakly branch not taken
10 Weakly branch taken

11 Strongly branch taken

Finite state diagram

-

Taken |
Mot taken
Taken

e

Mot taken

Taken

Mot taken

Exception

Exception

* Exception — (interrupt) An unscheduled event
that disrupts program execution; used to
detect overflow.

* Interrupt - An exception that comes from
outside of the processor. (Some architectures
use the term interrupt for all exceptions.)

* vectored interrupt — An interrupt for which
the address to which control is transferred is
determined by the cause of the exception.

Difference between exception and interrupt

Unscheduled event Unscheduled event
Invoked Internal (within Invoked External (outside
processor) processor)

Ex: Arithmetic overflow Ex: 10 device request

Exception

From where? | MIPS terminology

/O I:*%'u’iﬂE' request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Pipelined datapath and control

Pipelined Datapath

We now move to actually building a pipelined datapath

First recall the 5 steps in instruction execution
Instruction Fetch & PC Increment (IF)
Instruction Decode and Register Read (ID)
Execution or calculate address (EX)

Memory access (MEM)

A e

Write result into register (WB)

Review: single-cycle processor
— all 5 steps done in a single clock cycle
— dedicated hardware required for each step

What happens if we break the execution into multiple cycles, but
keep the extra hardware?

Review - Single-Cycle Datapath
IIStepSII

PC

ADDR RD

Instruction
Memory

Instruction 1

IF

Instruction Fetch

ST

RN1 RN2 WN

RD1
Register File —> Zero
—»{ wD
RD2
—»| ADDR
8 Data
E Memory RP —>
16 ¥ 32 »{ wp
N
D
ID EX MEM WB
Instruction Decode [Execute/ Address Calc Memory Access Write Back

Pipelined Datapath — Key lIdea

* What happens if we break the execution into multiple cycles, but keep the
extra hardware?

— Answer: We may be able to start executing a new instruction at each clock
cycle - pipelining
* ..but we shall need extra registers to hold data between cycles — pipeline
registers

Pipelined Datapath

PC

Pipeline reg@‘vide enough to hold sta coming in

4 64 bits 128 bits
> @ 97 bits 64 bits
Instruction 1
ADDR RD P4 =
. 32 16 32 5 5 5
Instruction
Memory RN1 RN2 WN
. . RD1 - z
Register File —> 2810
—»{ WD
RD2
—»{ ADDR
Data
E Memory RP[] » M
16 ¥ 32 | »{ WD X
N
D
IF/ID ID/EX EX/MEM MEM/WB

PC

Pipelined Datapath

ide enough to hold d@§ta coming in

4 64 bits 128 bits
> @ 97 bi 64 bits
Instruction 1
ADDR RD P4 =
] 32 6 32 iS is &5
Instruction
Memory RN1 RN2 WN
. . RD1 - z
Register File —> 2810
WD
RD2 =
—»| ADDR
Da
E Memgqry RP[] >
¥ 32 1 L »| WD
N
- \
IF/ID ID/EX EX/MEM NEM/WB

Only data flowing right to left may cause hazard..., why?

Bug in the Datapath

PC

ADDR RD

Instruction
Memory

Instruction 1

T

RN1 RN2 \WN
1

Registef File

—»{ wp

RD2

/.

oZ-dXm

EX/MEM

MEM/WB

ADDR

WD

Data
Memory

RD

Write register number comes from another /ater instruction!

PC

Corrected Datapath

2
u IF/ID ID/EX EX/MEM MEM/WB
N
4 64 bits 133 bits _ 66 bite
> @ 102 bits
ADDR RD » RN1
32 5 RD1
Instruction »| RN2 ALU » Zero
Memory ° Register
‘ 5 WN File RD2
—>| WD —»{ ADDR
Data
E Memory RD
16)1S 32 > WD |
N
5 D

Destination register number is also passed through ID/EX, EX/MEM
and MEM/WB registers, which are now wider by 5 bits

Pipelined Example

* Consider the following instruction sequence:

lw $t0, 10($tl)

sw St3, 20(st4)

add $t5, S$te, St7
sub $t8, $t9, S$tl0

Single-Clock-Cycle Diagram:
Clock Cycle 1

ID/EX EX/MEM MEM/WB
*i
RN1
5 RD1
RN2 ALU P Zero
Register
5 File RD2
WD —» ADDR
Data
E Memory RP
16 ¥ 32 » Wo
N
D

Single-Clock-Cycle Diagram:
Clock Cycle 2

ID/EX EX/MEM MEM/WB
— p— p—

ADDR RN1
3 RD1 |
—
Instruc RN2 ALU Zero
Mema Register =
File. Rrp2
WD —»{ ADDR
Data

E Memory RP [T

16 X 32
N
D

| — —

Single-Clock-Cycle Diagram:
Clock Cycle 3

ADD
1
I IF/ID ID/EX EX/I_IIEM MEM_IWB
N
4 i
<)

ADDR RD P

. 32
Instruction
Memory

—»| ADDR
Data
Memory RP [T
- >

Single-Clock-Cycle Diagram:
Clock

Cycle 4

SUB R _ ADD . LW
{,‘ >
N IﬂD ID/EX EX/MEM MEM_NVB
N i
4
PC
ADDR RD P4 RN1
. 33 RD1 —» Zero
Instruction RN2
Memory Register
File Rrp2
WD ADDR
Data
E Memory RP [T
16 _)I_(32 WD
N
D

PC

Single-Clock-Cycle Diagram:

Clock Cycle 5

SUB ADD SW LW
7
v IF/ID ID/EX EX/MEM MEM/WB
p— —
*i
ADDR RD <»| RN1 RD1
Instruction —<»{ RN2 ALU
Memory ° Register
’5' WN File RD2
—p WD

PC

Single-Clock-Cycle Diagram:
Clock Cycle 6

SUB ADD SW
2
;E' IF/ID ID/EX EXIMEM MEM/WB
N
4
><<2
ADDR RD RN1 RD1
Instruction RN2 ALU Zero
Memory ° Register —
File RD2
WD —»! ADDR
Data
E Memory RP [T
16 ¥ 32 » wo
N
D

PC

Single-Clock-Cycle Diagram:
Clock Cycle 7

SUB . ADD
> —
2
;E' IF/ID ID/EX EX/MEM MEM/WB
[] u— []
N i
4
~{x<2)
ADDR RD = RN1
c RD1 |
Instruction | RN2 ALU Zero
Memory ° Register —
File RD2 =
WD —»| ADDR
Data
E Memory RP [T
16 ¥ 32 | » wo
N
D

Single-Clock-Cycle Diagram:
Clock Cycle 8

SUB
C—p
2
v IF/ID ID/EX EX/MEM MEM/WB
P p— —
N
4
I >(x2)
ADDR RD P —<»| RN1 RD1
Instruction ———<» RN2 ALU Zero
Memory 5 Register —
5I WN File RD2 =~
—p| WD —»! ADDR
Data
E Memory RP [T
16 ?I_(32 || » wo
N
3 D
| -] — —

Alternative View —
Multiple-Clock-Cycle Diagram

CC1 CC2 CC3 CC4 CC5 CCeé CCc7 (oo ']

B — m Time axis —»
Iw $t0, 10($t1) IM ~|:|L REG |— a‘ _I: DM |- REG

sw $t3, 20($t4) m -] ree |- _97 _I: pm | | Rec
add $t5, $t6, $t7 m - L rec |- 97 _[om | L{Rrec

sub $t8, $t9, $t10 m |-] ree |- _97 ‘llfﬂ‘ REG

Notes

One significant difference in the execution of an R-type instruction
between multicycle and pipelined implementations:

— register write-back for the R-type instruction is the 5" (the last write-
back) pipeline stage vs. the 4t stage for the multicycle
implementation. Why?

— think of structural hazards when writing to the register file...

Worth repeating: the essential difference between the pipeline and
multicycle implementations is the insertion of pipeline registers to
decouple the 5 stages

The CPI of an ideal pipeline (no stalls) is 1. Why?

The RaVi Architecture Visualization Project of Dortmund U. has
pipeline simulations — see link in our Additional Resources page

As we develop control for the pipeline keep in mind that the text
does not consider jump — should not be too hard to implement!

Recall Single-Cycle Control — the
Datapath

PC

N\

> Add

md

Instruction [31 -26]

Read
| address
Instruction
[31-0]
Instruction
memory

Control

RegDst
Branch

ALU
>Add result

|

\ MemRead

xcZ ©

N

PCSrc

MemtoReg

ALUOp

MemWrite

/ ALUSrc

Instruction [25 -21]

RegWrite

Read

Instruction [20 -16]

register 1

Read

Read data 1

L.

“xc=Z°

Instruction [15 -11]

register 2
Registers Read

Write data 2

register

Write

Instruction [15 -0]

data

\ Sign

-~

extend

Instruction [5-0]

\

_\><C§O\

Zero
ALU Alu
result

\

Address

Write
data

Read
data

Data
memory

OxczZz—

Recall Single-Cycle — ALU Control

Instruction AluOp Instruction Funct Field Desired ALU control

opcode operation ALU action input
LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010
Branch eg 01 branch eqg XXXKXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 set on less 101010 set on less 111
ALUOp Eunct field Operation
ALUODP1 |ALUOpPO|[F5|F4|F3|F2(F1[F0
0 0] XI XXX XX 010
0 1 XU XX X[X[X 110
1 X X/ X10]10101[0 010
1 X X1 X10101110 110
1 X X X10111010 000
1 X X X10[1]101[1 001
1 X X[X[1[10[110 111
Truth table for ALU control bits

Recall Single-Cycle — Control Signals

Effect of control bits

Signal
Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.
D Memto-| Reg | Mem | Mem
?t?r- Instruction | RegDst | ALUSrc| Reg |Write| Read | Write | Branch | ALUOp1 | ALUpO
MINING |2 format 1 0 0 1 0| o 0 1 0
control [, 0 1 1 1 | 1] o 0 0 0
bits [, X : X 0o | o [1 0 0 0
beq X 0 X 0 0 0 1 0 1

Pipeline Control

Initial design — motivated by single-cycle datapath control — use the
same control signals

Observe:
Will be
— No separate write signal for the PC as it is written every cycle modified
. .))) . by hazard
— No separate write signals for the pipeline registers as they are written| detection
every cycle unit!!

— No separate read signal for instruction memory as it is read every clock
cycle

— No separate read signal for register file as it is read every clock cycle
Need to set control signals during each pipeline stage

Since control signals are associated with components active during a
single pipeline stage, can group control lines into five groups according
to pipeline stage

Pipelined Datapath with Control |

0

M

u

X
|

IF/ID ID/EX EXIMEM MEM/WB

Add

Shift
left 2

Read
register 1 Read

Read data 1
register 2

Instruction Registers Read
memory Write 1

| data 2
register

PC [=#=> Address

l Instruction

ALU ALU
result

Address Read| | []

data

y

Data

Write memory

data -

Oxc=Z

Write
data

Instruction
15-0 16 . 32 6

[] \ Sign \
% |extend AY

Same control romcton O
SIgnaIS as the Instruction 3
1

single-cycle I
datapath

Pipeline Control Signals

* There are five stages in the pipeline

— instruction fEtCh / PC increment >Nothing to control as instruction memory
— jnstruction decode / registerfetch read and PC write are always enabled
— execution [address calculation)
— memaory access ’
— write back)
V&
Execution/Address Calculation | Memory access stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg [Mem to

Instruction Dst Op1 Op0 Src _|Branch| Read | Write | write | Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beqg X 0 1 0 1 0 0 0 X

Pipeline Control Implementation

* Pass control signals along just like the data — extend each pipeline
register to hold needed control bits for succeeding stages

Instruction
_>

IF/ID ID/EX EX/MEM MEM/WB

* Note: The 6-bit funct field of the instruction required in the EX stage to
generate ALU control can be retrieved as the 6 least significant bits of
the immediate field which is sign-extended and passed from the IF/ID

register to the ID/EX register

Pipelined Datapath with Control Il

__ ./ IDIEX
M
u
. EXIMEM
| —
MEM/WB
IF/ID
Add
4
:
PC Address E=1 register Read
é Read data 1 [
Instruction = register 2
> — _ Registers Read ALU ALU
memery Write dat:aZ] 0 result Address Readl | |}
register M data
u Data M
—] Write X memory ;I
data b 1
Write 0
data
Instruction >
H [15-0] 1\6 Sign 32 \6
Control signals | extend X
emanate from Ininucton :
the control | nuﬂ
: e :
portions of the | ||LH =t | B
pipeline registers

IF: lw $10, 20($1) ID: before<1> EX: before<2> ‘ MEM: before<3> WB: before<4>

F/ID \D/‘EX EXIMEM MEMWB

Pipelined Execution
and Control N . .

Add Add

4 V result
shift
left 2

.

< Read
| Address | register 1 Read
1 B datat [~
z Read 2
Instruction sequence: iton £ | moer2
. e = Registers Read ALU ALU|
ory Wiite result Address Readl | 1

iata
Data M
memory

&

register data 2
Wiite
[data
Instruction
[15-0] Sign
W , =,
Instruction
[20-16]

sub $11, $2, $3

I

L

(P xcz©°

[

L

{
|

and $12, $4, $7 Clock cycledts /| -="——
or $13, $6, $7
add $ 1 4 , $ 8 , $ 9 IF: sub $11, $2, $3 ID: lw $10, 20($1) EX: before<1> MEM: before<2> WB: before<3>

F/ID

Label “"before<i>" means =
i th instruction before L =) I

w - \M
l 4 V Add poguit
@

1 Read
— Address g 1 register 1 Read| S1
s Ix o datal [|
7 gy Read
Instruction £ register 2
1 Registers Read| $X
ey Write data2 [~ Address F:f?d_. (]
register bata jata "
Wite memory u
"] data ox
Wiite
data
Instruction
20 | [15-0] sign |20
extend
Instruction
10 | [20-16] 10 9
M
Instruction u
ock cycle . | 4 |G
lock 2 L] L L

IF: and $12, $4, $5 ID: sub $11, $2, $3 ‘EX: Iw $10, . .. ‘MEM: before<1> WB: before<2>

MEMWB

T
o
\
.
3

Pipelined Execution

and Control I i
Instruction sequence: B pisal IR e T ”
lw $10, 20($1) e O
sub $11, $2, $3 e
and $12, $4, $7 Clock cycle-3 T W

or $13 ’ $6 14 $7 IF: or $13, $6, $7 ID: and $12, $2, $3 ‘EX: sub $11, ... MEM: Iw $10, . .. WB: before<1>

add $14, $8, $9 |
G IFAD ID/EX EXIMEM MEMWB
R,

M 10 110
u
X L] L7
| and 00 00 ;

Control 222 w1 1222 K

1100]

N K/ 100 EX| :,C M 1 wB

4 Read
PC| Address .g =" register 1 Read| 4 52
2ls data 1|
Z Read
’ 2 register
Instruction . Registers Read| $5 $3 ALU ALUl
data2 [result Address Readl L1 |,/

“xczZ°
3
20
38
=4
.
B

memory Wiite
register
Wiite
[data
Write

Instruction
X | [15-0] MemRead
Instruction
X_| [20-16)
10
Instruction
12 | [15-11] 12

RegDst

Clock cycle4 T T

IF: add $14, $8, $9 ID: or $13, $6, $7 EX:and $12,. .. MEM: sub $11, ... ‘WBZ|W$10, .

I
IF/ID ID/EX EXMEM MEMWB
L

Pipelined Execution
b .

and Control L

L5 L

g

15
&

. -. Address % — 2?:'2” Read ‘Zf
27 data 1 £
Instruction sequence: e N LTI | L
" data 2 Address data [T 1
register Data M
| ‘ﬂ;e memory :
lw $10, 20($1) e J‘U
x | fEs
sub $11, $2, $3 feo [o,

Instruction

and $12, $4, §$7 e

or $13, $6, $7 Clock cycle’5+s |1 - .
add $14, $8, $9
IF: after<1> ID: add $14, $8, $9 EX:or $13, ... MEM: and $12, . .. WB: sub $11, . ..

i th instruction after add

Label “after<i>" means F e L
ET add Control |-22° y ‘?OU "m

Add
4 _‘V o Add resut
Shift
5 left 2
o
8 Read 2
| PC Address register 1 Read 4
9 Read data 1 &
Instruction register 2 =
(SN &= Registers Read
memory 11 Wite = Address Read 7
register Data @ M
Wite memory u
| data 8‘
Wiite
data
Instruction L
x_| 1501 Sign
extend
Instruction
x| [20-16]
12 11
Instruction u
Clock le6 T
ock cycle 6 ¢ S 1

Pipelined Execution
and Control

Instruction sequence:

lw $10,
sub $11,
and $12,
or $13,
add $14,

20 (S1)
$2, $3
$4, $7
$6, S$7
$8, $9

Clock cycle-7

Clock cycle-8:

7 after<z> ID: after<1> EX: add $14, . .. MEM: or $13, . .. WB: and $12, . ..
I
\ e DX EXMEM VEMWE
W 10
u
X L’-,
L w200 o
| 1. L_ L :
2 J‘\’ M wa| 0
H
! 9 Add rosult
H Shift
o) left 2
- ALUSrc|
c Read o
Ls|Pc] Address & "{reqister 1 fons " g
2 R data1[| %
—m g
Instruction £ register 2 5
memor ™ 12 . Registers Read -
vy wite Gt s [Address Read || 7
e Data M
Write memory u
[data ¢
0
Instruction | |
[15-0] Sign
extend
Instruction
[20-16]
13 2
Instruction |1
[15-11]
IF: after<3> ID: after<2> EX: after<1> MEM: add $14, . . . \WB: or $13
I
0 IF/ID IDEX EXIMEM MEMME
M
u
‘ L
Y| 0
- I—»* 1
N WE 0
\ﬁg
! e Add resuit
= Shift
g left 2
o
s Read R
PC| Address g | register 1 Read %
=L Read data 1]
Instruction £ register 2 5
s . Registers Reag 5 AU ALY
e e data 2 result Address Read ;
register M ead
u Data M
e x memory u
[~ data Ly x
0
Instruction
[15-0l Sign
extend
Instruction
[20-16]
—s0
ﬂ 14 .
Instruction u
[15-11] X
—l1
T ‘ !

Pipelined Execution and Control

° .
In StrUCtlo n IF: after<4> ID: after<3> EX: after<2> MEM: after<1> WB: add $14, . ..

Se q u e n Ce : W IF/ID ID/EX EX/MEM MEM/WB
c |

lw $10, 20($1) L

WB;

o

sub $11, $2, $3 L | | "
and $12, $4, $7
Q
or $13, $6, S$7 :
14 14 %
dd $14, $ $ -
a 8 9 c Read .
! ! Address 2 register 1 Read ;
3 — S
& Read data 1 g
Instruction = register 2 3
memory] 114 . Registers Read .
Wmeter data 2 Address S —1
e Data M
Write memory u
[data Ox
Write
data
Instruction m
[5-0 Sign

extend
Instruction
[20—16:

] l—(0

M 14

Instruction u w
[15-11] x
—

Clock cycle<9 T

Data Hazards

Revisiting Hazards

So far our datapath and control have ignored hazards

We shall revisit data hazards and control hazards and
enhance our datapath and control to handle them in
hardware...

Data Hazards and Forwarding

* Problem with starting an instruction before previous are finished:
— data dependencies that go backward in time — called data hazards

$2 = 10 before sub;

Time (in clock cycles)

CC9
-20

$2 = -20 after sup |———> Valueof CC! cC2 cc3 cc4 ccs cce cc7 ccs
register $2: 10 10 10 10 10/-20 -20 -20 -20
Program
execution
order
(in instructions)]]] .
sub $2,$1,$3 | IM Reg| | DM
sub $2, $1, $3 #}T_r -
and $12, $2, S$5 _{ B]]
or $13’ $6, $2 and $12, $2, $5 IM — N ~|:DM-— —{ Reg
add $14, $2, S2 - 4 - - _
sw $15, 100($2) or $13, 36, M H J:i: N % ~|:DM— [{Reg
add $14, M [—] %— ~|:DM— - {Reg
s, 10 aH | #} ﬂ-rl}

Reg

Software Solution

* Have compiler guarantee never any data hazards!

— by rearranging instructions to insert independent instructions between
instructions that would otherwise have a data hazard between them,

— or, if such rearrangement is not possible, insert nops

sub $2, $1, $3 sub $2/ $1/ $3
1w $10, 40(S3) nop

slt S5, So, S7 nop

and $12, $2, $5 or and

or $13, So6, $2 or

add $14, $2, S$2 add

SW S15, 100 (s$2) SW

* Such compiler solutions may not always be possible, and nops slowthe
machine down

MIPS: nop = “no operation” = 00...0 (32bits) = s11 $0, $0, O

Hardware Solution: Forwarding

Idea: use intermediate data, do not wait for result to be finally written
to the destination register. Two steps:

1. Detect data hazard
2. Forward intermediate data to resolve hazard

Pipelined Datapath with Control Il
(as before)

(0 IDIEX
M
M EX/MEM
| —
MEM/WB
IF/ID
Add
4
s [
PC Address E=1 register Read
é Read data 1 [
Instruction = register 2
> — _ Registers Read ALU ALU
memery Write dat:aZ] 0 result Address Readl | |}
register M data
u Data M
—] Write X memory ;I
data b 1
Write ’ g\
data
Instruction >
H [15-0] 1\6 Sign 32 \6
Control signals | extend X
emanate from Ininucton :
the control | nuﬂ
; i ;
portions of the | ||LH =t | B
pipeline registers

Hazard Detection

* Hazard conditions:

la. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

— Eg., in the earlier example, first hazard between sub $2, $1, $3 and
and $12, $2, s5 isdetected whenthe and isin EX stage and the

sub isin MEM stage because
* EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (la)

* Whether to forward also depends on:

— if the later instruction is going to write a register — if not, no need to forward,
even if there is register number match as in conditions above

— if the destination register of the later instruction is SO — in which case
there is no need to forward value (SO is always 0 and never overwritten)

Data Forwarding

* Plan:

— allow inputs to the ALU not just from ID/EX, but also later pipeline
registers, and

— use multiplexors and control signals to choose appropriate inputs to

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CCs CC9
Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXMEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X
sub $2, $1, $3

and $12, $2, $5 Program

execution order

or $13, $6, $2 (in instructions)]]] .
add $14, $2, $2 sub $2,$1,$3 | IM ~|:|—EReg: % —I:DM— o9
sw $15, 100($2) — - 1 _
and $12, 52, $5 IM [5 DM |{Re
e —_—D] s

or $13, $6, IM —_J:: ___‘B—_—I: DM —_— Reg
sw $15, 100 IM {— J:[n % TﬂT_H—Reg

Dependencies between pipelines move forward in time

add $14, $2, IM |

ID/EX EX/MEM MEM/WB

Forwarding] N
Hardware 7| = >/

memory

11

| | ||

X c

anofevarDatapath before adding forwarding hardware

MEM/WB.RegisterRd

ID/EX EX/MEM MEM/WB
— e |)
M
— | u
— X
— |
Registers \—/
>ALU
> — rm
M
U Data L,
"l 5 memory
P SN
_/
Rs
R =
Rt M EX/MEM RegisterRd
a u .Register |
— X | I l

X c

0. wih ovarindd@tapath after adding forwarding hardware

Forwarding Hardware: Multiplexor

Mux control

ForwardA =00
ForwardA =10
ForwardA =01

ForwardB = 00
ForwardB = 10
ForwardB =01

Control

Source Explanation
ID/EX The first ALU operand comes from the register file
EX/MEM The first ALU operand is forwarded from prior ALU result
MEM/WB The first ALU operand is forwarded from data memory
or an earlier ALU result
ID/EX The second ALU operand comes from the register file
EX/MEM The second ALU operand is forwarded from prior
MEM/WB The second ALU operand is forwarded from data memory

result

or an earlier ALU result

b L

Depending on the selection in the rightmost multiplexor
(see datapath with control diagram)

Data Hazard: Detection and
Forwarding

Forwarding unit determines multiplexor control according to the
following rules:

EX hazard
if (EX/MEM.RegWrite // if there is a write...
and (EX/MEM.RegisterRd =0) // to a non-S0 register...

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) // which matches, then...
ForwardA =10

if (EX/MEM.RegWrite // if there is a write...
and (EX/MEM.RegisterRd #0) // to a non-S0 register...
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) // which matches, then...
ForwardB =10

Data Hazard: Detection and
Forwarding

2. MEM hazard
if (MEM/WB.RegWrite // if there is a write...
and (MEM/WB.RegisterRd =0) // to a non-S0 register...

and (EX/MEM.RegisterRd = ID/EX.RegisterRs) // and not already a register match
// with earlier pipeline register...
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) // but match with later pipeline register, then...

ForwardA =01
if (MEM/WB.RegWrite // if there is a write...
and (MEM/WB.RegisterRd = 0) // to a non-S0 register...
and (EX/MEM.RegisterRd = ID/EX.RegisterRt) // and not already a register match
// with earlier pipeline register...
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) // but match with later pipeline register, then...

ForwardB =01

v

This check is necessary, e.g., for sequences such as add $1, $1, $2; add $1, $1, $3; add $1, $1, $4;
(array summing?), where an earlier pipeline (EX/MEM) register has more recent data

N

Forwarding Hardware with Control

Instruction
memory

ID/EX

Called forwarding unit, not hazard detection unit,
because once data is forwarded there is no hazard!

EX/MEM
MEM/WB
IF/ID
—> ﬁm
c M
o u
§ X
2 —-
@ Registers _/
£ Data
— >ALU - —>| s
memory
M
M
p—>| U —>
X
. N
IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt .
» M . EX/MEM.RegisterRd
IF/ID.RegisterRd Rd u [~ >
| _— d | [|
> MEM/WB.RegisterRd

X

Datapath with forwarding hardware and control wires — certain details,

e.g., branching hardware, are omitted to simplify the drawing
Note: so far we have only handled forwarding to R-type instructions...!

or $4, $4, $2 and $4, $2, $5 sub $2, $1, $3 before<1> before<2>

F di 0O [F A
orwarding Lo b ~
- - L |
Execution example: ronton || H U _*i oo —
sub $2, $1, $3 AL T]
and $4, S$2, $5 j f]
or $4, $4, $2 L L) L W
add $9, $4, s2
Clock cycle 3

add $9, $4, $2 or $4, $4, $2 and $4, $2, $5 sub $2, . .. before<1>

ID/EX
—
10 - 10
/\ r e IiXIM EM
— —
10
Control M B| MEMWE
IF/ID EX M WB
L - - -
4 $4 $2)\
c M
k] 6 | u
5 x
2 —
@ Registers /
PC Instruction N = t ALU Data Ll
memory $2 $5 —~ memory '\S
M X
—| u |—>
X
o
S
2 2
L) M\
M 2
4 4 u
: 2|
N TForwardmg\‘— —‘
| unit JI

Clock cyeie‘4

after<1> add $9, $4, $2 or $4, $4, $2 and $4, ... sub $2, ...
ID/EX
—
10 10
m r\ND I_E'X/MEM
1 .
[} 10
Control L M L WB| |_I\iEM/WB
1 - 1
orwarding . T
L - - |
4 $4 $4 N\
c M
i u(
PC Instruction) E 2 T \tj_ ALUI I;)atgy . $
. memory $2 $2 memor
M X
Execution example ; G
g §
(cont.): Jl L‘
2 12 ™\
S U.b $ 2 14 $:I_ V4 $ 3 T 1 ~ IT,For‘fﬁr[dng I;_ ___I
/:
and $4, $2, S5
Clockeeycle 5
or $4, $4, $2
add $ 9 $ 4 $ 2 after<2> after<1> add $9, $4, $2 or$4, .. and $4, ...
14 14
ID/EX
e
10
Ve I_E'X/MEM
1 i
10
" L 3 I_I\iEM/WB
1 - L
IF/ID EX M B !
- || -
$4 /\
c M
£ —{ u
E _ L[x
M x
— u
R
¢ [
4
21| A
M 4 4
9 u
T \).(/ TForwarchng I__—] _—_I
| unit)

Clock ¢eycle 6

Data Hazards and Stalls

* Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction that writes
to the same register

— therefore, we need a hazard detection unit to stall the pipeline after the
load instruction

Time (in clock cycles)

1w $2, 20(S1) Program cc1 cc2 cc3 cca ccs cce cc7 ccs cc'9
execution
and $4, S$2, S5 ?rdfert tons) _ _ _
or $8, $2, $6 lr:vlvnsr,u;ol(();j) IM ~|:'-EReg_ % DM | o]
add $9, $4, $2 U A
sit $1, $6, $7 1 —]] |
and $4, $2, $5 M — DM [—
- |- _J_:j NE==n)]
- - = _
As even a pipeline or $8, 52, $6 mH e reql 4&- o R
dependency goes U= U g g _
baCkwaI‘d in time add $9, $4, M — J:_ n 457 DM [—Reg
forwarding will not =17 =
solve the hazard oSt 5657 - [reg #:F T DM}‘ }Jeg

Pipelined Datapath with Control Il
(as before)

(0 IDIEX
M
M EX/MEM
| —
MEM/WB
IF/ID
Add
4
s [
PC Address E=1 register Read
é Read data 1 [
Instruction = register 2
> — _ Registers Read ALU ALU
memery Write dat:aZ] 0 result Address Readl | |}
register M data
u Data M
—] Write X memory ;I
data b 1
Write ’ g\
data
Instruction >
H [15-0] 1\6 Sign 32 \6
Control signals | extend X
emanate from Ininucton :
the control | nuﬂ
; i ;
portions of the | ||LH =t | B
pipeline registers

Hazard Detection Logic to Stall

* Hazard detection unit implements the following check if to stall

if (ID/EX.MemRead //if the instruction in the EX stage is a load...
and ((ID/EX.RegisterRt = IF/ID.RegisterRs) //and the destination register
or (ID/EX.RegisterRt = IF/ID.RegisterRt))) //matches either source register of the
//instruction in the ID stage, then... stall the pipeline

Mechanics of Stalling

If the check to stall verifies, then the pipeline needs to stall only 1
clock cycle after the load as after that the forwarding unit can
resolve the dependency

What the hardware does to stall the pipeline 1 cycle:

— does not let the IF/ID register change (disable write!) — this will cause
the instruction in the ID stage to repeat, i.e., stall

— therefore, the instruction, just behind, in the IF stage must be stalled
as well — so hardware does not let the PC change (disable write!) — this
will cause the instruction in the IF stage to repeat, i.e., stall

— changes all the EX, MEM and WB control fields in the ID/EX pipeline
register to 0, so effectively the instruction just behind the load
becomes a nop — a bubble is said to have been inserted into the
pipeline

* note that we cannot turn that instruction into an nop by Oing all the bits

in the instruction itself — recall nop = 00...0 (32 bits) — because it has
already been decoded and control signals generated

Hazard Detection Unit

PCWrite

/ Hazard \‘ ID/EX.MemRead
detection
2 wB EX/MEM
= || —
a
T Control M WB MEM/WB
0 —» - L_ L_
IF/ID EX Y e
i | - -
c M
S 1 Y
, © X \
S .
@ Registers
PG Instruction | | = T— >ALU I
ooy | — memory
M
= U >
X
IF/ID.RegisterRs R
IF/ID.RegisterRt [)
IF/ID.RegisterRt Rt oM EX/MEM.RegisterRd
IF/ID.RegisterRd - Rd ; y
ID/EX.RegisterRt Rs| \ Forwardng\— MEM/WB RegisterRd
Rt unit '
J.

Datapath with forwarding hardware, the hazard detection unit and
controls wires — certain details, e.g., branching hardware are omitted

to simplify the drawing

lw S2,
and $4,
or $8,
add $9,
Slt $1,

Stalling Resolves a Hazard

Same instruction sequence as before for which forwarding by
itself could not resolve the hazard:

Program
execution
order
(in instructions)
Iw $2, 20($1)
20($l) and $4, $2, $5
$2, S5
$2’ 36 or $8, $2, $6
$4, S2
$6, S7
add $9, %4,
slt $1, $6, $7

CC1

Time (in clock cycles)
CC2

It

Reg

bubble =

CCé6

ﬂr_
H
e

cCc7

CC8

Reg

Reg

CC9 CC10

Reg

Reg

i

=

Hazard detection unit inserts a 1-cycle bubble in the pipeline, after
which all pipeline register dependencies go forward so then the
forwarding unit can handle them and there are no more hazards

and $4, $2, $5 Iw $2, 20($1) before<1> before<2> before<3>
=
X
[§ EXIMEM
9
Stalling
IF/ID
£ 1 $1
3 . M
a .% X | g
g i T\
i— - X R o b ;
M X
* Execution example: =) [
1
a [imBINA
lw $2, 20($1) : } |
.Registerl -/ ——
and $4’ $2’ $5 T ID/EX RegisterRt
or %4, 54, 32 Clock cycle 2
add $ 7 ! $ 4 ! $ 2 or $4, $4, $2 and $4, $2, $5 Iw $2, 20($1) before<1> before<2>
d:;i:;dﬂ ID/EX.MemRead
unit ID/EX
5 —
11
:‘ I_Eji/MEM
Control L LWB MEMAWE
0 L '
IF/ID EX M
|| | |
2 $2 $1
c M
2 5 — u
S X
_— E Registers Y) Date
_e n;;l::c:;n ™ 1 5 X >A|-b memory ™ " M
M X
| U
X
b——bv
2 1
5 £ ~
2 M
4 u
ID/EX.RegisterRt Lx) .ZJ —‘
Clock cycle 3

Stalling

Execution example

(cont.):

lw $2,
and $4,
or $4,
add $9,

20 (81)
$2, $5
$4, $2
$4, $2

or $4,%4,$2 | and $4, $2, $5 bubble w$2, ... before<1>
2= ID/EX
5 L
10_ o] 00
g WB EX/MEM
= —_— —l
= M 11
T Control u M f— W, MEM/WB
x - 1 I__J
IR/ID EX M WB
— — —
2 2 $2 $2
= M
g gl]s |y
g IR
% Registers /
pC| Instruction _E_ t— ALU m[;:gry [|
memory $5 $5 ’\SI
M X
| U
| x F
/
2 2
5 5
- M
M 2
4 4 u l
S X L —
NE ID/EX.RegisterRt / TForwardmg \‘— —‘
| unit _/l
Clock cycle ;
add $9, $4,$2 | or$4, $4, $2 and $4, $2, $5 bubble w$2,...
4= ID/EX
2f— P
10 10
2 EE EX/MEM
= —_— —t
a M 0
T Control u M — WE| MEM/WB
X
U ; |—> M I—vWB !
IR/ID
i] |]
o 4 $4 $2 M
= M
2 e NE
g L. *
2 Registers </
PC Instruction) i 2 ALU| mZ;‘gr | M
memory $2 $5 Y u
M X
> u
| X F
-/
4 2
2 S M
M 2
| HH 1
ID/EX RegisterRt / TForwardmw;_ 1
| unit)

Clock cyete S

after<1> add $9, $4, $2 or $4, $4, $2 and $4, . .. bubble

b el IIi/lE_X
— —
M 10
a I g Control u M i WB MEM/WB
* || L_l I_‘_J_
IF/ID EX M wel®
— — —
4 $4 $4 M
s|1. 0
s IR
B Registers /
e ol le || B pa LG
M X
> u
RENES
° E 1 I O
xecution example o] |
= 1| A
M 4
(contd). | [: 1
T ID/EX RegisterRt T \ TForward\ng\;_ T
| unit /l J
lw $2, 20(S1) Clock ¢ycle 6
and $4, $2, $5
’ ’ after<2> after<1> add $9, $4, $2 or$4, . .. and $4, . . .
or $4, $4, S2
—
IDIEX
add $9, $4, $2 [10 [J10
% I-EX/MEM
|| i
10
M s MEM/WB
|| L_ L__
IF/ID EX M oire| T
$4
5 —{u
g
7] Registers
remeton Lt L= 4 o L >aw memory [’
M X
>l U
— X
\
4
|| A
M 4 4
9 u
X
ID/EX.RegisterRt Y T;O,v\,ardmg\;__l ___I
| unit)

Clock cycle 7

Control Hazards

Control (or Branch) Hazards

Problem with branches in the pipeline we have so far is that the
branch decision is not made till the MEM stage — so what instructions,
if at all, should we insert into the pipeline following the branch
instructions?

Possible solution: stall the pipeline till branch decision is known
— not efficient, slow the pipeline significantly!

Another solution: predict the branch outcome

— e.g., always predict branch-not-taken — continue with next
sequential instructions

— if the prediction is wrong have to flush the pipeline behind the
branch — discard instructions already fetched or decoded — and
continue execution at the branch target

Predicting Branch-not-taken:
Misprediction delay

Program Time (in clock cycles) >

gﬁggfﬁoﬂ CC 1 cc2 ©Cc3 Ccc4 cC5 CC6 CC7 CC8 CCO

(in instructions)

40 beq $1, $3, 7 IM ~|:|—[Reg %— -|:DM- —{Reg

44 and $12, $2, $5 IM H H{Reg| | %— —|: DM — Reg

48 or $13, $6, $2 IM (H Hq{Reg| | %— ~|: DM HReg

52 add $14, $2, $2 IM (< FHReg %— —|: DM{—H (—Reg
72 lw $4, 50($7) HReg| | :D— ~ﬂ‘~_|:l— Reg

v

The outcome of branch taken (prediction wrong) is decided only when
beq is in the MEM stage, so the following three sequential instructions
already in the pipeline have to be flushed and execution resumes at 1w

[

-
[

] L

] [
[

[]

Optimizing the Pipeline to Reduce
Branch Delay

* Move the branch decision from the MEM stage (as in our current
pipeline) earlier to the ID stage

— calculating the branch target address involves moving the branch
adder from the MEM stage to the ID stage — inputs to this adder, the
PC value and the immediate fields are already available in the IF/ID
pipeline register

— calculating the branch decision is efficiently done, e.g., for equality
test, by XORing respective bits and then ORing all the results and
inverting, rather than using the ALU to subtract and then test for zero
(when there is a carry delay)

* with the more efficient equality test we can put it in the ID stage without
significantly lengthening this stage — remember an objective of pipeline
design is to keep pipeline stages balanced

— we must correspondingly make additions to the forwarding and hazard
detection units to forward to or stall the branch at the ID stage in case
the branch decision depends on an earlier result

Flushing on Misprediction

* Same strategy as for stalling on load-use data hazard...

Zero out all the control values (or the instruction itself) in pipeline
registers for the instructions following the branch that are already

in the pipeline — effectively turning them into nops — so they are
flushed

— in the optimized pipeline, with branch decision made in the ID stage,
we have to flush only one instruction in the IF stage — the branch delay
penalty is then only one clock cycle

Optimized Datapath for Branch

<

IF.Flush control zeros out the instruction in the IF/ID
pipeline register (which follows the branch)

IDIEX

L
'l
\

o
v

EX/MEM

MEM/WB

i >+] | |
+
4

Shift
left 2
M
= u
| x
Registers D
PC Instruction | | >A|_LJI ata LN L1
memory memory M
u
X

@ —>
@

N

|
|
[
5

Branch decision is moved from the MEM stage to the ID stage — simplified drawing
not showing enhancements to the forwarding and hazard detection units

Pipelined
Branch

* Execution example:

306 sub $10, $4, S8
40 beq $1, $3, 7
44 and $12 S$2, S$5
48 or S$S13 $2, S$6
52 add $14, $4, S2
56 slt $15, S$S6, S7

72 1w $4, 50($7)

Optimized pipeline with

only one bubble as a result

of the taken branch

and $12, $2, $5

beq $1, $3,7

sub $10, $4, $8

before<1>

1
i1
xcZ -xcg
I

T
=15}

before<2>

Clock cycle 3

Iw $4, 50($7)

bubble (nop)

sub $10, . ..

before<1>

Clock cycle 4

Simple Example: Comparing
Performance

* Compare performance for single-cycle, multicycle, and pipelined
datapaths using the gcc instruction mix
— assume 2 ns for memory access, 2 ns for ALU operation, 1 ns for
register read or write
— assume gcc instruction mix 23% loads, 13% stores, 19% branches, 2%
jumps, 43% ALU
— for pipelined execution assume

* 50% of the loads are followed immediately by an instruction that uses the
result of the load

* 25% of branches are mispredicted
* branch delay on misprediction is 1 clock cycle

* jumps always incur 1 clock cycle delay so their average time is 2 clock
cycles

Simple Example: Comparing

Performance

* Single-cycle (p. 373): average instruction time 8 ns
* Multicycle (p. 397): average instruction time 8.04 ns
* Pipelined.:

loads use 1 cc (clock cycle) when no load-use dependency and 2 cc when
there is dependency — given 50% of loads are followed by dependency
the average cc per load is 1.5

stores use 1 cc each

branches use 1 cc when predicted correctly and 2 cc when not — given
25% misprediction average cc per branch is 1.25

jumps use 2 cc each
ALU instructions use 1 cc each
therefore, average CPl is

15%x23%+1x13%+1.25x19% +2 x2% +1x43% =1.18

therefore, average instruction time is 1.18 x 2 =2.36 ns

Dynamic Branch Prediction

* Prediction of branches at runtime using
runtime information.

* Ex: Restaurant
* Two schemes:

— 1-bit scheme
— 2-bit scheme

1-bit scheme

* branch prediction buffer - Also called branch history table.

* Asmall memory that is indexed by the lower portion of the
address of the branch instruction and that contains one or
more bits indicating whether the branch was recently taken
or not.

* The memory contains a bit that says whether the branch was
recently taken or not

Branch History Table

Bit indicating

branch taken(1)

or not taken(0)
1000 O 1000 Beq $s2,$sl, exit
1012 1 1012 Beqg S$s2,$sl, for
2046 0O 2046 Beq $s2,5$s1, else
2116 1

Assume 0 — bit indicating branch not taken
1 — bit indicating branch taken

Disadvantage of 1-bit scheme

* What if the branch is taken and not taken the
alternatively?

— Then the prediction table will be wrong always.
— (ie) prediction will be always a failure

Disadvantage example

Bit indicating branch

1000 i=1; taken(1)or not taken(0)
1004 while(i<=9){ 1004 1
1008 i++;

}

Initially — bit is setto 1
1st iteration — misprediction(since branch is not taken)
Next 8 iteration — prediction is success
10 - exit iteration — misprediction (since branch is taken)
Disadvantage:

2 Mispredictions out of 10. so 80% accuracy is achieved

2-bit scheme

* A prediction must be wrong twice before the
prediction is changed.

* A branch prediction buffer has 2 bits to store
the history.

Bits indicating branch taken Meaning
or not taken

00 Strongly Branch not taken
01 Weakly branch not taken
10 Weakly branch taken

11 Strongly branch taken

Finite state diagram

-

Taken |
Mot taken
Taken

e

Mot taken

Taken

Mot taken

Exception

Exception

* Exception — (interrupt) An unscheduled event
that disrupts program execution; used to
detect overflow.

* Interrupt - An exception that comes from
outside of the processor. (Some architectures
use the term interrupt for all exceptions.)

* vectored interrupt — An interrupt for which
the address to which control is transferred is
determined by the cause of the exception.

Difference between exception and interrupt

Unscheduled event Unscheduled event
Invoked Internal (within Invoked External (outside
processor) processor)

Ex: Arithmetic overflow Ex: 10 device request

Exception

From where? | MIPS terminology

/O I:*%'u’iﬂE' request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

What happens in a processor when exception
occur?

1. Processor save the address of the offending
instruction in the exception program counter
(EPC)

2. Determine the cause of exception

3. Transfer control to the operating system at
some specified address(based on the cause of
exception)

How to find the cause of exception

* Two methods to detect the cause of
exception:

— Use cause register
— Vectored interrupts

Cause register

* Cause register — stores the reason for
exception

* Ex: arithmetic overflow
. /O device request

Exception handling using cause register

EPC = address of offending instruction
Cause register = cause of exception
Single entry point for exception handling code. (say 1000)

— Then decode the cause register to move to the specific
exception handling code 1000

Arithmetic
Overflow exception —%
Handling code

I/0 request
Exception —
Handling code

Undefined
Instruction
Exception
Handling code

—_—1

2. Vectored Interrupt

* An interrupt for which the address to which
control is transferred is determined by the
cause of the exception.

Excoption vector addross (in hex)

Undefined instruction 8000 0000, .,
Anthmetic overflow 8000 EIiE'EIm

Exception handling using Vectored Interrupt

1. EPC = address of offending instruction

2. Refer the vectored interrupt table to find the address of the
specific exception handling code.

Excaption type Excaption vector address (in hex)
8000 0000hex

Undefined instruction 8000 UDOOH Undefined
.) Instruction
Arithmetic overfiow 8000 UiBOm Exception >

Handling code

8000 0180hex
Arithmetic overflw
Exception — 1
Handling code

Implementing the exception system — using
cause register

* Elements added to implement exception
system:
— Two registers

* Cause register
* EPC register (Exception Program Counter)

— Single entry point — exception handling code
starting address

Exception - Datapath

m
u

o

Hazard |
— detection |

\ unit __.' |} | /T
1 ./ IDEX u
. - x

™~

. i
£ P =
| : ™y EXMEM
[| M / (M [|
.I” trol| = u u = MEMMWE
\ | = X — Causa X 1 L]
b2 3 ._._.M_ . . 1] WE

FlD - EPC
| o o]]
= N
Shift
.1 & P
— - gl e
ol .'fi”'l | X
! Regi .
B-EIEIBFB- = | L
5 . _ S | > =
M) * } — AL
80000180 u =|PoHe ln;:;f;t::n - | - =
x Data
= " - memony —

(s

I_{ o=

T

L
-
A

Ty vy
y v
[

- _ R L . -

L . Forwarding "‘I,,_

— umit =
" .

Arithmetic overflow exception detected
clock cycle 6

lw $16, 50($7)

IF.Flush

sit $15, $6, 7

/" Hazard ™,

0000183 —

Clock &

—

detection |

unit ~ /

--""-

EX
! add $1, $2, $1 ! or$13,... 'and$12, ...
: EXFlush | I
D_Flush E E E
| | |
! . : :
Ej ofx | a
10 I x| ' '
. I
- - MENI/WE
IEH
Data l
memory
12
q-:-mardlng"'f
' unit

Exception handling of Arthimetic Overflow 2. Al the instruction after
_ = The offending instruction
clock cycle 7 re flushed
IF_Flush

|
[/" Hazard
— detection

’ ‘. unit)/

O—
I:-:-ntmll MEMWE
x_z"' ‘B_ 0 |_—
Li
- 13
an}n:La:-——n-l -
Glock 7 I i iﬁ%-ﬂrt;;dma.l i
3. Exception handling i] |
Instruction is fetched and ; v ' .

started to execute 1. Stored EPC and cause register

Pipeline
Pipeline

Pipeline
Data anc

Summary

Hazards
Datapath and Control

Control Hazards

UNIT IV MEMORY AND I/0O SYSTEMS

Memory hierarchy - Memory technologies — Cache
basics — Measuring and improving cache
performance — Virtual memory, TLBs

Reference:
* Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

* Book - David A. Patterson and John L. Hennessey, “Computer
organization and design", Morgan Kauffman / Elsevier, Fifth
edition, 2014.

Memory Hierarchy

Principle of Locality

* Temporal locality - (locality in time):

v if an item is referenced, it will tend to be referenced again
soon.

* Spatial locality - (locality in space):

v’ if an item is referenced, items whose addresses are close
by will tend to be referenced soon

Memory Hierarchy

Current
Speed Processor Sjze Cost ($/bit) technology
Fastest Memory sSmallest Highest SHAM
Memaory DRAM

Slowest Memaony Biggest Lowest Magnetic disk

Hit and Miss

two adjacent levels — called,
upper (closer to CPU) and
lower (farther from CPU)

Terminology: I

— block: minimum unit of]
data to move between
levels

— hit: data requested is in
upper level

— miss: data requested is
not in upper level

Processor

| Data is transfermed

Memory Access

hit rate — Hit memory access / Total memory access
miss rate — Miss memory access / Total memory access

Total memory access = Hit memory access + Miss memory
access

Miss rate = 1 — hit rate

hit time —time to determine if the access is indeed a hit +
time to access and deliver the data from the upper level to
the CPU

miss penalty: time to determine if the access is a miss + time
to replace block at upper level with corresponding block at
lower level + time to deliver the block to the CPU

Memory hierarchy

cPU

Increasing distance
m from the CPU in
access fime
Levels in the / Level 2 \
Memory hiemrc/hy \
/ Level n \

-

Size of the memory at each level

Memory Technology

* SRAM

* DRAM

* Flash memory
* Disk memory

Memory technology Typical access time $ per GiB in 2012
SRAM semiconductor memory 0.5-2.5ns $500-51000
DRAM semiconductor memory 50-70 ns $10-%20
Flash semiconductor memory 5,000-50,000 ns $0.75-%1.00

Magnetic disk 5,000,000-20,000,000 ns $0.05-%0.10

SRAM

Static random access memory

Volatile — loses data when there is no power
Used to make caches

Very fast

Very costly

DRAM

Dynamic random access memory

Volatile — loses data when there is no power
Used to make main memory

Slower than SRAM

Cheaper than SRAM

Difference between SRAM and DRAM

S.No SRAM DRAM

1 Static Random Access Dynamic Random Access
Memory Memory

2 Volatile Volatile

3 Faster Slower

4 Costlier Cheaper than SRAM

5 Less denser Denser than SRAM

6 Used as Cache memory |Used as Main memory

DRAM Internal Organisation

columns

=1 Bank |
Column / |
E 4 |

Rd/Wr

Act

>
|| Pre a
Buffe>\/

Each DRAM — has 4 banks
Each bank — has many rows
Commands :
Pre — Precharge command — opens/close a bank
Act — Activate command — transfer row from bank to buffer

Row

Each buffer — has many columns

Command:
Rd — Read command — read data from buffer column
Wr — Write command — write data to buffer column

DDR - DRAM

* DDR - Double Data Rate

— Where data is transferred during both rising and
falling edge of the clock. (20 + 20 = 40Mbps)

- lling edge
| | OMbps
el
Rising edge

20Mbps

DRAM Growth

Total access time to

Average column

access time to

Year Introduced | Chip slze $ per GIB a new row/column existing row
1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 ns 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibit 4,000 &0 ns 10 ns
2000 256 Mebibit 1,000 55 ns 7ns
2004 512 Mebibit $250 50 ns Sns
2007 1 Gibibit $50 45 ns 1.25 ns
2010 2 Gibibit $30 40 ns 1ns
2012 4 Gibibit $1 35 ns 0.8 ns

Flash memory

EEPROM - Electrically erasable programmable read-only
memory

Disadvantage: Writes can wear out flash memory bits.
(10,000 writes)

Solution: (wear levelling)

* Controller - spread the writes by remapping blocks that
have been written many times to less trodden blocks.

Disk Memory

> Platter

> Read Write
Head

Disk Memory(2)

Read-write head - To read and write information on a
hard disk, a movable arm containing a small
electromagnetic coil called a read-write head is located
just above each surface.

Track - One of thousands of concentric circles that
makes up the surface of a magnetic disk.

Sector - One of the segments that make up a track on a
magnetic disk; a sector is the smallest amount of
information that is read or written on a disk.

seek - The process of positioning a read/write head
over the proper track on a disk

3 computational times

* Seek time - the time to move the head to the desired
track.

* Rotational latency — Also called rotational delay. The
time required for the desired sector of a disk to rotate
under the read/write head; usually assumed to be half
the rotation time.

* Transfer time - is the time to transfer a block of bits.

— The transfer time is a function of the sector size, the
rotation speed, and the recording density of a track.

— Transfer rates in 2012 were between 100 and 200 MB/sec.

Problem

. 0.5 rotation (.5 rotation
Average rotational latency = e = d
5400 RPMf[ﬁn zinem 5}
minute

= ().0056 seconds = 5.6 ms

Cache Basics

Caches

* By simple example
— assume block size = one word of data

X4 X4
X1 X1
XNn — 2 XNn — 2
Xn — 1 Xn — 1
X2 X2
X3 X3
a. Before the reference to Xn b. After the reference to Xn

* |[ssues:

— how do we know if a data item is in the cache?

— ifitis, how do we find it?
— if not, what do we do?

* Solution depends on cache addressing scheme...

Reference to X
causes miss so

it is fetched from
memory

Direct Mapped Cache

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Direct Mapped Cache

* Addressing scheme in direct mapped cache:

— cache block address = memory block address mod (no of
blocks in cache)

— 3 fields
* Index
* Tag
* valid

Accessing Cache

* Example:
(0) Initial state: (1) Address referred 10110 (miss):
Index V Tag Data Index V Tag Data
000 N 000 N
001 N 001 N
010 N 010 N
011 N 011 N
100 N 100 N
101 N 101 N
110 N 110 Y 10 Mem(10110)
111 N 111 N

(2) Address referred 11010 (miss): (3) Address referred 10110 (hit):

Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 Y 11 Mem(11010) 010 Y 11 Mem(11010)

011 N 011 N

100 N 100 N to CPU
101 N 101 N N
110 Y 10 Mem(10110) 110 Y 10 Mem(10110)

111 N 111 N

(4) Address referred 10010 (/miss): replace

Index V Tag Data
000 N

001
010
011
100
101
110
111

10 Mem(10010)

10 Mem(10110)

Z K22 2KZ

Direct Mapped Cache

Address showing bit positions
3130 ..4131211 ..210

Byte
offset

d 20 J10

I:ljt Tag N N Data
Index

Index Valid Tag Data

0

1

: Cache with 1024 1-word blocks:

K . byte offset (least 2 significant bits)
Is ignored and
1021 next 10 bits used to index into cach
1022
1023
J20 J32

What kind of locality are we taking advantage of?

Formula

The size of the block above was one word

For the following situation:

32-bit addresses

A direct-mapped cache

The cache size is 2" blocks, so n bits are used for the index

The block size is 2™ words (2™ bytes), so m bits are used for
the word within the block, and two bits are used for the byte
part of the address

size of the tag field =32-(n+m +2)

The total number of bits in a direct-mapped cache

For one block = block size(data) + tag size + valid field size
The total number of bits in a direct-mapped cache is

2" * (block size + tag size + valid field size)

Example Problem

How many total bits are required for a direct-mapped cache with 16
KB of data and 4-word block size, assuming a 32-bit address?

Cache data = 16 KB = 2% bytes = 21> words =
= 212 words / 4 words = 2%blocks
Each cache entry size = block data bits + tag bits + valid bit
=(4*32)+(32-10-2-2)+1=128+18 +1 =147 bits

Therefore, Entire cache size = 2% x 147 bits = 2'°x (147) bits = 147
Kbits

— Total cache size -> 147Kbits / 8 = 18.4 Kbytes

— Actual cache size(only data) -> 16Kbytes

— total cache size/actual cache data = 18.4/16 = 1.15

— S0 15% increase in the cache size to include tag and valid bits.

Example problem

* Consider a cache with 64 blocks and a block size of 16 bytes.
To what block number does byte address 1200 map?

* Use the formula:
(Block address) modulo (Number of blocks in the cache)

— Block address = byte address/ bytes per block
— =1200/16=75
— 75 modulo 64 = 11t block in cache

Example Problem

How many total bits are required for a direct-mapped cache with 128 KB
of data and 1-word block size, assuming a 32-bit address?

Cache data = 128 KB = 217 bytes = 2% words = 2'° blocks
Cache entry size = block data bits + tag bits + valid bit
=32+(32-15-2) + 1 =48 bits
Therefore, cache size = 21> x 48 bits = 2% x (1.5 x 32) bits = 1.5 x 2% bits
= 1.5 Mbits
— data bits in cache = 128 KB x 8 = 1 Mbits
— total cache size/actual cache data=1.5

Example Problem

How many total bits are required for a direct-mapped cache with
128 KB of data and 4-word block size, assuming a 32-bit
address?

Cache size =128 KB = 27 bytes = 2> words = 233 blocks
Cache entry size = block data bits + tag bits + valid bit
=128 +(32-13-2-2) + 1 = 144 bits
Therefore, cache size = 23 x 144 bits = 23 x (1.25 x 128) bits =
1.25 x 2%° bits = 1.25 Mbits
— data bits in cache = 128 KB x 8 = 1 Mbits
— total cache size/actual cache data =1.25

1.

Cache Read Hit/Miss

Cache read hit: no action needed

Instruction cache read miss:

Send original PC value (current PC — 4, as PC has already been incremented
in first step of instruction cycle) to memory

Instruct main memory to perform read and wait for memory to complete
access — stall on read

After read completes write cache entry

Restart instruction execution at first step to refetch instruction
Data cache read miss:

Similar to instruction cache miss

To reduce data miss penalty allow processor to execute instructions while
waiting for the read to complete until the word is required — stall on use
(why won’t this work for instruction misses?)

Cache Write Hit/Miss

Write-through scheme

— on write hit: replace data in cache and memory with every write hit to
avoid inconsistency

— on write miss: write the word into cache and memory — obviously no
need to read missed word from memory!

— Write-through is slow because of always required memory write

* performance is improved with a write buffer where words are stored while
waiting to be written to memory — processor can continue execution until
write buffer is full

* when a word in the write buffer completes writing into main that buffer slot
is freed and becomes available for future writes

* DEC 3100 write buffer has 4 words
Write-back scheme

— write the data block only into the cache and write-back the block to main
only when it is replaced in cache

— more efficient than write-through, more complex to implement

Measuring and Improving cache
performance

Measuring Cache Performance

* Simplified model assuming equal read and write miss penalties:

CPU time = (execution cycles + memory stall cycles) x cycle time
Memory stall cycles = reads stall cycles + write stall cycles

Read stall cycles = reads/program + read miss rate + read miss penalty
Write stall cycles = writes/program + write miss rate + write miss penalty

memory stall cycles = memory accesses/program x miss rate x miss penalty
memory stall cycles = instructions/program x miss/instruction x miss penalty

Where, memory accesses = read memory access + write memory access

miss rate = read miss rate + write miss rate
miss penalty = read miss penalty = write miss penalty

Example Problems

. Assume for a given machine and program:
— instruction cache miss rate 2%
— data cache miss rate 4%
— miss penalty always 100 cycles
— CPI of 2 without memory stalls
— frequency of load/stores 36% of instructions

1. How much faster is a machine with a perfect cache that never misses?

2. What happens if we speed up the machine by reducing its CPI to 1
without changing the clock rate?

Solution -1

Assume instruction count = |

memory stall cycles = instructions/program x miss/instruction x miss
penalty

Instruction miss cycles =1x 2% x 100 =2.0 x |
Data miss cycles =1 x 36% x 4% x 100 =1.44 x |

total memory-stall cycles = Instruction miss cycles + Data
misscycles=2x1+1.44x1=3.44 x|

CPI = Basic CPl + memory stall CPI

=2+3.44=544
CPU time = IC x CPI x clock cycles
CPU time with stalls / CPU time with perfect cache
= | x 5.44xclock cycles/ | x 2 x clock cycles =5.44 /2 =2.72

Performance with a perfect cache is better by a factor of
2.72

memory stalls

Solution - 2

CPI without stall =1

CPI with stall = Basic CPl + memory stall CPI
=1+3.44=4.44

CPU time with stalls / CPU time with perfect cache

= CPI with stall / CPI without stall

=4.44/1

Performance with a perfect cache is better by a factor of
4.44

Conclusion: with higher CPl cache misses “hurt more”
than with lower CPI

Average Memory Access Time

* AMAT = Time for a hit + Miss rate x Miss
penalty

AMAT — Problem

* Given:
— Clock cycle time = 1ns
— Miss penalty = 20 clock cycles
— Miss rate = 0.05 misses per instruction
— Cache access(hit) time = 1 clock cycle

Solution

* AMAT = Time for a hit + Miss rate x Miss
penalty

=1+0.05x20
=1+1
= 2 clock cycles
Or clock cycle time = 2 x 1ns = 2ns

Cache Read Hit/Miss

. Cache read hit: no action needed
. Instruction cache read miss:
1. Send original PC value to memory

2. Instruct main memory to perform read and wait for
memory to complete access — stall on read

3. After read completes write cache entry

4. Restart instruction execution at first step to refetch
instruction

Cache Write Hit/Miss

Write-through scheme — write data both in cache and
main memory

— on write hit: replace data in cache and memory with
every write hit to avoid inconsistency

— on write miss: write the word into cache and memory
— obviously no need to read missed word from
memory!

— Write-through is slow because of always required
memory write

* performance is improved with a write buffer
Write-back scheme

— write the data block only into the cache and write-back
the block to main only when it is replaced in cache

— more efficient than write-through, more complex to
implement

Decreasing Miss Rates with Associative
Block Placment

Direct mapped: one unique cache location for each memory block
— cache block address = memory block address mod cache size
* Fully associative: each memory block can locate anywhere in cache
— all cache entries are searched (in parallel) to locate block
* Set associative: each memory block can place in a unique set of cache
locations — if the set is of size n it is n-way set-associative
— cache set address = memory block address mod number of sets in cache

— all cache entries in the corresponding set are searched (in parallel) to locate
block

* Increasing degree of associativity
— reduces miss rate
— increases hit time because of the parallel search and then fetch

Decreasing Miss Rates with Associative
Block Placment

Direct Mapped 2-way Set Associative Fully Associative

- - T m s e — e - = —————— e —

Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Tag 5 Tag 5 Tag 5
Search T Search T T Search T T T T T T T T
12 mod 8 = 4 12mod4 =0

Location of a memory block with address 12 in a cache with 8 blocks
with different degrees of associativity

Adv and Disadv of mapping

* Direct mapped :
— Adv — easy to search
— Disadv — only one block for multiple data

* Set-Associativity mapped :
— Adv — more than one block for multiple data
— Disadv — search more than one block
* Associativity mapped :
— Adv — all blocks available for data
— Disadv — search all the blocks

Decreasing Miss Rates with Associative
Block Placment

One-way..sef _associative

(direct mapped)
Block Tag Data

0

' Two-way set associative
5 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative
Set Tag Data Tag Data Tag Data Tag Data

0
1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

[N N N N O

Configurations of an 8-block cache with different degrees of associativity

Example Problems

Find the number of misses for a cache with four 1-word blocks given the
following sequence of memory block accesses:

0,8, 0,6,S,
for each of the following cache configurations

1. direct mapped
2. 2-way set associative (use LRU replacement policy)

3. fully associative

Note about LRU replacement

— ina2-way set associative cache LRU replacement can be implemented with
one bit at each set whose value indicates the mostly recently referenced

block

1 (direct-mapped)

Solution

Block address Cache block

0
6
8

0 (=0 mod4)
2 (=6 mod4)
0 (= 8 mod4)

Block address translation in direct-mapped cache

Address of memory Hit or

block accessed miss
0 miss
8 miss
0 miss
6 miss
8 miss

Contents of cache blocks after reference

0 1 2 3
Memory[0]
Memory[8]
Memory[0]
Memory[0] Memory[6]
Memory[8] Memory[6]

Cache contents after each reference — red indicates new entry added

5 misses

Solution (cont.)

* 2 (two-way set-associative)
Block address Cache set

0 0 (=0 mod 2)
6 0 (= 6 mod 2)
8 0 (= 8 mod 2)
Block address translation in a two-way set-associative cache
Address of memory Hit or Contents of cache blocks after reference
block accessed miss Set 0 Set0 Set 1 Set 1
0 miss Memory[0]
8 mIss Memory[0] Memory[8]
0 hit Memory[0] Memory[8]
6 miss Memory[0] Memory[6]
8 miss Memory[8] Memory[6]

Cache contents after each reference — red indicates new entry added

* Four misses

Solution (cont.)

* 3 (fully associative)

Address of memory Hit or

block accessed miss
0 miss
8 miss
0 hit
6 miss
8 hit

Contents of cache blocks after reference

Block 0
Memory[0]
Memory[0]
Memory[0]
Memory[0]
Memory[0]

Block 1

Memory[8]
Memory[8]
Memory[8]
Memory[8]

Block 2

Memory[6]
Memory[6]

Block 3

Cache contents after each reference — red indicates new entry added

* 3 misses

Implementation of a 4-way - Set-
Associative Cache

Address
3130---12111098---3210

l I [|

N \22 \\8
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2 | | — ————|
0 ® 3 [? p Set
253 I ————
254
255
\\22 \\32

TR B Y

H) 4-to-1 multiplexor

Hit Data

4-way set-associative cache with 4 comparators and one 4-to-1 multiplexor:
size of cache is 1K blocks = 256 sets * 4-block set size

Decreasing Miss Penalty with Multilevel
Caches

* Add a second-level cache
— primary cache is on the same chip as the processor

— use SRAMs to add a second-level cache, sometimes
off-chip, between main memory and the first-level
cache

— if miss occurs in primary cache second-level cache is
accessed

— if data is found in second-level cache miss penalty is
access time of second-level cache which is much less
than main memory access time

— if miss occurs again at second-level then main memory
access is required and large miss penalty is incurred

Virtual Memory

Virtual Memory

Motivation: main memory acts as cache for secondary
storage, e.g., magnetic disk

main memory size < disk size < virtual address space size

Page table transparently converts a virtual memory address
to a physical memory address,

— if the data is already in main; if not, it issues call to OS to
fetch the data from disk into main

Virtual memory is organized in fixed-size (power of 2,
typically at least 4 KB) blocks, called pages. Physical
memory is also considered a collection of pages of the same
size.

— the unit of data transfer between disk and physical
memory is a page

Virtual Memory

Pa e
Vi rtual,_é_d.r.@ hysical Address

Main Memory

Virtual
Memory

LA V

Disk addresses

Secondary Storage

Mapping of pages from a virtual address to a
physical address or disk address

Page Table Implements Virtual to
Physical Address Translation

Page table register

Virtual address
31 30 29 28 27 st 15 14 13 12 11 10 9 8 -« 3210
Points to start Virtual page number Page offset
of page table
.20 N
‘Valid Physical page number
® ®
Page table
v \\18
If O then page is not
present in memory
29 28 27 cccecccceccesa - 151413 1211 1098--1--- 3210
Physical page number Page offset

Physical address

Page table: page size 4 KB, virtual address space 4 GB,
physical memory 1 GB

Example Problem

* Assume:
— 32-bit virtual address
— 4 KB page size
— 4 bytes per page table entry

* What is the total page table size is we want to be able to access all
of the virtual memory?

Solution

* No. of page table entries = address space size / page size
= 032 / 212 = 920
* Size of page table = No. of entries x entry size
= 229%x 4 bytes = 4 MB (huge!)

* Note, to avoid large page table size:

— each program has its own page table
* page table register points to start of program’s page table

— toreduce storage required per program page table
* page table for a program covers the span of virtual memory containing its
own code and data
* other techniques, e.g., multiple-level page tables, hashing virtual address,
etc.

Page Faults

Page fault: page is not in memory, must retrieve it from disk
— enormous miss penalty = millions of cycles
— therefore, page size should be large (e.g., 32 or 64 KB)
* to make one trip to disk worth a lot
— reducing page faults is critical

* LRU replacement policy — implemented approximately by
setting a use bit each time a page is accessed, and then
periodically clearing all these bits so that pages accessed in a
fixed time period are known

* fully associative page placement — consequence of page table
— handle faults in software instead of hardware
* as software overhead is still small compared to disk access
time
— using write-through is too expensive, so always use write-back

Resolving Page Faults using the Page

Virtual page
number
Page table
Physical page or Physical memory
Valid disk address

1

1 ;}i

1 ~—

1 —

0 o« _—

-1 «~/

1 — <

0 o A \

1 « </ Disk storage

1 o /T T

0

1 :’%\ \“‘__—___#/
Y

| |

[~
~N

Page table maps virtual page to
either physical page or disk page

Making Address Translation Fast with the
Translation-lookaside Buffer

TLB

Virtual page Physical page
number Valid Dirty Ref Tag address
| |

Physical memory

plolp|r

Y e | [N [USY Y S
OO O = = O
—_ | (T | | [

Page table

Physical page
Valid Dirty Ref or disk address

]
L .10/ —
R —— Diskstorage
1[0 1 —
0[0[0 —z —
1(0]1 v 7 |
1101 "‘f//
0]0/0 |
1[1]1 < 7 |
111 « 7 -
000 —
1111 v

On a page reference, first look up the virtual page number in the TLB; if
there is a TLB miss look up the page table; if miss again then true page fauit

Summary

Memory hierarchy

Cache basics

Measuring cache perfromance
Improving cache performance

Virtual memory

UNIT IV MEMORY AND I/0O SYSTEMS

Input/output system, programmed I/0, DMA and
interrupts, I/O processors.

Reference:
* Chapter 7 — Input Output System

* Book - William Stallings , “Computer Organization and
Architecture®, 8™ Edition.

Input Output System

Need for Input/Output Module

* Wide variety of peripherals
— Delivering different amounts of data
— At different speeds
— In different formats

* All slower than CPU and RAM
* Need I/O modules

Input/Output Module

* Interface to CPU and Memory
* Interface to one or more peripherals

\ \

Interface to CPU and Memory
I/O module |

Interface to Peripherals
/ V\

Input Output

device(keyboard)

device(monitor)

Generic Model of I/0 Module

Address Lines
to
CPU — Systemn
J ata Lines
and Bus
Memory —
Control Lines J

/O Module

Links to
peripheral
devices

External Devices

— Monitor Screen
— Printer

— Keyboard

— Modem

External Device Block Diagram

_ Control [A Spapus 4 Data bits
signals from signals to to and from
1/ module 1A muodule 170y muod ule
Y v
Control > Buffer
Logic
Transducer
A

Data (device-unigue)
to and from
¥ environment

/O Module Function

Control & Timing

CPU Communication
Device Communication
Data Buffering

Error Detection

/O Steps

* CPU checks I/O module device status
* |/O module returns status

* |f ready, CPU requests data transfer
* |/O module gets data from device

* |/O module transfers data to CPU

* Variations for output, DMA, etc.

|/O Function and Steps

/0 /0

> >
1. Request status 2. Request status
< <
4 Return status 3.Return status
> >
5. Request data 6. Request data

<8.Return data ?.Return data

/O Module Diagram

Interface to
System Bus

~A—

—b'l Data Registers

|

Data
Lines

—bl status/Control Registers

Address

Lines

Control

Lines

Interface to

External Device

~A—

External
Device
Interface
Logic

/0
Logic

External
Device
Interface
Logic

Data

Status

Control

Status

Control

/O Module Decisions

Hide or reveal device properties to CPU
Support multiple or single device
Control device functions or leave for CPU

Also O/S decisions
— e.g. Unix treats everything it can as a file

Programmed 1/0

Input Output Techniques

Programmed 1/0
nterrupt driven |/O
Direct Memory Access (DMA)

Three Techniques for
Input of a Block of Data

Issue Read
command to} CPU — I/O
I/O module

Read status

of I/O I/0 — CPU

Error
condition

Read word
from 1/0O
Module

I/0 — CPU

Write word

. CPU — memory
into memory

Next instruction
(a) Programmed /O

PU — 1/0
Do something
= Pelse

Issue Read
command to
I/O module

—

Read status g - - - Interrupt

of /1O

module /O — CPU
Error
condition

Read word

from 11O /0 - CPU

Module

‘_erte word CPU — memory

into memory

Next instruction
(b) Interrupt-driven 1/0

PU — DMA
Do something
= Pelse

Issue Read
block comman
to /O module

Read status
of DMA
module

- == Interrupt

DMA — CPU

Next instruction

(c) Direct memory access

Read word
from WO o — CPU

Module

Write word
into memory LS e

Mext instruction
(a) Programmed I/0

Programmed 1/0

* CPU has direct control over I/0O
— Sensing status
— Read/write commands
— Transferring data

* CPU waits for I/0O module to complete
operation

* Wastes CPU time

Programmed I/O - detail

CPU requests I/O operation

/0 module performs operation

/O module sets status bits

CPU checks status bits periodically

/0 module does not inform CPU directly
/0 module does not interrupt CPU

CPU may wait or come back later

/O Commands

* CPU issues address

— |dentifies module (& device if >1 per module)

* CPU issues command
— Control - telling module what to do
* e.g. spin up disk
— Test - check status
* e.g. power? Error?

— Read/Write

* Module transfers data via buffer from/to device

Addressing I/O Devices

* Under programmed I/O data transfer is very
like memory access (CPU viewpoint)

* Each device given unique identifier
* CPU commands contain identifier (address)

/0 Mapping

* Memory mapped |/O
— Devices and memory share an address space
— 1/0 looks just like memory read/write
— No special commands for I/0

* Large selection of memory access commands available

* JIsolated I/O

— Separate address spaces
— Need I/O or memory select lines
— Special commands for /0

* Limited set

Memory Mapped and Isolated I/O

ADDRESS INSTRUCTION OPERAND
200 Load AC "
Store AC 517
202 Load AC 517
Branch if Sign=0 202
Load AC 516

(a) Memory-mapped 1/O

COMMENT

Load accumulator
Initiate keyboard read
Get status byte

Loop until ready

Load data byte

7 6 5 4 3 2 1 0
516 Keyboard input data register
7 6 5 4 3 2 1 0
517 Keyboard input status
and control register
T_'l = ready T_Set to1to
0 = busy start read
ADDRESS INSTRUCTION OPERAND COMMENT
200 Load /O 5 Initiate keyboard read
201 Test /O 5 Check for completion
Branch Not Ready 201 Loop until complete
In 5 Load data byte

(b) Isolated /O

Interrupt Driven 1/O

Issue Read gCPU — 11O
—» command to Do somethi
/O module I~ Pelse
=== Interrupt
IO — CPU
Error
condition
Read word
from /O 17O — CPU

Module

Mext instruction

(b) Interrupt-driven /O

Interrupt Driven 1/0O

* Overcomes CPU waiting
* No repeated CPU checking of device

* |/O module interrupts when ready

Interrupt Driven 1/0O
Basic Operation

CPU issues read command

/0 module gets data from peripheral whilst
CPU does other work

/0 module interrupts CPU
CPU requests data
/O module transfers data

Hardware Software

—A A ——A—— Simple Interrupt

Device controller or .
| Processing

other system hardwar
issues an interrupt ‘

Save remainder of
process state

information

Processor finishes
execution of current

instruction

Process interrupt

Processor signals
acknowledgment
of interrupt

Restore process stat
information

Processor pushes PS
and PC onto control

stack

Restore old PSW

and PC

Processor loads ne
PC value based on
interrupt

CPU Viewpoint

Issue read command
Do other work

Check for interrupt at end of each instruction
cycle
If interrupted:-

— Save context (registers)

— Process interrupt
* Fetch data & store

See Operating Systems notes

Changes in Memory and Registers

T-M

Control
Stack

Y+L

N+1

(a) Interrupt occurs after instruction

-
‘E Y
N+ 1 J
Program
Counter
olart L
Interrupt General
Service Registers
Retun Routine T
Stack
Pointer
Processor
T-M
User's
Program
Main
Memory

at location N

T-M

Control
Stack

Y+ L

N+ 1 }
‘;} Y + L |
Program
Counter
Start L
Interrupt General
Service Registers
Return Routine
Stack
Pointer
Processor
T
User's
Program
Main
Memory

(b) Return from interrupt

Design Issues

* How do you identify the module issuing the
interrupt?

* How do you deal with multiple interrupts?
— i.e. an interrupt handler being interrupted

ldentifying Interrupting Module (1)

* Different line for each module
— PC
— Limits number of devices

* Software poll

— CPU asks each module in turn

— Slow

ldentifying Interrupting Module (2)

* Daisy Chain or Hardware poll
— Interrupt Acknowledge sent down a chain
— Module responsible places vector on bus
— CPU uses vector to identify handler routine

* Bus Master

— Module must claim the bus before it can raise
interrupt

Multiple Interrupts

1) Implementation of interrupt priority using individual
interrupt-request and acknowledge lines.

— Each line has different priority levels.

— Interrupt acknowledgement will be sent only if it has
highest priority than the one assigned currently.

— Adv — accept interrupt request from some devices based
on priority.

2) Daisy chain
- Adv - fewer lines
3) Arrangement of priority groups

- Adv — combine the advantage of both the above schemes

Example - PC Bus

* 80x86 has one interrupt line

* 8086 based systems use one 8259A interrupt
controller

* 8259A has 8 interrupt lines

Sequence of Events

8259A accepts interrupts

8259A determines priority

8259A signals 8086 (raises INTR line)
CPU Acknowledges

8259A puts correct vector on data bus
CPU processes interrupt

ISA Bus Interrupt System

ISA bus chains two 8259As together
Link is via interrupt 2
Gives 15 lines

— 16 lines less one for link

IRQ 9 is used to re-route anything trying to
use IRQ 2

— Backwards compatibility

Incorporated in chip set

82C59A Interrupt
Controller

B1594

Interropt
cohkoller

[External device 00

[External device 01

Ll

-

-

[External device 07

FE

INT

[External device 08

[External deviee 09

!

-

-

[External device 15

Master
R150 4
ternpt
cohtroller

[External device 56

—

| Extermal device 57

—

-

-

[External device 63—

h J

K0
IH1 INT
K2
K3
K4
IKS
[RA
K7

BO2R6
processor

Y

INTR

Intel 82C55A
Programmable Peripheral Interface

e ——— . PA3 1 40 0 PA4
l h?;;:_ 8-t | PA2 02 30 [0 PAS
: £ 1"“‘;“1 i PAl O3 38 0 PAG
us | PAD 4 37 O PAT
RO &6 | & 8 . B)
data bus , > < » i — A Read OS5 36 [d Write
| ! Chip select 06 3% [Reset
I i Ground CJ7 3 0
power :—h+.5 valts ! 4 Al O& aOn
supplies ————* ground S— -—:,.f—p{r.a Ab o BOD
: PCT O 10 3l @
I
| PCe C11 00
. |
adivess Al —— 4 i PCs O] 12 200 D=
lineg Al ———= —» Ll » g .
rend Caontrol I PC4 113 28 0 Db
— iy .
write logic : B3 E 14 27 3 n7
Teset — ¢ P2 OIS wOv
]
chip — Control — q—gf—h B PC1 O16 22O PET
select I register i PCo 17 24 0 PEG
: oo pE)d O 18 23 [0 pES
! e 4 PEI Cl1% 22 [PE4
- 4 PE2 020 21 @ PB3

{a) Bliwk dingram () Pin layout

Kevboard/Display Interfaces to
32C55A

-—
Interropi
Feqmest
3 AD R0
Al | K1
Al | K2
A3 |t K3
INPUT , 4 » ga KEYBOARD
PORT 45 |« KS
Al [Shift
AT [Conirol
C4 g Lrata Keady
5 = Acknowledge
82C55A
Bl i S0
Bl »| 51
Bl 52
ﬂlJTPlJT:: > :: DISPLAY
PORT »
B5 55
B gl Backspace
B7 3 Clear
1 | Daia Hendy
2 |l Acknowledge
Ch »| Blanking
co CT p Clear Line
Interrpt
Teqoest
- |

DMA

DMA working

PLU — DMA
Do something
== Pese

- = = Interrupt
DMA — CPU

MNext instruction

Direct Memory Access

* DMA — used to transfer large block of data

* Interrupt driven and programmed I/O require
active CPU intervention

— Transfer rate is limited
— CPU is tied up

DMA Function

* Additional Module (hardware) on bus
* DMA controller takes over from CPU for I/O

Tvobical DMA Module Diagram

Data
P m—
Count
Data Lines > Data
Register

1" Address
Address Lines 4 b Register

DMA Request o
DMA Acknowledge -
Interrupt

Read g

Write -

Control
Logic

DMA Operation

CPU tells DMA controller:-

— Read/Write

— Device address

— Starting address of memory block for data
— Amount of data to be transferred

CPU carries on with other work
DMA controller deals with transfer
DMA controller sends interrupt when finished

Memory Cycle Stealing

* DMA controller has higher priority over the
system bus than the processor.

— This causes the DMA controller to steal the
memory clock cycles of the processor.

DMA and Interrupt Breakpoints
During an Instruction Cycle

Time

Instruction Cycle

< ¥
Processor | Processor | Processor | Processor | Processor | Processor
Cycle Cycle Cycle Cycle Cycle Cycle
o >4 >4 bt >4 4 L
Fetch Decode Fetch Execute Store Process
Instruction | Instruction Operand | Instruction Result Interrupt
A A
DMA Interrupt
Breakpoints Breakpoint

Aside

* What effect does caching memory have on
DMA?

* What about on board cache?

* Hint: how much are the system buses
available?

DMA Configurations (1)

‘F‘ummn‘”‘ DMA H‘ 1) H 5 & & ‘ /0y H‘ﬁrlﬂmf}FH

* Single Bus, Detached DMA controller

* Each transfer uses bus twice
—1/0 to DMA then DMA to memory

* CPU is suspended twice

DMA Configurations (2)

P rocessor ‘ \ DMA Memory ‘ \

(b} Single-bos, Integrated DMA-LO

Single Bus, Integrated DMA controller
Controller may support >1 device

Each transfer uses bus once
— DMA to memory

CPU is suspended once

DMA Configurations (3)

Syvstem bos

1I/0) bos

=N, = N
(¢} LAD bos

Separate 1/O Bus

Bus supports all DMA enabled devices

Each transfer uses bus once
— DMA to memory

CPU is susbended once

Intel 8237A DMA Controller

Interfaces to 80x86 family and DRAM
When DMA module needs buses it sends HOLD signal to processor
CPU responds HLDA (hold acknowledge)

DMA module can use buses

E.g. transfer data from memory to disk

1.
2.
3.

Device requests service of DMA by pulling DREQ (DMA request) high
DMA puts high on HRQ (hold request),

CPU finishes present bus cycle (not necessarily present instruction) and puts
high on HDLA (hold acknowledge). HOLD remains active for duration of DMA

DMA activates DACK (DMA acknowledge), telling device to start transfer

DMA starts transfer by putting address of first byte on address bus and
activating MEMR; it then activates IOW to write to peripheral. DMA
decrements counter and increments address pointer. Repeat until count
reaches zero

DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

CPU
Data bus
®
DREQ
HRQ |« <
8237 DMA Main Disk
chip memory controller
HLDA : o DACK

A

DACK = DMA acknowledge
DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Address bus

]\

°
Control bus (IOR, IOW, MEMR, MEMW)

Fly-By

While DMA using buses processor idle

Processor using bus, DMA idle

— Known as fly-by DMA controller

Data does not pass through and is not stored in DMA chip
— DMA only between I/O port and memory

— Not between two I/O ports or two memory locations
Can do memory to memory via register

8237 contains four DMA channels

— Programmed independently

— Any one active

— Numbered O, 1, 2, and 3

/O Channels

/O devices getting more sophisticated
e.g. 3D graphics cards

CPU instructs I/O controller to do transfer
1/O controller does entire transfer

Improves speed
— Takes load off CPU
— Dedicated processor is faster

/O Channel Architecture

raia and
addiress chahhel
to aih memory

:}:" Selector

chanmel I I
—_—
Conttul signal L0 L0 s
path w CPU Contraoller Contraller
(a) Selector
Data and
address channel
to maih memory
Multt-
plexor
—_— chanhel
Control signal

path w CPLU e I

LiD
Contraller

L/
Controller

LD
Contraller

b Multiplexor

Interfacing

Connecting devices together

Bit of wire?

Dedicated processor/memory/buses?
E.g. FireWire, InfiniBand

IEEE 1394 FireWire

High performance serial bus
-ast

LOW Cost
Easy to implement

Also being used in digital cameras, VCRs and
TV

FireWire Configuration

Daisy chain
Up to 63 devices on single port

— Really 64 of which one is the interface itself

Up to 1022 buses can be connected with
bridges

Automatic configuration
No bus terminators

May be tree structure

Simple FireWire Configuration

interface

CD-ROM

Digital
camera

Scanner

Printer

FireWire 3 Layer Stack

* Physical

— Transmission medium, electrical and signhaling
characteristics

* Link
— Transmission of data in packets

* Transaction

— Request-response protocol

FireWire Protocol Stack

Serial bus management

Transaction layer
H)
(read, write, lock)

A

Asynchronous Isochronous

¥

Link layer
o
Packet transmitter Packet receiver Cycle control
Physical layer
Arbitration Data resynch Encode/decode
< >

Connectors/media Connection state Signal levels

FireWire - Physical Layer

* Data rates from 25 to 400Mbps

* Two forms of arbitration
— Based on tree structure
— Root acts as arbiter
— First come first served
— Natural priority controls simultaneous requests

* i.e. who is nearest to root
— Fair arbitration
— Urgent arbitration

FireWire - Link Layer

* Two transmission types

— Asynchronous

* Variable amount of data and several bytes of
transaction data transferred as a packet

* To explicit address
* Acknowledgement returned

— Isochronous

* Variable amount of data in sequence of fixed size
packets at regular intervals

* Simplified addressing
* No acknowledgement

FireWire Subactions

Subaction 1: Request Subaction 2: Response
Sub- - A ~ Sub- ~ — ~ Sub-
action Ack action Ack action
gap Arp Packet gap Ack gap Arb Packet gap Ack gap
—
Time

(a) Example asynchronous subaction

Subaction 1: Request Subaction 2: Response
Sub- ~ A T e Sub-
action Ack Ack action
gap Kall Packet gap Ack Packet gap Ack gap

(b) Concatenated asynchronous subactions

First Channel Second Channel Third Channel
Fa A F A " — "
coch Msoch IsocH Isoch soch
S0C S0C
. a A ap) ap
gap Kadd Packet gap Packet | 92P IXTS Packet 98P | Ack gap

(c) Example isochronous subactions

InfiniBand

/0 specification aimed at high end servers

— Merger of Future I/O (Cisco, HP, Compaq, |IBM)
and Next Generation I/O (Intel)

Version 1 released early 2001

Architecture and spec. for data flow between
processor and intelligent I/O devices

Intended to replace PCl in servers

Increased capacity, expandability, flexibility

InfiniBand Architecture

Remote storage, networking and connection between servers

Attach servers, remote storage, network devices to central
fabric of switches and links

Greater server density
Scalable data centre
Independent nodes added as required

|/O distance from server up to
— 17m using copper

— 300m multimode fibre optic

— 10km single mode fibre

Up to 30Gbps

InfiniBand Switch Fabric

Host server

CPU
W
a I
= Memary
=
:@ controller
=
CPU
System
memaory
IB = InfiniBand
HCA = host channel adapter

TCA = target channel adapter

Target
device

TCA

IB link ¢

&
F
&
'
i

E Target
A| Device
Router

InfiniBand Operation

16 logical channels (virtual lanes) per physical
link

One lane for management, rest for data

Data in stream of packets

Virtual lane dedicated temporarily to end to
end transfer

Switch maps traffic from incoming to outgoing
lane

InfiniBand Protocol Stack

C

Client process

Transport layer

Network layer

Link layer

Physical layer

CQE

Host
channel WQE i
adapter ¥

QP T 4 1‘ 4

Send Receive

*--

Transport engine

Ijacket

IB = InfiniBand

Transactions

(IB operations)

IB operations

(IB packets)

IB packets

Server process

)

Packet relay

=

Port

T Physical link

Port Port

A
Target
channel WQE " CQE
adapter ¥
A A
SN N
Send Receive

Transport engine

Ijacket

I

Port

Physical link T

WQE = work queue element
CQE = completion queue entry

QP = queue pair

Fabric

Foreground Reading

* Check out Universal Serial Bus (USB)

* Compare with other communication
standards e.g. Ethernet

