
IT18015
STATISTICAL ANALYSIS USING

R PROGRAMMING

PREPARED BY
DR A KALA

ASSOCIATE PROFESSOR/IT

COURSE OUTCOMES

1. Experiment with the various data structures
such as matrices, lists, factors, and data frames

2. Infer knowledge on various file formats and
create various graphic displays

3. Formulate and Solve the problems in probability
distributions

4. Choose statistical models for analyzing the data

5. Investigate and handle missing data and infer
knowledge on advanced graphics

UNIT I - INTRODUCTION

• Introduction to R-Basic Syntax-data

Types-variables-Operators-Decision

Making-Loops-Functions-Strings-

Vectors-Lists-Matrices-Arrays- Factors-

Data Frames-Packages-Data Reshaping.

Introduction to R

• R is a programming language developed by Ross Ihaka and
Robert Gentleman in 1993.

• R possesses an extensive catalog of statistical and graphical
methods. It includes machine learning algorithms, linear
regression, time series, statistical inference.

• R is a interpreted programming language for data analysis
and statistics.

• R is a software environment for statistical analysis ,graphics
representation and reporting.

• R is freely available under the GNU General Public
License, and pre-compiled binary versions are provided for
various operating systems like Linux, Windows and Mac.

What is R used for?

• Data Analysis

- process of cleaning, transforming, and modeling data to
discover useful information.

• Statistical Inference

- process of analyzing the result and making conclusions
from data subject to random variation.

• Machine learning algorithm

- R is the most popular platform for machine learning.

- It is very powerful because so many machine learning
algorithms are provided.

Data analysis with R

Done in a series of steps - programming, transforming,
discovering, modeling and communicate the results.

• Program: R is a clear and accessible programming tool

• Transform: R is made up of a collection of libraries
designed specifically for data science

• Discover: Investigate the data, refine your hypothesis
and analyze them

• Model: R provides a wide array of tools to capture the
right model for your data

• Communicate: Integrate codes, graphs, and outputs to
a report with R Markdown or build Shiny apps to share
with the world

Features of R

• R is a well-developed, simple and effective programming
language which includes conditionals, loops, user defined
recursive functions and input and output facilities.

• R has an effective data handling and storage facility.

• R provides a suite of operators for calculations on arrays, lists,
vectors and matrices.

• R provides a large, coherent and integrated collection of tools
for data analysis.

• R provides graphical facilities for data analysis and display
either directly at the computer or printing at the papers.

Comments

• Comments are the programmer readable explanation.

• The purpose of adding these comments is to make the source

code easier to understand.

• These comments are generally ignored by compilers and

interpreters.

• In R programming there is only single-line comment.

• R doesn't support multi-line comment. But if we want to

perform multi-line comments, then we can add our code in a

false block.

• To comment a single line in RStudio, we can put “#” before

each line.

• But when we want to comment multiple lines at one go, we

can use following in RStuido:-

– In Windows: CTRL + SHIFT + C

Comments - Example

Single line comment

• #My First program in R programming

Multi line comment

if(FALSE) {

"R is an interpreted computer programming language which
was created by Ross Ihaka and Robert Gentleman at the Univ
ersity of Auckland, New Zealand "

}

Print Statement

• Simply enter the variable name or expression, R will print
its value.

• Use the print function for generic printing of any object.

• Use the cat function for producing custom formatted output.

pi

[1] 3.141593

sqrt(2)

[1] 1.414214

print(pi)

[1] 3.141593

print(sqrt(2))

[1] 1.414214

Print statement

Example 1:

print(“Hello, World!”)

Output:

[1] "Hello, World!“

Example 2:

mystring = “Hello, World!”

print(mystring)

Output:

[1] "Hello, World!"

Print statement

• Print format any R value for printing, including

structured values such as matrices and lists:

Example 1:

print(matrix(c(1,2,3,4), 2, 2))

OUTPUT:

[,1] [,2]

[1,] 1 3

[2,] 2 4

Print statement

Example 2:

print(list("a","b","c"))

OUTPUT:

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] "c"

Print statement

• The print function has a significant limitation, however:
it prints only one object at a time. Trying to print
multiple items gives error message:

Example1 :

print("The zero occurs at", 2*pi, "radians.")

Error in print.default("The zero occurs at", 2 * pi,
"radians.") :

Example 2:

print(“hello”,2*pi)

Output:

[1] “hello”

Print statement

To print multiple items is to print them one at a time,

print("The zero occurs at"); print(2*pi);
print("radians")

OUTPUT:

[1] "The zero occurs at"

[1] 6.283185

[1] "radians“

Built-in function paste() is used to concatenate strings.
print(paste("The zero occurs at", 2*pi, "radians."))

Output:

“The zero occurs at 6.283185 radians”

cat function

• The cat function lets you combine multiple items into a continuous
output:

• An alternative to print function. cat puts a space between each item
by default.

• A newline character(\n) must be provided to terminate the line.

cat("The zero occurs at", 2*pi, "radians.", "\n")

OUTPUT:

The zero occurs at 6.283185 radians.

• The cat function can print simple vectors, too:

fib <- c(0,1,1,2,3,5,8,13,21,34)

cat("The first few Fibonacci numbers are:", fib, "...\n")

OUTPUT:

The first few Fibonacci numbers are: 0 1 1 2 3 5 8 13 21 34 ...

Data Types

• In R, the variables are not declared as some data type.

• The variables are assigned with R-Objects and the data type

of the R-object becomes the data type of the variable.

• Numeric - 4.5 is a decimal value called numerics.

• Integer - 4 is a natural value called integers.

• Complex

• Logical - TRUE or FALSE is a Boolean value

called logical.

• Character - The value inside " " or ' ' are text (string). They

are called characters.

Numeric Data Type

• Decimal values are referred to as numeric data types in R.

• This is the default working out data type.

• If you assign a decimal value for any variable x like given
below, x will become a numeric type.

Example:

a <- 85.4

print(a)

OUTPUT:

[1]85.4

class(a) – returns the type of variable

[1] "numeric"

Integer Data Type

• To create an integer variable in R invoke the
as.integer() function to define any integer type
data.

Example:
s <- as.integer(3) or s <- 3L
print(s)
OUTPUT:
[1] 3
class(s)
[1] "integer"

Complex Data Type

• To define a complex value in R the pure
imaginary values 'i‘ is used.

Example:

k = 1 + 2i

print(k)

OUTPUT:

[1] 1+2i

Logical Data Type

• A logical value is created for comparison
between variables .

Example:

a = 4; b = 6

g = a > b

g

OUTPUT:

[1] FALSE

Character Data Type

• A character object can be used for representing string values in R.
• To convert objects into character values use as.character() function.
Example:
g = as.character(62.48)
g
OUTPUT:
[1] “62.48”
Example:
s=“hi”
OUTPUT:
[1] “hi"

Raw Data Type

• Raw Data type is used to hold raw bytes.

• Example:

V<-charToRaw(“hello”)

print(v)

• OUTPUT:

[1] 68 65 6c 6c 6f

Data Structures

• R has a wide variety of objects for holding data, including
– Scalars

– Vectors

– Matrices

– Data frames

– Lists

• They differ in terms of the type of data they can hold, how
they’re created, their structural complexity, and the notation
used to identify and access individual elements.

variables

• Variable is a name given to a memory location
used to store the information to be manipulated
and referenced in the R program.

• The R variable can store an atomic vector, a group
of atomic vectors, or a combination of many R
objects, and even tables.

• R is a dynamically typed, means it check the type
of data when the statement is run.

• We do not have to declare the data type of a
variable before we can use it in our program.

Rules for variables

• It should contain letters, numbers, and only dot

or underscore characters.

• It should not start with a number

• It should not start with a dot followed by a

number

• It should not start with an underscore

• It should not be a reserved keyword.

Variable assignment

• The variables can be assigned values using equal to operator ,

leftward and rightward.

• There is no need to declare variable first.

• Just assign a value to the name and R will create the variable:

Example:

a1 = 10

print(a1)

OUTPUT:

[1] 10

Variable assignment

Assignment using leftward operator.
a2 <- 5
cat (“a2 is ", a2 ,"\n")
OUTPUT: a2 is 5
Assignment using rightward operator.
5 -> a4
cat (“a4 is ", a4 ,"\n")
OUTPUT:
a4 is 4

Listing Variables

• The ls function displays the names of objects in your

workspace:

x <- 10

y <- 50.5

z <- “abc”

ls.str() - Tells about each variable

OUTPUT:

X: num 10

Y: num 50.5

z:chr “abc”

Remove a variable

• To remove unneeded variables or functions from your
workspace or to erase its contents completely rm
function is used.

Example:

x1 <- 3

X1

OUTPUT:

[1] 3

rm(x1)

x1

Error: object "x1" not found

Operators

• The operators are those symbols which tell the
compiler for performing precise mathematical or
logical manipulations.

• R programming is loaded with built in operators .

– Arithmetic Operators

– Relational Operators

– Logical Operators

– Assignment Operators

– Miscellaneous Operators

Arithmetic Operators
Operato

r
Description Example

+ Addition

x <- 5
y <- 16
x+y

a <- c(2,3.3,4)
b <- c(11, 5, 3)
print(a+b)
[1] 13.0 8.3 7

– Subtraction
x-y print(a-b)

[1] -9.0 -1.7 1.0

* Multiplication
x*y print(a*b)

[1] 22.0 16.5
12.0

/ Division
y/x print(a/b)

[1]0.18 0.66
1.33

^ Exponent

y^x print(a^b)
[1] 2048.0000
391.3500
64.0000

%%
Modulus
(Remainder from

y%%x print(a%%b)
[1] 2.0 3.3 1.0

Logical Operators

• Operators & and | perform element-wise operation producing result

having length of the longer operand.

• But && and || examines only the first element of the operands

resulting into a single length logical vector.

• Zero is considered FALSE and non-zero numbers are taken as TRUE

Operator Description Example

! Logical NOT
x <- c(3,0,TRUE,2+2i)
!x [1] FALSE TRUE FALSE
FALSE

&
Element-wise
logical AND

x <- c(3,0,TRUE,2+2i)
y <- c(2,4,TRUE,2+3i)
x&y [1] TRUE FALSE TRUE
TRUE

&& Logical AND x&&y [1] TRUE

|
Element-wise
logical OR

x|y [1] TRUE TRUE
TRUE TRUE

|| Logical OR x||y [1] TRUE

Relational Operators
Operator Description Example

< Less than

x <- 5
y <- 16
x<y
[1] TRUE

> Greater than
x>y
[1] FALSE

<=
Less than or equal
to

x<=5
[1] TRUE

>=
Greater than or
equal to

y>=20
[1] FALSE

== Equal to
y == 16
[1] TRUE

!= Not equal to
x != 5
[1] FALSE

Assignment Operators

Operator Description Example

<-, <<-, =
Leftwards
assignment

x <- 5 x output:
[1] 5
x = 9 x output: [1]
9
x <<- 5 x output: [1]
5

->, ->>
Rightwards
assignment

10 -> x
x [1] 10

15->>y
Y [1] 15The operators <- and = can be used, almost interchangeably, to

assign to variable in the same environment.
The <<- operator is used for assigning to variables in the parent
environments (more like global assignments).
The rightward assignments, although available are rarely used.

Miscellaneous Operators

• These operators are used for specific purpose and not general mathematical

or logical computation.

Operat
or

Description Example

: Colon operator. It creates
the series of numbers in
sequence for a vector.

v <- 2:8
print(v)
[1] 2 3 4 5 6 7 8

%in%
This operator is used to
identify if an element
belongs to a vector.

v1 <- 8
v2<-12
t <- 1:10
print(v1%in%t) [1] TRUE
print(v2%in%t) [1] FALSE

%*%
This operator is used to
multiply a matrix with its
transpose.

M = matrix(c(2,6,5,1,10,4),
nrow = 2,ncol = 3,byrow =
TRUE)
t = M %*% t(M)
print(t)

Decision Making

• R programming provides three different types

of if statements that allows programmers to

control their statements within source code.

• if statement

• if….else statement

• If else ladder

• switch statement

If statement

Syntax:
if (condition) {
// statements
}
Example:
num <- 75
if (num > 50) {
print("Number Greater than 50")
}
OUTPUT: [1]“Number Greater than 50”

If else statement
Syntax

if (condition) {

// statements

} else {

// statements

}

Or

If(condition) statement1 else statement2

Example

a <- 10

b <- 20

if (a > b) { print("a is greater than b")

} else { print("b is greater than a")

}

OUTPUT: [1] “b is greater than a”

Example

x<--5

if(x > 0)

{ print("Non-negative number")

} else {

print("Negative number") }

Or

if(x > 0) print("Non-negative number") else
print("Negative number")

ifelse

• The ifelse function is a vectorized function of
standard R if..else statement.

• The vectorization makes it faster than applying
the same function to each element of the vector
individually.

Syntax:

ifelse(expression, x, y)
• x:Return values for true elements of expression

• y:Return values for false elements of expression

Ifelse - Example

Example:

num <- 10

res <- ifelse(num %% 2 == 0, "Even","Odd")

res

OUTPUT:

[1] ”Even”

If else ladder

• Syntax:
if (condition1) {

// statements
}else if (condition2) {

// statements
} else if (conditionN) {

// statements
}else {

// statements
}

If else ladder - example

Example:
a <- 10
b <- 10
if (a > b) {

print("a is greater than b")
} else if(a == b){

print("a and b are equal")
} else{

print("b is greater than a")
} OUTPUT: [1] “a and b are equal”

Switch statement

Syntax:

switch(expression, case1, case2, case3...., caseN)

• Expression value is tested against multiple
case values(case1,case2,case3…..caseN)

Rules for switch statement:

• No default values.

• If there is more than one match the first
matching element is returned.

Switch - Example
dayOfWeek <- 5

dow <- switch(

dayOfWeek ,

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday",

)

print(dow)

OUTPUT:[1] “Thursday”

Program - Odd or Even

num = as.integer(readline(prompt="Enter a
number: "))

if((num %% 2) == 0) {

print(paste(num,"is Even"))

} else {

print(paste(num,"is Odd"))

}

Calculator using switch

x <- as.integer(readline("Enter first number"))

y <- as.integer(readline("Enter second number "))

ch <- as.integer(readline("Enter Choice"))

res <- switch(ch,x+y,x-y,x*y,x%/%y)

cat("Result=",res)

Output:

Enter first number 10
Enter second number 5
Enter Choice 1
Result= 15

Loops

• Loop statements are used to execute the block of
code repeatedly until it meets the specified
condition .

Loop Statements:
• for
• while
• repeat
R Loop Control statements:
• break
• next

For loop

Syntax:

for (item in items)

{

// loop body

}

• Item holds the current element fetched from the
items.

• Items is a vector that allows us to fetch each of
the single element.

Example – for loop

Example:
employees <- c('John', 'Keith', 'Alex', 'Jason')
for (emp in employees)
{
print(emp)
}
OUTPUT:
[1]”john”
[1]”keith”
[1]”Alex”
[1]”Jason”

Example – for loop

Example: To count the number of even numbers in a
vector.
x <- c(2,5,3,9,8,11,6,44,43,47,67,95,33,65,12,45,12)
count <- 0
for (val in x) {
if(val %% 2 == 0) count = count+1
}
print(count)
OUTPUT:
[1] 6

for loop - Step count by 2

for(i in seq(from=1, to=10, by=2))

{

print(i)

}

or

for(i in seq(1, 10, 2))

{

print(i)

}

Example – multiplication table

num = as.integer(readline(prompt = "Enter a

number: "))

use for loop to iterate 10 times

for(i in 1:10) {

print(paste(num,'x', i, '=', num*i))

}

While Loop

Syntax:

while(condition)

{

// loop body

}

While loop - example

cnt <- 2
while (cnt < 7) {
print(cnt)
cnt = cnt + 1
}
Output:
[1]2
[1]3
[1]4
[1]5
[1]6

Repeat

• Repeat loop executes a block of code repeatedly until it meets

a specific condition to break and exit the loop.

• It is mandatory to define an explicit condition with a break

statement inside loop body which allows program to exit the

loop.

Syntax:

repeat {

//statements

}

Repeat

Example:
ctr <- 1
repeat {
print("Hello, World!")
ctr = ctr+1 if (ctr > 5){ break }
}
OUTPUT:[1] “hello,World!”
[1] “hello,World!”
[1] “hello,World!”
[1] “hello,World!”
[1] “hello,World!”
[1] “hello,World!”

Break Statement

Syntax:

if (condition) {

break

}

Break Statement - Example

count <- 0
while (count <= 10) {

count = count + 1
if (count == 5) {

break }
print(“count")
}
OUTPUT:
[1] 1
[1] 2
[1] 3
[1] 4

Next statement

• Skip over the current iteration of any loop and continues with

the next iteration.

• It does not terminate the loop . It just continues with the next

iteration.

• When the next statement is encountered in the loop it returns

the program execution to the first statement in the loop.

Syntax:

if (condition) {

next

}

Next statement - example
m=10

for (k in 1:m)

{

if (k %% 2 ==0)

next

print(k)

}

Output:

[1] 1

[1] 3

[1] 5

[1] 7

[1] 9

Home work

• Find the Factorial of a Number

• Check Prime Number

• Check Armstrong Number

• Find sum of natural numbers

Factorial of a number

num = as.integer(readline(prompt="Enter a number: "))
factorial = 1
if(num == 0) {
print("The factorial of 0 is 1")

} else {
for(i in 1:num) {
factorial = factorial * i

}
print(paste("The factorial of", num ,"is",factorial))

}

Prime Number
num = as.integer(readline(prompt="Enter a number: "))

flag = 1

for(i in 2:(num-1)) {

if ((num %% i) == 0) {

flag = 0

break

}

}

if(num == 2) flag = 1

if(flag == 1) {

print(paste(num,"is a prime number"))

} else {

print(paste(num,"is not a prime number"))

}

Armstrong Number
num = as.integer(readline(prompt="Enter a number: "))

sum = 0

temp = num

while(temp > 0) {

digit = temp %% 10

sum = sum + (digit ^ 3)

temp =temp %/% 10

}

if(num == sum) {

print(paste(num, "is an Armstrong number"))

} else {

print(paste(num, "is not an Armstrong number"))

}

Sum of Natural Numbers

num = as.integer(readline(prompt = "Enter a number: "))
if(num < 0) {

print("Enter a positive number")
} else {

sum = 0

while(num > 0) {
sum = sum + num
num = num - 1

}
print(paste("The sum is", sum))

}

Functions
• Functions are used to logically break our code into simpler

parts which become easy to maintain and understand.

Syntax:

func_name <- function (argument)

{

#statement

return statement

}

• The reserved word function is used to declare a function in

R.

• The statements within the curly braces form the body of the

function. These braces are optional if the body contains

only a single expression.

• Finally, this function object is given a name by assigning it

to a variable, func_name.

Types of Functions in R

• Built – in

• User defined

Built in

• seq(),max(), mean(), sum(x), paste(...) etc.

SEQUENCE:

• This creates a sequence of number by using the
predefined function seq().

• print (seq (1,10))

Output: [1] 1 2 3 4 5 6 7 8 9 10

Built in functions

MEAN

• This calculates the mean of all the numbers ranging from 4 to

26

• print (mean (4:26))

OUTPUT: [1] 15

SUM

print(sum(1:10))

Output: [1] 55

MAX / MIN

print(max(2,3))

OUTPUT: [1] 3

Function - Example

Pow <- function(a, b) {

result <- a^b

print(result)

}

Calling a function:

• Simply call the name with its arguments

Pow(5,2)

OUTPUT: [1] 25

Named Arguments

• In the above function calls, the argument matching of formal

argument to the actual arguments takes place in positional

order.

• This means that, in the call pow(8,2), the formal

arguments x and y are assigned 8 and 2 respectively.

• We can also call the function using named arguments.

• When calling a function in this way, the order of the actual

arguments doesn’t matter.

pow(b = 2, a = 8) OUTPUT: [1] 64

• we can use named and unnamed arguments in a single call.

pow(a=8, 2)

Default Values for Arguments

Example:

pow <- function(x, y = 2) {

result <- x^y

print(result)

}

pow(8)

OUTPUT:[1] 64

pow(3,3)

OUTPUT: [1] 27

Return expression

Syntax:
return(expression)

Example
pow <- function(a, b) {
result <- a^b
return(result)
}
x <- 5
y <- 2
result = pow(x, y)
print(paste(x,"raised to ", y, "is", result))
OUTPUT: “ 5 raised to 2 is 25”

Calculator

add <- function(x, y)

{

return(x + y)

}

subtract <-

function(x, y) {

return(x - y)

}

multiply <-

function(x, y) {

return(x * y)

}

divide <- function(x,

y) {

return(x / y)

print("Select operation.")

print("1.Add");print("2.Subtract")

print("3.Multiply");print("4.Divide")

choice = as.integer(readline(prompt="Enter

choice[1/2/3/4]: "))

num1 = as.integer(readline(prompt="Enter

first number: "))

num2 = as.integer(readline(prompt="Enter

second number: "))

result <- switch(choice, add(num1, num2),

subtract(num1, num2), multiply(num1,

num2), divide(num1, num2))

print(paste(“The result=", result))

Recursion

• Recursion is a process in which a function calls by itself.

Example

factorial <- function(num) {

if(num == 1)

return (1)

else

return(num * factorial(num - 1))

}

result <- factorial(5)

print(paste("Factorial of 5 is ",result))

OUTPUT: “Factorial of 5 is 120”

Homework

• Fibonacci sequence using recursion

Fibonacci sequence

fibonacci <- function(n) {

if(n <= 1) {

return(n)

} else {

return(fibonacci(n-1) + fibonacci(n-2))

}

}

nterms = as.integer(readline(prompt="How many terms? "))

print("Fibonacci sequence:")

for(i in 0:(nterms-1)) {

print(fibonacci(i))

}

Strings

• Any value written within a pair of single quote or double

quotes in R is treated as a string.

• Internally R stores every string within double quotes, even

when you create them with single quote.

• Rules Applied in String Construction

– The quotes at the beginning and end of a string should be

both double quotes or both single quote. They can not be

mixed.

– Double quotes can be inserted into a string starting and

ending with single quote.

– Single quote can be inserted into a string starting and ending

with double quotes.

– Double quotes can not be inserted into a string starting and

ending with double quotes.

– Single quote can not be inserted into a string starting and

Strings

Example 1:

a <- 'String created with single quotes'

print(a)

Output:[1] “String created with single quotes”

Example 2:

b <- "String created with double quotes"

print(b)

Output: [1] "String created with double quotes"

String Manipulation

Concatenating Strings - paste() function

Many strings in R are combined using the paste() function.
It can take any number of arguments to be combined
together.

Syntax

paste(..., sep = " ", collapse = NULL)

Description of the parameters:

... represents any number of arguments to be combined.

sep represents any separator between the arguments. It is
optional.

collapse is used to eliminate the space in between two
strings. But not the space within two words of one string.

Paste function - Example

a <- "Hello"

b <- 'How'

c <- "are you? “

print(paste(a,b,c))

print(paste(a,b,c, sep = "-"))

print(paste(a,b,c, sep = "", collapse = ""))

OUTPUT:

[1] "Hello How are you? "

[1] "Hello-How-are you? "

[1] "HelloHoware you? "

Length of a string – nchar()

nchar() function

This function counts the number of characters including

spaces in a string.

Syntax

nchar(x)

Example

result <- nchar(“characters")

print(result)

OUTPUT: [1] 10

s <- c("Moe", "Larry", "Curly")

nchar(s)

OUTPUT: [1] 3 5 5

Length function

• length function returns the length of a vector.

• The length function to a single string in R returns the value 1

because it views that string as a singleton vector—a vector

with one element:

EXAMPLE 1:

length("Moe")

OUTPUT: [1] 1

EXAMPLE 2:

length(c("Moe","Larry","Curly"))

OUTPUT: [1] 3

toupper() & tolower() functions

Syntax

toupper(x)

tolower(x)

Example

result <- toupper(“welcome")

print(result)

OUTPUT: [1] “WELCOME”

result <- tolower(“HELLO")

print(result)

OUTPUT: [1]”HELLO”

substring() function

• This function extracts parts of a String.

• Syntax

substring(x, first,last)

– x is the character vector input.

– first is the position of the first character to be

extracted.

– last is the position of the last character to be

extracted.

Example:

result <- substring("Extract", 5, 7)

Strsplit function

Syntax:

strsplit(string, delimiter)

The delimiter can be either a simple string or a regular
expression.

path <- "/home/mike/data/trials.csv"

We can split that path into its components by using strsplit
with a delimiter of /:

strsplit(path, "/")

Output:

[[1]]

[1] "" "home" "mike" "data" "trials.csv"

Replacing Substrings – sub & gsub
functions

• Use sub to replace the first instance of a substring:

sub(old, new, string)

• Use gsub to replace all instances of a substring:

gsub(old, new, string)

• The sub function finds the first instance of the old substring within

string and replaces it with the new substring:

s <- "Curly is the smart one. Curly is funny, too."

sub("Curly", "Moe", s)

OUTPUT: [1] "Moe is the smart one. Curly is funny, too."

• gsub does the same thing, but it replaces all instances of the

substring (a global replace), not just the first:

gsub("Curly", "Moe", s)

OUTPUT:[1] "Moe is the smart one. Moe is funny, too."

Generating All Pairwise Combinations
of Strings

Use the outer and paste functions together to generate the matrix of all
possible

combinations:

m <- outer(strings1, strings2, paste, sep="")

Example

locations <- c("NY", "LA", "CHI", "HOU")

treatments <- c("T1", "T2", "T3")

outer(locations, treatments, paste, sep="-")

Output:

[,1] [,2] [,3]

[1,] "NY-T1" "NY-T2" "NY-T3"

[2,] "LA-T1" "LA-T2" "LA-T3"

[3,] "CHI-T1" "CHI-T2" "CHI-T3"

[4,] "HOU-T1" "HOU-T2" "HOU-T3"

toString function

• Used to convert R object to a character string

Syntax:

toString(x, ...)

toString(x, width = NULL, ...)

• It first converts x to character type and then concatenates the

elements with”,”.

• width - Suggestion for the maximum field width. Values

of NULL or 0 indicate no maximum.

toString function - Example

Example:

x <- c("a", "b", "aaaaaaaaaaa")

toString(x)

OUTPUT:

[1] "a, b, aaaaaaaaaaa"

toString(x, width = 8)

OUTPUT:

[1] "a, b, ….“

Exercise

• Change all letters ‘a’ and ‘t’ to ‘A’ and ‘T’.

gsub("a","A",gsub("t","T",s5))

• Find the number of characters in a string

• Extract the substring from 5th position to 9th
position.

Vectors

• Vector is a basic data structure in R.

• It contains element of the same type. The six data types

of atomic vectors are logical, integer, double, character,

complex and raw.

• Vectors are classified into two type: atomic vectors and

lists.

• In an atomic vector, all the elements are of the same type,

but in the list, the elements are of different data types.

• A vector’s type can be checked with

the typeof() function.

• Another important property of a vector is its length. This

is the number of elements in the vector and can be

checked with the function length().

Creation of vector

Single element vector:
• When you write just one value in R, it becomes a

vector of length 1 and belongs to one of the vector
types.

Example:
print("abc")
print(12.5)
print(63L)
print(2+3i)
print(charToRaw('hello'))
print(TRUE)

Creating Vector – c()function

Vectors are generally created using the c() function.

x <- c(1, 5, 4, 9, 0)

x

OUTPUT:[1] 1 5 4 9 0

typeof(x)

OUTPUT:[1] "double"

length(x)

OUTPUT:[1] 5

• vector of iteger values.

v <- as.integer(c(1,2,3,4))

• vector of logical values.

c(TRUE, FALSE, TRUE, FALSE, FALSE)

Output

[1] TRUE FALSE TRUE FALSE FALSE

• A vector can contain character strings.

c("aa", "bb", "cc", "dd", "ee")

Output

[1] "aa" "bb" "cc" "dd" "ee"

Creating Vector -: operator

Syntax:

c(start:end)

or

x <- start:end

Example 1:

x <- c(1:7)

x

OUTPUT:[1] 1 2 3 4 5 6 7

Example 2:y <- 2:2;

y

OUTPUT:[1] 2 1 0 -1 -2

Creating Vector - seq()

• Syntax:
seq(startValue, endValue, by=stepSize)
Example1:
seq(1, 3, by=0.2) # increments by 0.2
OUTPUT:[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

3.0
Example2:
seq(1, 4, length.out=6) # specify length of the

vector
OUTPUT: [1] 1.0 1.6 2.2 2.8 3.4 4.0

Creating Vectors

The non-character values are converted to character type if one of

the elements is a character.

Example:

s <- c('apple','red',5,TRUE)

s

OUTPUT:[1] "apple" "red" "5" "TRUE"

Access Elements of a Vector

• Elements of a Vector are accessed using indexing.

• The [] brackets are used for indexing.

• Indexing starts with position 1.

• Giving a negative value in the index drops that element from result.

x <- c(2,4,6,8,10)

OUTPUT:[1] 2 4 6 8 10

x[3] # access 3rd element

OUTPUT:[1] 6

x[c(2, 4)] # access 2nd and 4th element

OUTPUT: [1] 4 8

x[-1] # access all but 1st element

OUTPUT:[1] 4 6 8 10

Access Elements of a Vector

• TRUE, FALSE or 0 and 1 can also be used for indexing.

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]

print(v)

OUTPUT:

[1] “Sun” “Fri”

y <- t[c(1,0,0,0,0,0,0)]

print(y)

OUTPUT:

[1] “Sun”

Modify a vector

x <-c(-3:2)

x

OUTPUT:[1] -3 -2 -1 0 1 2

x[2] <- 0 # modify 2nd element

x

OUTPUT:

[1] -3 0 -1 0 1 2

Delete a Vector
• We can delete a vector by simply assigning a NULL to it.

x <- NULL

x

NULL

Vector Manipulation

Vector arithmetic

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11,0,8,1,2)

v1+v2

OUTPUT: [1] 7 19 4 13 1 13

v1-v2

OUTPUT: [1] -1 -3 4 -3 -1 9

v1*v2

OUTPUT:[1] 12 88 0 40 0 22

v1/v2

OUTPUT:[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000

5.5000000

Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal

length, then the elements of the shorter vector are recycled

to complete the operations.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11) # V2 becomes c(4,11,4,11,4,11)

v1+v2

OUTPUT: [1]7 19 8 16 4 22

v1-v2

OUTPUT:[1] -1 -3 0 -6 -4 0

Vector Element Sorting

v <- c(3,8,4,5,0,11, -9, 304)

sort.result <- sort(v)

Sort the elements in the reverse order.

revsort.result <- sort(v, decreasing = TRUE)

Output

[1] -9 0 3 4 5 8 11 304

[1] 304 11 8 5 4 3 0 -9

Vector Element Sorting

Sorting character vectors.

v <- c("Red","Blue","yellow","violet")

sort.result <- sort(v)

Sorting character vectors in reverse order.

revsort.result <- sort(v, decreasing = TRUE)

OUTPUT:

[1] "Blue" "Red" "violet" "yellow“

[1] "yellow" "violet" "Red" "Blue

Vector Manipulation
• Combining Vector

n = c(1, 2, 3, 4)

s = c("Hadoop", "Spark", "HIVE", "Flink")

c(n,s)

OUTPUT:[1] "1" "2" "3" "4" "Hadoop" "Spark" "HIVE" "Flink"

Vector Elements Arithmetic

x<-c(2,3,4,5)

x [1] 2 3 4 5

sum(x) [1] 14

min(x) [1] 2

max(x) [1] 5

mean(x) [1] 3.5

prod(x) [1] 120

Computing Basic Statistics

• mean(x)

• median(x)

• sd(x)

• var(x)

• cor(x, y)

• cov(x, y)

Computing Basic Statistics

x <- c(0,1,1,2,3,5,8,13,21,34)

mean(x)

[1] 8.8

median(x)

[1] 4

sd(x)

[1] 11.03328

Computing Basic Statistics

var(x)

[1] 121.7333

x <- c(0,1,1,2,3,5,8,13,21,34)

y <- c(3,4,5,6,7,8,9,10,11,12)

cor(x,y)

[1] 0.8747879

cov(x,y)

[1] 29.22222

Removing “NA”

• Even one NA value in the vector argument causes any of these functions to
return NA.

x <- c(0,1,1,2,3,NA)

mean(x)

[1] NA

sd(x)

[1] NA

• you can override this behavior by setting na.rm=TRUE, which tells R to ignore
the NA values:

x <- c(0,1,1,2,3,NA)

mean(x, na.rm=TRUE)

[1] 1.4

sd(x, na.rm=TRUE)

[1] 1.140175

Comparing Vectors
• The comparison operators (==, !=, <, >, <=, >=) can perform an element-

by-element comparison of two vectors.

v <- c(3, pi, 4)

w <- c(pi, pi, pi)

v == w

OUTPUT: [1] FALSE TRUE FALSE

v!=w

OUTPUT:[1] TRUE FALSE TRUE

v < w

OUTPUT:[1] TRUE FALSE FALSE

• You can also compare a vector’s element against a scalar.

v == pi

OUTPUT:[1] FALSE TRUE FALSE

Comparing vectors – any & all

• After comparing two vectors, you often want to know whether

any of the comparisons were true or whether all the

comparisons were true.

• The any and all functions handle those tests.

v <- c(3, pi, 4)

any(v == pi) # Return TRUE if any element of v equals pi

OUTPUT: [1] TRUE

all(v == 0) # Return TRUE if all elements of v are zero

OUTPUT: [1] FALSE

Home work

• Write a R program to add, subtract, multiply and divide two
vectors of integers type and length 3.

• Write a R program to find Sum, Mean and Product of a
Vector, ignore element like NA or NaN.

• Write a R program to find the minimum and the maximum
of a Vector.

• Write a R program to sort a Vector in ascending and
descending order.

• Write a function to create a vector from 1 to 100. Multiply
the elements which are smaller than 5 and larger than 90
with 10 and compute the sum of multiplied values. Multiply
other elements with 1.5 and compute the product of
multiplied values.

Lists

• List is a data structure having components of

mixed data types.

• We can check if it’s a list

with typeof() function

• Find its length using length().

list

l<- list("Red", "Green", c(21,32,11), TRUE, 51.23,
119.1)

OUTPUT:

[[1]] [1] "Red"

[[2]] [1] "Green"

[[3]][1] 21 32 11

[[4]] [1] TRUE

[[5]] [1] 51.23

[[6]] [1] 119.1

Naming List Elements – Method1

The list elements can be given names and they can be accessed using these

names.

l <- list(c("Jan","Feb","Mar"),list("green",12.3))

Give names to the elements in the list.

names(l) <- c("1st Quarter", "A Inner list")

l

Output

$`1st Quarter`

[1] "Jan" "Feb" "Mar"

$`A Inner list`

$`A Inner list`

[[1]] [1] "green“

$`A Inner list`

[[2]] [1] 12.3

Naming List Elements – Method2

x <- list("a" = 1.5, "b" = TRUE, "c" = c(2,4,6))

Output:

$a

[1] 1.5

$b

[1] TRUE

$c [1] 2 4 6

Accessing List Elements

Access the first element of the list.

l[1]

$`1st Quarter`

[1] "Jan" "Feb" "Mar"

Access the secondelement. As it is also a list, all its elements will be

printed.

l[2]

$`A Inner list`

$`A Inner list`

[[1]] [1] "green“

$`A Inner list`

[[2]] [1] 12.3

Manipulating List Elements

• We can add, delete and update list elements.

Add element at the end of the list.

l[3]<-12

l[4]<-TRUE

Remove the last element.

l[4] <- NULL

Update the 1st Element.

l[1]<-34.56

Merging Lists

Create two lists.

list1 <- list(1,2,3)

list2 <- list("Sun","Mon","Tue")

Merge the two lists.

mlist <- c(list1,list2)

mlist

Output

[[1]] [1] 1

[[2]] [1] 2

[[3]] [1] 3

[[4]] [1] "Sun«

[[5]] [1] "Mon«

[[6]] [1] "Tue"

Converting List to Vector

list1 <- list(1:5)

Output:

[[1]]

[1] 1 2 3 4 5

Convert the list to vector

v1 <- unlist(list1)

Output:

[1] 1 2 3 4 5

Matrices
• Matrices are the R objects in which the elements are

arranged in a two-dimensional rectangular layout.

• They contain elements of the same atomic types.

Syntax

matrix(data, nrow, ncol, byrow, dimnames)

– data is the input vector which becomes the data

elements of the matrix.

– nrow is the number of rows to be created.

– ncol is the number of columns to be created.

– byrow is a logical value. If TRUE then the input

vector elements are arranged by row.

– dimname is the names assigned to the rows and

Example
matrix(1:9, nrow = 3, ncol = 3)

Output:

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

matrix(1:9, 3,3,TRUE) # fill matrix row-wise

Output:

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

matrix(list(2,3,4,5), nrow=2)

Output:

[,1] [,2]
[1,] 2 4
[2,] 3 5
matrix(c(2,3,4,5), nrow=2)

matrix(c(2,3,4,5), nrow=2, byrow=TRUE)
Output:

[,1] [,2]
[1,] 2 3
[2,] 4 5

column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames =

list(rownames, colnames))

P

col1 col2 col3

row1 3 4 5

row2 6 7 8

row3 9 10 11

row4 12 13 14

Accessing Elements of a Matrix

Example

P[1,2]

Output:

[1] 4

To access entire row

P[2,]

Output:

col1 col2 col3

6 7 8

To access entire column

P[,3]

Output:

row1 row2 row3 row4

5 8 11 14

Creating matrix - cbind()

• Another way of creating a matrix is by using

functions cbind() and rbind() as in column bind and row bind.

Example

cbind(c(1,2,3),c(4,5,6))

Output:

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Creating matrix - rbind()

Example

rbind(c(1,2,3),c(4,5,6))

Output:

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Adding column using cbind

m <- matrix(1:4,2,2,TRUE)

Output:

[,1] [,2]

[1,] 1 2

[2,] 3 4

Add column using cbind

cbind(m,c(5,6))

Output:

[,1] [,2] [,3]

[1,] 1 2 5

[2,] 3 4 6

Adding row using rbind
m <- matrix(1:4,2,2,TRUE)

Output:

[,1] [,2]

[1,] 1 2

[2,] 3 4

Add row using rbind

rbind(m,c(5,6))

Output:

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

Matrix Computations

Create two 2 matrices.

matrix1 <- matrix(c(1,2,3,4), nrow = 2,byrow=TRUE)

matrix2 <- matrix(c(1,2,3,4), nrow = 2, byrow=TRUE)

Output:

[,1] [,2]

[1,] 1 2

[2,] 3 4

result <- matrix1 + matrix2

Output:

[,1] [,2]

[1,] 2 4

[2,] 6 8

Matrix Computations

result <- matrix1 - matrix2

Output:

[,1] [,2]
[1,] 0 0
[2,] 0 0
result <- matrix1 * matrix2
Output:

[,1] [,2]
[1,] 1 4
[2,] 9 16

Matrix Computations

result <- matrix1 %*% matrix2
Output:

[,1] [,2]
[1,] 7 10
[2,] 15 22
result <- matrix1 %*% t(matrix2)
Output:

[,1] [,2]
[1,] 5 11
[2,] 11 25

Matrix Computations

matrix1 <- matrix(c(1,2,3,4), nrow = 2,byrow=TRUE)
matrix2 <- matrix(c(1,2,3,4,5,6), nrow = 3, byrow=TRUE)
result <- matrix1 %*% matrix2
Output:
Error in matrix1 %*% matrix2 : non-conformable

arguments
result <- matrix1 %*% t(matrix2)
Output:

[,1] [,2] [,3]
[1,] 5 11 17

[2,] 11 25 39

Matrix Computations

• result <- matrix1 / matrix2

Output:

[,1] [,2]

[1,] 1 1

[2,] 1 1

Getting matrix input from user

x <- as.integer(readline("Number of rows: "))

y <- as.integer(readline("Number of cols: "))

v1 <- scan()

v1

matrix(c(v1),x,y)

Exercise

• Create a 5x5 matrix of integers from 1 to 25, filling one row at

a time. Create another 5x5 matrix from vectors v1 and v2.

Multiply the created matrices.

• Write a R program to create two 2x3 matrix and add, subtract,

multiply and divide the matrices.

• Write a R program to create a matrix taking a given vector of

numbers as input and define the column and row names.

Display the matrix.

Arrays

• Arrays are the R data objects which can store data in more than two
dimensions.

• An array is created using the array() function.

• It takes vectors as input and uses the values in the dim parameter to create an
array.

Syntax

Array_NAME <- array(data, dim = (row_Size, column_Size, matrices),
dimnames)

– data – Data is an input vector that is given to the array.

– matrices –Array in R consists of multi-dimensional matrices.

– row_Size – row_Size describes the number of row elements that
an array can store.

– column_Size – Number of column elements that can be stored in
an array.

– dimnames – Used to change the default names of rows and
columns to the user’s preference.

Creating Arrays
vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim = c(3,3,2))

Output:
, , 1

[,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

[,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

Naming Columns and Rows
vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

column.names <- c("COL1","COL2","COL3")

row.names <- c("ROW1","ROW2","ROW3")

matrix.names <- c("Matrix1","Matrix2")

result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

print(result)

Output:

, , Matrix1

COL1 COL2 COL3

ROW1 5 10 13

ROW2 9 11 14

ROW3 3 12 15

Manipulating Array Elements
Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

array1 <- array(c(vector1,vector2),dim = c(3,3,1))

Create two vectors of different lengths.

vector3 <- c(9,1,0)

vector4 <- c(6,0,11,3,14,1,2,6,9)

array2 <- array(c(vector3,vector4),dim = c(3,3,1))

create matrices from these arrays.

matrix1 <- array1[,,1]

matrix2 <- array2[,,1]

Add the matrices.

result <- matrix1+matrix2

print(result)

Accessing Array Elements

v1 = c(1,3,4,5)

v2 = c(10,11,12,13,14,15)

result = array(c(v1,v2),dim = c(3,3,2))

print("The second row of the second matrix of the
array:")

print(result[2,,2])

print("The element in the 3rd row and 3rd column
of the 1st matrix:")

print(result[3,3,1])

Calculations across Array Elements

• apply() function is used for calculations in an array .

• Syntax

apply(x, margin, fun)

– x is an array.

– a margin is the name of the dataset used.

– fun is the function to be applied to the elements of the array.

apply()

v1 <- c(1,2,3)

v2 <- c(3,4,5,6,7,8)

a1 <- array(c(v1,v2),dim=c(3,3,2))

sum of the matrices by row-wise

apply(a1, c(1), sum)

Output:

[1] 20 26 32

sum of the two matrices by column-wise

apply(a1, c(2), sum)

Output:

[1] 12 24 42

convert a matrix to a 1 dimensional
array.

m=matrix(1:12,3,4)

print(m)

a = as.vector(m)

print("1 dimensional array:")

print(a)

Output:

[1] 1 2 3 4 5 6 7 8 9 10 11 12

Exercise

• Write a R program to create an array of two 3x3 matrices from

two given vectors. Print the third row of the second matrix of

the array and the element in the1st row and 3rd column of the

1st matrix.

• Write a R program to create a two-dimensional 5x3 array of

sequence of even integers greater than 50.

• a <- array(seq(from = 50, length.out = 15, by =

2), c(5, 3))

Factors

• Factor is a data structure used for fields that takes only
predefined, finite number of values (categorical data).

• For example: a data field such as marital status may contain only
values from single, married, separated, divorced, or widowed.

• In such case, we know the possible values beforehand and these
predefined, distinct values are called levels.

• Factors are the data objects which are used to categorize the data
and store it as levels. They can store both strings and integers.

• They are useful in the columns which have a limited number of
unique values. Like "Male, "Female" and True, False etc. They
are useful in data analysis for statistical modeling.

• Factors are created using the factor() function by taking a vector
as input.

Creating a factor
Example

x <- factor(c("single", "married", "married", "single"))

Output:

[1] single married married single

Levels: married single

Number of levels

nlevels(x)

Output:

[1] 2

class(x)

Output:

[1] "factor"

Creating a factor
data <-

c("East","West","East","North","North","East","West","Wes

t","West","East","North")

factor_data <- factor(data)

print(factor_data)

Output:

[1] East West East North North East West West West East

North

Levels: East North West

• Factors are closely related with vectors. In fact, factors are

stored as integer vectors.

x <- factor(c("single", "married", "married", "single"));

str(x)

Factor w/ 2 levels "married","single": 2 1 1 2

Generating Factor Levels

• We can generate factor levels by using the gl() function.

• It takes two integers as input which indicates how many
levels and how many times each level.

• Syntax

gl(n, k, labels)

Example

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))

print(v)

Output:

[1] Tampa Tampa Tampa Tampa Seattle Seattle Seattle Seattle
Boston Boston Boston Boston

Levels: Tampa Seattle Boston

Changing the Order of Levels

data <- c("East","West","East","North","North","East","West",

"West","West","East","North")

factor_data <- factor(data)

print(factor_data)

Output:

[1] East West East North North East West West West East North

Levels: East North West

Str(factor_data)

Output:

Factor w/ 3 levels "East","North",..: 1 3 1 2 2 1 3 3 3 1 ..

new_order_data <- factor(factor_data,levels =

c("East","West","North"))

str(new_order_data)

Output:

Factor w/ 3 levels "East","West",..: 1 2 1 3 3 1 2 2 2 1 ...

Nominal Categorical Variable

• A categorical variable has several values but the order does

not matter.

• For instance, male or female categorical variable do not

have ordering.

Example

color_vector <- c('blue', 'red', 'green', 'white', 'black', 'yellow')

Convert the vector to factor

factor_color <- factor(color_vector)

factor_color

Output:

[1] blue red green white black yellow

Levels: black blue green red white yellow

Ordinal Categorical Variable

• Ordinal categorical variables have a natural ordering.

• We can specify the order, from the lowest to the highest with ordered=
TRUE and highest to lowest with ordered = FALSE.

Example

mons =
c("March","April","January","November","January","September","Octo
ber","September","November","August","January","November","Nove
mber","February","May","August","July","December","August","Augu
st","September","November","February","April")

mons = factor(mons)

summary(mons)

Output:

April August December February January July March May November
October September

2 4 1 2 3 1 1 1 5
1 3

Ordinal Categorical Variable

creating size vector

size = c("small", "large", "large", "small“,"medium", "large",
"medium", "medium")

converting to factor

size_factor <- factor(size)

ordering the levels

ordered.size <- factor(size, levels = c("small", "medium",
"large"), ordered = TRUE)

Exercise

• Write R code to find the levels of factor of a
vector c(1,3,7,4,5,10,9,8). Convert a given
vector to an ordered factor.

Data Frames
• A data frame is a table or a two-dimensional array-like structure

in which each column contains values of one variable and each
row contains one set of values from each column.

• Following are the characteristics of a data frame.

– The column names should be non-empty.

– The row names should be unique.

– The data stored in a data frame can be of numeric,
factor or character type.

– Each column should contain same number of data
items.

Syntax

data.frame(df, stringsAsFactors = TRUE)
– df: It can be a matrix to convert as a data frame or a collection of

variables to join
– stringsAsFactors: Convert string to factor by default

Creating a data frame
n = c(2, 3, 5)

s = c("aa", "bb", "cc")

b = c(TRUE, FALSE, TRUE)

df = data.frame(n, s, b)

Output:

n s b

1 2 aa TRUE

2 3 bb FALSE

3 5 cc TRUE

class(df) Output: [1] "data.frame"

names(df) <- c("no", "name", "values")

Output:

no name values

1 2 aa TRUE

2 3 bb FALSE

3 5 cc TRUE

nrow(df) Output: [1] 3

ncol(df) Output: [1] 3

Data Frame
emp <- data.frame(emp_id = c (1:5),

emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

salary = c(623.3,515.2,611.0,729.0,843.25),

start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15",

"2014-05-11“, "2015-03-27"))

)

Output:

emp_id emp_name salary start_date

1 1 Rick 623.30 2012-01-01

2 2 Dan 515.20 2013-09-23

3 3 Michelle 611.00 2014-11-15

4 4 Ryan 729.00 2014-05-11

5 5 Gary 843.25 2015-03-27

Structure of Data frame
x <- data.frame("SN" = 1:2, "Age" = c(21,15), "Name" =

c("John","Dora"))

str(x)

Output:

'data.frame': 2 obs. of 3 variables:

$ SN : int 1 2

$ Age : num 21 15

$ Name: Factor w/ 2 levels "Dora","John": 2 1

x <- data.frame("SN" = 1:2, "Age" = c(21,15), "Name" =

c("John","Dora"), stringsAsFactors = FALSE)

str(x)

Output:

'data.frame': 2 obs. of 3 variables:

$ SN : int 1 2

$ Age : num 21 15

$ Name: chr "John" "Dora"

Summary of Data in Data Frame

Summary(x)

Output:

SN Age Name

Min. :1.00 Min. :15.0 Dora:1

1st Qu.:1.25 1st Qu.:16.5 John:1

Median :1.50 Median :18.0

Mean :1.50 Mean :18.0

3rd Qu.:1.75 3rd Qu.:19.5

Max. :2.00 Max. :21.0

Extract Data from Data Frame

emp$emp_name – # Extract only employee name

result <- data.frame(empemp_name,empsalary)

Output:

emp.emp_name emp.salary

1 Rick 623.30

2 Dan 515.20

3 Michelle 611.00

4 Ryan 729.00

5 Gary 843.25

Extract the first two rows and then all columns

result <- emp[1:2,]

Output:

emp_id emp_name salary start_date dept

1 1 Rick 623.3 2012-01-01 IT

2 2 Dan 515.2 2013-09-23 Operations

Extract 3rd and 5th row with 2nd and 4th column

result <- emp[c(3,5),c(2,4)]

Expand Data Frame

A data frame can be expanded by adding columns and rows.

x <- data.frame("SN" = 1:2, "Age" = c(21,15), "Name" =

c("John", "Dora"), stringsAsFactors = FALSE)

Output:

SN Age Name

1 1 21 John

2 2 15 Dora

Adding row

rbind(x,list(1,16,"Paul"))

Adding Column

cbind(x,State=c("NY","FL")) or x$State <- c("NY","FL")

Deleting Component

• Data frame columns can be deleted by assigning NULL to

it.

x$State <- NULL

Output:

SN Age Name

1 1 21 John

2 2 15 Dora

• Rows can be deleted through reassignments.

x <- x[-1,]

Output:

SN Age Name

2 2 15 Dora

Displaying data

• head(emp) – displays first 6 rows

• head(emp,n=3) - first 3 rows

• tail(emp) – displays last 6 rows

• Get the maximum salary

sal <- max(emp$salary)

• Get the details of the person with max salary

retval <- subset(emp, salary == max(salary))

Output:

id Name Salary Dept

8 8 Guru 3000 IT

Exercise

• Write R code to create employee data frame
with eno, ename and designation. Add a
salary column to the employee data frame.
Extract the designation of 3rd employee.
Extract all employees who are earning more
than 10000.

Packages

• R packages are a collection of R functions, complied code and
sample data.

• They are stored under a directory called "library" in the R
environment.

• By default, R installs a set of packages during installation.

• More packages are added later, when they are needed for some
specific purpose.

• When we start the R console, only the default packages are
available by default.

• Other packages which are already installed have to be loaded
explicitly to be used by the R program that is going to use
them.

Packages
• Check Available R Packages

.libPaths() - used for getting or setting the library trees

Output:

[1] "C:/Users/kala/Documents/R/win-library/3.4"

[2] "C:/Program Files/R/R-3.4.3/library“

• Get the list of all the packages installed

library()

• Get all packages currently loaded in the R environment

search()

Install a New Package

• There are two ways to add new R packages.

• One is installing directly from the CRAN directory and

another is downloading the package to your local system

and installing it manually.

Install directly from CRAN

• The following command gets the packages directly from

CRAN webpage and installs the package in the R

environment.

install.packages("Package Name")

Example: install.packages("XML")

Install package manually

install.packages(file_name_with_path, repos = NULL, type =

"source")

Example

Load Package to Library

• Before a package can be used in the code, it must be loaded to

the current R environment.

• You also need to load a package that is already installed

previously but not available in the current environment.

• A package is loaded using the following command

library("package Name”)

Example

library(“XML”)

• To check what packages are installed on your computer, you

can use:

installed.packages()

• Uninstalling a package

remove.packages(“package name")

• You can check what packages need an update with a call to the

function:

old.packages()

• You can update all packages by using:

update.packages()

Data Reshaping

• Data Reshaping is about changing the way data is organized

into rows and columns.

• Most of the time data processing is done by taking the input

data as a data frame.

• It is easy to extract data from the rows and columns of a data

frame but there are situations when we need the data frame in

a format that is different from format in which we received it.

• R has many functions to split, merge and change the rows to

columns and vice-versa in a data frame.

Joining Columns and Rows in a Data
Frame

Create data frame1

city <- c("Tampa","Seattle","Hartford","Denver")

state <- c("FL","WA","CT","CO")

zipcode <- c(33602,98104,06161,80294)

addresses1 <- cbind(city,state,zipcode)

Create another data frame with similar columns

address2 <- data.frame(city = c("Lowry","Charlotte"), state =

c("CO","FL"), zipcode = c("80230","33949"), stringsAsFactors =

FALSE)

Combine rows from both the data frames.

address <- rbind(address1,address2)

address

Merging Data Frames

• We can merge two data frames by using the merge() function.

• The data frames must have same column names on which the merging

happens.

Example

• we consider the data sets about Diabetes in Pima Indian Women available

in the library names "MASS".

• we merge the two data sets based on the values of blood pressure("bp") and

body mass index("bmi").

• On choosing these two columns for merging, the records where values of

these two variables match in both data sets are combined together to form a

single data frame.

•

Merging Data Frames

library(MASS)

Predefined dataframes in R

Pima.te

Pima.tr

Merge

merged.Pima <- merge(x = Pima.te, y = Pima.tr,

by.x = c("bp", "bmi"),

by.y = c("bp", "bmi")

)

print(merged.Pima)

nrow(merged.Pima)

Transposing a data frame
• change the row to column and vice-versa by using the

transpose function.

• It can be simply done by using 't(df_Temp)' .

• address2 <- data.frame(city = c("Lowry","Charlotte"), state

= c("CO","FL"), zipcode = c("80230","33949"),

stringsAsFactors = FALSE)

Output:

city state zipcode

1 Lowry CO 80230

2 Charlotte FL 33949

• res <- t(address2)

Output:

[,1] [,2]

city "Lowry" "Charlotte"

state "CO" "FL"

Melting and Casting

• Changing the shape of the data in multiple steps to get a

desired shape. The functions used to do this are

called melt() and cast().

• We consider the dataset called ships present in the library

called "MASS".

library(MASS)

print(ships)

Output:

type year period service incidents

1 A 60 60 127 0

2 A 60 75 63 0

3 A 65 60 1095 3

Melt

• Now we melt the data to organize it, converting all columns

other than type and year into multiple rows.

install.packages(“reshape”)

molten.ships <- melt(ships, id = c("type","year"))

print(molten.ships)

Output:

type year variable value

1 A 60 period 60

2 A 60 service 127

3 A 60 incidents 0

Cast the Molten Data

• We can cast the molten data into a new form where the

aggregate of each type of ship for each year is created.

• It is done using the cast() function.

recasted.ship <- cast(molten.ships, type+year~variable,sum)

print(recasted.ship)

Output:

type year period service incidents

1 A 60 135 190 0

2 A 65 135 2190 7

R Programs for Practicing

1. Write a R program to get name from the user.
Greet user with the welcome message and
name.

Greeting the user with name

name = readline("Enter name")

print(paste("welcome",name))

R Programs for Practicing

2. write a simple number game in R studio. Pick a random

number and see if it matches the user's number input. If it

does, “Well Done" will appear and if it does not, "Higher",

"Lower" or "You are so close" appears. Define a function that

does the above mentioned.

sample(x, size, replace = FALSE) – # pick a random

number

abs(number)

guessnumber <- function (guess) {
Rs_number <- sample(1:100, 1)
print(Rs_number)
if (guess == Rs_number)
print(‘Well Done')

else if (abs(guess - Rs_number) < 10)
print ('You are so close')

else if (guess < Rs_number)
print("Lower")

else print("Higher")
}
guess <- as.integer(readline(prompt="Guess: "))
guessnumber(guess)

3. Write a R program to check whether the given
year is leap year or not.

Leap year

year = as.integer(readline(prompt="Enter a year: "))

if((year %% 400 == 0) || (year %% 4 == 0) && (year
%% 100 != 0))

{

print(paste(year,"is a leap year"))

} else {

print(paste(year,"is not a leap year"))

}

4. Writ a R program to create a for loop that, given a
numeric vector, prints out one number per line, with its
square and cube alongside. Get limit from the user.

Output:

[1] "1 1 1"
[1] "2 4 8“
[1] "3 9 27"
[1] "4 16 64"
[1] "5 25 125"

no <- as.integer(readline("Enter the limit"))

for(n in 1:no)

{

print(paste(n,n^2,n^3))

}

5. Compute the truth table for logical AND.

Output

[,1] [,2] [,3]

v1 "T" "F" "F"

v2 "F" "T" "F"

v3 "T" "T" "T"

v4 "F" "F" "F“

v1 <- c("T","F","F")

v2 <- c("F","T","F")

v3 <- c("T","T","T")

v4 <- c("F","F","F")

rbind(v1,v2,v3,v4)

6. Consider the vector 1:K, where K is a positive

integer. Get vector input from user at

runtime.Write a program that determines how

many elements in the vector are exactly

divisible by 3.

Solution

v <- scan()

cnt <-0

for(i in v)

{

if(i%%3 == 0)

cnt=cnt+1

}

print(paste("No.of Elements divisible by 3 are",cnt))

7. Create the data frame ‘employee.df’ with empno,
name, age and gender. Use a simple ‘ifelse’ statement
to add a new column ‘male.teen’ to the data
frame. This is a boolean column, indicating TRUE if the
observation is a male younger than 21 years.

Output:
Empno Name Age Gender Male.teen

1 John 20 M TRUE
2 Eva 22 F FALSE
3 Smith 21 M FALSE

employee <-

data.frame(Empno=1:3,Name=c("John","Eva","Smith"),Age=

c(20,22,21),Gender=c("M","F","M"))

employee$Male.teen <- ifelse(employee$Gender == "M" &

employee$Age < 21, "TRUE", "FALSE")

employee

8. Create three vectors x,y,z with integers and
each vector has 3 elements. Combine the
three vectors to become a 3×3
matrix A where each column represents a
vector. Change the row names to a,b,c.

v1 <- c(1,2,3)

v2 <- c(4,5,6)

v3 <- c(7,8,9)

rn <- c("a","b","c")

A <- matrix(c(v1,v2,v3),3,3,dimnames=list(rn))

A

Output:

[,1] [,2] [,3]

a 1 4 7

b 2 5 8

c 3 6 9

9) If x = c(1, 2, 3, 3, 5, 3, 2, 4, NA), what are the levels

of factor(x)?

10) Create a list called x with two two vectors of length 1

called a and b whose value is 1 and 2 respectively.

11) Create the dataframes.

buildings <- data.frame(location=c(1, 2, 3), name=c("building1",

"building2", "building3"))

data <- data.frame(survey=c(1,1,1,2,2,2), location=c(1,2,3,2,3,1),

efficiency=c(51,64,70,71,80,58))

The dataframes, buildings and data have a common key variable

called, “location”. Use the merge() function to merge the two

dataframes by “location”, into a new dataframe.

11) buildings <- data.frame(location=c(1, 2, 3),
name=c("building1", "building2", "building3"))

data <- data.frame(survey=c(1,1,1,2,2,2),
location=c(1,2,3,2,3,1),

efficiency=c(51,64,70,71,80,58))

merge(x=buildings,y=data,by.x="location",by.y="
location")

UNIT II
DATASET AND GRAPHICS

UNIT-II

• Input and Output-Entering Data from the
Keyboard-CSV file-Excel File-Binary File-XML
file-JSON file-Web Data-Database-Graphics-Pie
Charts-Bar Charts-Box Plots-Dot plots-
Histograms-Line Graphs-Scatter plots-Kernel
density plots-Writing plot to a file-Changing
graphical parameters.

Dataset

• A data set is usually a rectangular array of data with rows
representing observations and columns representing variables.

• A data set is a collection of numbers or values that relate to a
particular subject.

• For example, the test scores of each student in a particular class is
a data set.

Patient Dataset

PatientID AdmDate Age Diabetes Status

1 10/15/2009 25 Type1 Poor

2 11/01/2009 34 Type2 Improved

3 10/21/2009 28 Type1 Excellent

4 10/28/2009 52 Type1 Poor

List of pre-loaded data

• To see the list of pre-loaded data, the function data() is used.

Load a built-in R data set:

Syntax:

• data(“dataset_name”)

Inspect the data set:

Syntax:

• head(dataset_name)

Built in Dataset - Example
Loading a built-in R data

data(mtcars)

Print the first 6 rows

head(mtcars, 6)

OUTPUT:

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Input and Output

• All statistical work begins with data, and most data is available

inside files and databases.

• Dealing with input is probably the first step of implementing

any significant statistical project.

• All statistical work ends with reporting numbers back to a

client.

• Formatting and producing output is probably the climax of

your project.

Entering Data from the Keyboard

• For very small datasets, enter the data as literals using the c()
constructor for vectors:

score <- c(61, 66, 90, 88, 100)

score

Output:

[1] 61 66 90 88 100 101 102

• Alternatively, you can create an empty data frame and then
invoke an editor to populate it:

scores <- data.frame()

scores <- edit(score)

Output:

[1] 1 2 3 4 5

Entering Data from the Keyboard
EXAMPLE 2:

mydata <- data.frame(age=numeric(0), gender=character(0),

weight=numeric(0))

mydata <- edit(mydata) or fix(mydata)

• Assignments like age=numeric(0) create a variable of a

specific mode, but without actual data.

OUTPUT:

age gender weight

1 1 M 3

2 10 F 27

Entering Data from the Keyboard

• We can add additional variables by clicking on the titles of

unused columns.

mydata <- data.frame(age=numeric(0),

gender=character(0), weight=numeric(0))

mydata <- edit(mydata) or fix(mydata)

OUTPUT:

age gender weight born year

1 1 F 4 1999

2 10 M 27 2010

Input - readline()
– readline() is used for inputting a line from the keyboard in the

form of a string:

Example

z <-readline("Enter Input") or

z <-readline(prompt="Enter Input")

Output:

Enter Input 10

print(z)

Output:

[1] "10“

class(z)

Output:

[1] "character"

Input - scan()

• scan() function is used to type a few numbers into a vector from the
keyboard.

inp <- scan()

Output:

1: 2

2: 3

3: 4

4: press Enter

Read 3 items

inp

Output:

[1] 2 3 4

Printing to the screen

Printing Fewer Digits

• R normally formats floating-point output to have seven digits:

pi

Output:

[1] 3.141593

print(pi, digits=3)

Output:

[1] 3.14

Printing using cat()

• The cat function does not give direct control over formatting.

• Instead, use the format function to format numbers.

cat(pi, "\n")

Output:

3.141593

cat(format(pi,digits=3), "\n")

Output:

3.14

Redirecting Output to a File

• The output of the cat function is redirected to the file by using

its file argument:

Syntax

cat("The answer is", answer, "\n", file="filename")

Example 1

name <-"xyz“

cat(name, “\n”, file="analysisReport.out")

Example 2

• The same file can be appended using

result<-20

cat(results, ”\n”, file="analysisRepart.out", append=TRUE)

Method 2

Example 3

name<-VsemA

no-57

con <- file("analysisReport1.out", "w")

cat(name, file=con, sep="\n")

cat(no, file=con,sep="\n")

close(con)

Output:

analysisReport1.out

xyz

57

sink()

• The sink function is used to redirect all output from both print

and cat.

• Call sink with a filename argument to begin redirecting

console output to that file.

• When you are done, use sink with no argument to close the file

and resume output to the console:

Syntax:

sink("filename")

sink()

sink()
• The cat function writes to a file if you supply a file

argument, which can be either a filename or a connection.

• The print function cannot redirect its output, but the sink

function can force all output to a file.

• sink is to capture the output of an R script:

sink("script_output.txt")

source(“hello.R")

sink()

OUTPUT:

In script_output.txt [1] "Hello world"

Reading from a file
Example

c <- file(“analysisReport.out","r")

readLines(c)

close(c)

readLines(c, n=1) # n specify the maximum number of lines

to read

Output:

[1] "xyz " "20 "

Listing files

• The list.files function shows the contents of your working

directory:

list.files()

• To see all the files in your subdirectories, too, use

list.files(recursive=TRUE)

• To see the hidden files:

list.files(all.files=TRUE)

Reading Fixed-Width Records

• Suppose we want to read an entire file of fixed-width records

Syntax

Syntax:

records <- read.fwf("filename", widths=c(w1, w2, ..., wn))

Example 1

cat("123456", "987654", file="ff",sep="\n")

cat("ABCDEF","WELCOME",file="ff",append=TRUE,sep="\n")

read.fwf("ff", width=c(1,2,3))

Output:

V1 V2 V3

1 1 23 456

2 9 87 654

3 A BC D H

4 W EL COM

Reading Fixed-Width Records

• Example 2

read.fwf(ff,width=c(1,2,3),col.names=c(“one”,”Tewo”,”Three”))

Output:

One Two Three

1 1 23 456

2 9 87 654

Reading Tabular Data Files
• read.table function is used to read file as a table. It returns a data frame

Syntax

dfrm <- read.table("filename")

Example

• By default, it assumes the data fields are separated by white space (blanks

or tabs).

dfrm <- read.table(" fixed-width.txt “)

Output:

V1 V2 V3 V4

1 Fisher R.A. 1890 1962

2 Pearson Karl 1857 1936

3 Cox Gertrude 1900 1978

4 Yates Frank 1902 1994

5 Smith Kirstine 1878 1939

Reading Tabular Data Files
• To assign column names and row names

df1 <- read.table("fixed-width",row.names =
c("r1","r2","r3","r4","r5"),col.names=c("c1","c2","c3","c4"))

• If your file uses a separator other than white space, specify it
using the sep parameter.

• If our file used colon (:) as the field separator, we would read it
this way:

dfrm <- read.table(" fixed-width.txt ", sep=":")

• To prevent read.table from interpreting character strings as
factors, set the stringsAsFactors parameter to FALSE:

dfrm <- read.table("statisticians.txt", stringsAsFactor=FALSE)

• Now we can tell read.table that our file contains a header line,

and it will use the column names when it builds the data

frame:

dfrm <- read.table("statisticians.txt", header=TRUE,

stringsAsFactor=FALSE)

Writing table to a file

Syntax

write.table(dataset,”filename”)

Example

write.table(dfrm, “out.txt”)

CSV files

• A CSV is a comma-separated values file, which allows data

to be saved in a tabular format.

• CSVs look like a spreadsheet but with a .csv extension.

• CSV files can be used with most any spreadsheet program,

such as Microsoft Excel or Google Spreadsheets.

• They differ from other spreadsheet file types because you can

only have a single sheet in a file, they can not save cell,

column, or row.

• Also, you cannot save formulas in this format.

Read CSV Files
• The read.csv function is used to read CSV files.

• If your CSV file has a header line

Synatx

tbl <- read.csv("filename")

Example

data <- read.csv(“input.csv")

Output:

id Name Salary Dept

1 1 Rick 623.3 IT

2 2 Dan 515.2 Finance

3 3 Michelle 1000.0 HR

nrow and ncol

By default the read.csv() function gives the output as a data
frame.

ncol(data) – returns number of colums

Output:

[1] 4

nrow(data) - returns number of rows

Output:

[1] 8

• If you don’t want to convert string as factors in reading, then
specify stringsAsFactors = FALSE.

newdata <- read.csv(“input.csv", stringsAsFactors = FALSE)

csv files with no headers

• If your CSV file does not contain a header line, set the header
option to FALSE:

tbl <- read.csv("filename", header=FALSE)

Example

data1 <- read.csv(“input1.csv", header=FALSE)

data1

Output:

V1 V2 V3 V4

1 1 Rick 623.3 IT

2 2 Dan 515.2 Finance

3 3 Michelle 1000.0 HR

Working with csv files

• Get the maximum salary

sal <- max(data$Salary)

Output:

[1] 3000

• Get the details of the person with max salary

retval <- subset(data, Salary == max(Salary))

Output:

id Name Salary Dept

8 8 Guru 3000 IT

Working with csv files
• Get all the people working in IT department

retval <- subset(data, Dept == "IT")

Output:

id Name Salary Dept

1 1 Rick 623.3 IT

4 4 Ryan 1500.0 IT

7 7 Simon 2500.0 IT

8 8 Guru 3000.0 IT

• Get the persons in IT department whose salary is greater than 1500

info <- subset(data, Salary > 1500 & Dept == "IT")

Output:

id Name Salary Dept

7 7 Simon 2500 IT

8 8 Guru 3000 IT

Writing into a CSV File

• The write.csv() function is used to create the csv file.

write.csv(retval,"output.csv")

newdata <- read.csv("output.csv")

newdata

Output:

X id Name Salary Dept
1 1 1 Rick 623.3 IT
2 4 4 Ryan 1500.0 IT
3 7 7 Simon 2500.0 IT
4 8 8 Guru 3000.0 IT
• Here the column X is automatically created.

• This can be dropped using additional parameters while writing the
file.

write.csv(retval,"output.csv“,row.names=FALSE)

Excel file

• Microsoft Excel is the most widely used spreadsheet program

which stores data in the .xls or .xlsx format.

Method1

Installing and loading readxl package

• Install

install.packages("readxl")

• Load

library("readxl")

Using readxl package

• The readxl package comes with the function read_excel() to

read xls and xlsx files

Example

my_data<-read_excel(“inputnew.xlsx")

my_data

Output:

id Name Salary Dept

<dbl> <chr> <dbl> <chr>

1 1. Rick 623. IT

2 2. Dan 515. Finance

3 3. Michelle 1000. HR

Using readxl package

• It’s also possible to choose a file interactively using the

function file.choose().

my_data <- read_excel(file.choose())

• Specify sheet with a number or name

my_data <- read_excel("my_file.xlsx", sheet = "data")

my_data <- read_excel("my_file.xlsx", sheet = 2)

Importing Excel files using xlsx
package – Method 2

• Install xlsx Package

install.packages("xlsx")

• Load

library("xlsx")

Using xlsx package

read.xlsx(file, sheetIndex, header=TRUE)

read.xlsx2(file, sheetIndex, header=TRUE)

header: a logical value. If TRUE, the first row is used as column
names.

Example

data <- read.xlsx("input.xlsx", sheetIndex = 1)

Write data to an Excel file

Installing the package

install.packages("writexl")

Loading package

library(writexl)

Syntax

write_xlsx(data,”filename”)

Example

write_xlsx(Data, "New_Data1.xlsx")

Binary Files

• A binary file is a file that contains information stored only in

form of bits and bytes.

• They are not human readable as the bytes in it translate to

characters and symbols which contain many other non-

printable characters.

• Attempting to read a binary file using any text editor will show

characters like Ø and ð.

• The binary file has to be read by specific programs to be

useable.

• R provides two different functions for dealing with binary files.

writeBin() - for creating the binary file

Syntax

• writeBin (object, con)

readBin() – reading binary files

Syntax

• readBin (con, what, n)

– con is the connection object used for reading or writing the binary file

– object is the data that to be written into file

– what is the mode, which can be character, integer etc and it represents the

readable bytes.

– n is the amount of bytes for reading from the binary file.

Writing into Binary File
Creating a data frame

df = data.frame("ID" = c(1, 2, 3, 4), "Name" = c("Tony", "Thor", "Loki",

"Hulk"), "Age" = c(20, 34, 24, 40), "Pin" = c(756083, 756001, 751003,

110011))

Creating a connection object

con = file("myfile.dat", "wb")

Write the column names of the data frame

writeBin(colnames(df), con)

Write the records in each of the columns to the file

writeBin(c(dfID, dfName, dfAge, dfPin), con)

Close the connection object

close(con)

Reading the Binary File
Creating a connection object

con = file("myfile.dat", "rb")

Read the column names

colname = readBin(con, character(), n = 4)

Read column values

n = 20 as here 16 values and 4 column names

con = file("myfile.dat", "rb")

bindata = readBin(con, integer(), n = 20)

Read the ID values , as first 1:4 byte for col name , then values of ID col

is within 5 to 8

ID = bindata[5:8]

Name = bindata[9:12]

Age = bindata[13:16]

PinCode = bindata[17:20]

Combining all the values and make it a data frame

finaldata = cbind(ID, Name, Age, PinCode)

colnames(finaldata)= colname

print(finaldata)

Output:

ID Name Age Pin

[1,] 0 0 0 0

[2,] 1072693248 1074266112 1074790400 1073741824

[3,] 0 0 0 0

[4,] 1073741824 1074790400 1074266112 1072693248

XML Files

• XML stands for Extensible Markup Language.

• You can read a xml file in R using the "XML" package.

• Install

install.packages("XML")

• Load

library(“XML”)

employee.xml

<RECORDS>

<EMPLOYEE>

<ID>1</ID>

<NAME>Rick</NAME>

<SALARY>623.3</SALARY>

<STARTDATE>1/1/2012</STARTDATE>

<DEPT>IT</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>2</ID>

<NAME>Dan</NAME>

<SALARY>515.2</SALARY>

<STARTDATE>9/23/2013</STARTDATE>

<DEPT>Operations</DEPT>

</EMPLOYEE>

</RECORDS>

Reading XML File
Example

result <- xmlParse(file = “employee.xml")

Output:

<?xml version="1.0"?>

<RECORDS>

<EMPLOYEE>

<ID>1</ID>

<NAME>Rick</NAME>

<SALARY>623.3</SALARY>

<STARTDATE>1/1/2012</STARTDATE>

<DEPT>IT</DEPT>

</EMPLOYEE>

</RECORDS>

xmlRoot()

The xmlRoot() function gets access to the root node
and its elements.

Exmple

rootnode <- xmlRoot(result)

Find number of nodes in the root.

rootsize <- xmlSize(rootnode)

Output:

[1] 2

Details of the First Node

print(rootnode[1])

Get Different Elements of a Node

Get the first element of the first node.

print(rootnode[[1]][[1]])

Get the fifth element of the first node.

print(rootnode[[2]][[5]])

Extract XML data

Example

data <- xmlSApply(rootnode,function(x) xmlSApply(x,
xmlValue))

data

Output:

EMPLOYEE EMPLOYEE

ID "1" "2"

NAME "Rick" "Dan"

SALARY "623.3" "515.2"

STARTDATE "1/1/2012" "9/23/2013"

DEPT "IT" "Operations"

XML to Data Frame

Example

xmldataframe <- xmlToDataFrame(“employee.xml")

Output:

ID NAME SALARY STARTDATE DEPT

1 1 Rick 623.3 1/1/2012 IT

2 2 Dan 515.2 9/23/2013 Operations

XML to list
l <- xmlToList(“employee.xml")

Output:

$EMPLOYEE $EMPLOYEE$ID

[1] "1“

$EMPLOYEE$NAME

[1] "Rick“

$EMPLOYEE$SALARY

[1] "623.3"

$EMPLOYEE$STARTDATE

[1] "1/1/2012"

$EMPLOYEE$DEPT [

1] "IT"

$EMPLOYEE $EMPLOYEE$ID

[1] "2“

$EMPLOYEE$NAME

[1] "Dan"

$EMPLOYEE$SALARY

[1] "515.2“

$EMPLOYEE$STARTDATE

[1] "9/23/2013"

$EMPLOYEE$DEPT [1] "Operations"

JSON FILES
• JSON file stores data as text in human-readable format.

• Json stands for JavaScript Object Notation

• Install rjson Package

install.packages("rjson")

Input Data (input.json)

{ "ID":["1","2","3","4","5","6","7","8"],
"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru"],
"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5"],
"StartDate":[
"1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2
013", "7/30/2013","6/17/2014"],

"Dept":[
"IT","Operations","IT","HR","Finance","IT","Operations","Finance"] }

Read the JSON File
Example

result <- fromJSON(file = "input.json")

Output

$ID [1] "1" "2" "3" "4" "5" "6" "7" "8"

$Name [1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina"
"Simon" [8] "Guru“

$Salary [1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8"
"722.5"

$StartDate [1] "1/1/2012" "9/23/2013" "11/15/2014"
"5/11/2014" "3/27/2015" "5/21/2013" [7] "7/30/2013"
"6/17/2014"

$Dept [1] "IT" "Operations" "IT" "HR" "Finance" "IT" [7]
"Operations" "Finance"

Convert JSON to a Data Frame
Example

jsondf <- as.data.frame(result)

jsondf

Output

ID Name Salary StartDate Dept

1 1 Rick 623.3 1/1/2012 IT

2 2 Dan 515.2 9/23/2013 Operations

3 3 Michelle 611 11/15/2014 IT

4 4 Ryan 729 5/11/2014 HR

5 5 Gary 843.25 3/27/2015 Finance

6 6 Nina 578 5/21/2013 IT

7 7 Simon 632.8 7/30/2013 Operations

8 8 Guru 722.5 6/17/2014 Finance

Writing JSON objects to .Json file
• toJSON() function from can be used to prepare a JSON object

• use write() function for writing the JSON object to a local file.

Example

l=list("apple", "banana", "rose")

read the above list to JSON

jsonData <- toJSON(l)

write JSON object to file

write(jsonData, "output.json")

Output:

Output.json

["apple","banana","rose"]

Web Data

• Many websites provide data for consumption by its users.

• Using R programs, we can programmatically extract specific

data from websites.

Using data.table’s fread()

• Install and Load

Install.packages(“data.table”)

library(data.table)

Using data.table’s fread()

Example
mydat <-
fread('http://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat')
head(mydat)

Output:

V1 V2 V3 V4 V5

1: 1 307 930 36.58 0

2: 2 307 940 36.73 0

3: 3 307 950 36.93 0

4: 4 307 1000 37.15 0

5: 5 307 1010 37.23 0

6: 6 307 1020 37.24 0

http://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat

Using read.csv function

Example

- To download the data from .txt file on Internet into R

file <- “

http://www.ospo.noaa.gov/data/land/bbep2/biomass_burning.t

xt? filename=LocalFile.txt.gz&dir=C:/R/Data ”

Biomass_Burning_Data <- read.csv(file, header=TRUE)

https://www.dezyre.com/data-science-in-r-programming-tutorial/%E2%80%9Chttp:/www.ospo.noaa.gov/data/land/bbep2/biomass_burning.txt?filename=LocalFile.txt.gz&dir=C:/R/Data%E2%80%9D

Webscraping using RCurl

library("RCurl")

file_url <-

"https://raw.githubusercontent.com/jennybc/gapminder/master/ins

t/extdata/gapminder.tsv"

gap_data_url <- getURL(file_url)

gap_data <- read.csv(textConnection(gap_data_url),sep = "\t")

head(gap_data)

Web Scraping
• Web scraping is a technique for converting the data present in

unstructured format (HTML tags) over the web to the structured
format which can easily be accessed and used.

Why do we need Web Scraping?

• Scraping movie rating data to create movie recommendation
engines.

• Scraping text data from Wikipedia and other sources for making
NLP-based systems or training deep learning models for tasks like
topic recognition from the given text.

• Scraping labeled image data from websites like Google, Flickr, etc
to train image classification models.

• Scraping data from social media sites like Facebook and Twitter for
performing tasks Sentiment analysis, opinion mining, etc.

• Scraping user reviews and feedbacks from e-commerce sites like
Amazon, Flipkart, etc.

Ways to scrape data

There are several ways of scraping data from the web. Some of the

popular ways are:

• Human Copy-Paste: This is a slow and efficient way of scraping

data from the web. This involves humans themselves analyzing and

copying the data to local storage.

• Text pattern matching: Another simple yet powerful approach to

extract information from the web is by using regular expression

matching facilities of programming languages.

• API Interface: Many websites like Facebook, Twitter, LinkedIn,

etc. provides public and/ or private APIs which can be called using

the standard code for retrieving the data in the prescribed format.

• DOM Parsing: By using web browsers, programs can retrieve the

dynamic content generated by client-side scripts. It is also possible

to parse web pages into a DOM tree, based on which programs can

retrieve parts of these pages.

Web scraping using DOM Parsing

• install.packages('rvest')

• Library(‘rvest’)

• an open source software named Selector Gadget is used to

perform Web scraping.

• Using this you can select the parts of any website and get the

relevant tags to get access to that part by simply clicking on

that part of the website.

Scraping a webpage using R

• #Loading the rvest package

library('rvest')

• #Specifying the url for desired website to be scraped

url <-

'http://www.imdb.com/search/title?count=100&release_date=2

016,2016&title_type=feature'

• #Reading the HTML code from the website

webpage <- read_html(url)

• #Using CSS selectors to scrape the rankings section

rank_data_html <- html_nodes(webpage,'.text-primary’)

• #Converting the ranking data to text

rank_data <- html_text(rank_data_html)

head(rank_data)

Output:

[1] "1." "2." "3." "4." "5." "6.“

• #Data-Preprocessing: Converting rankings to numerical

rank_data<-as.numeric(rank_data)

Output:

[1] 1 2 3 4 5 6

• #Using CSS selectors to scrape the title section

• title_data_html <- html_nodes(webpage,'.lister-item-

header a')

• #Converting the title data to text

title_data <- html_text(title_data_html)

head(title_data)

Output:

[1] "Sing" "Moana" "Moonlight" "Hacksaw Ridge"

[5] "Passengers" "Trolls"

• #Using CSS selectors to scrape the description section

description_data_html <- html_nodes(webpage,'.ratings-bar+

.text-muted')

• #Converting the description data to text

description_data <- html_text(description_data_html)

• #Data-Preprocessing: removing '\n'

• description_data<-gsub("\n","",description_data)

Creating a data frame

cbind(rank_data,rating_data,description_data)

Database
• R can connect easily to many relational databases like MySql,

Oracle, Sql server etc. and fetch records from them as a data
frame.

• Once the data is available in the R environment, it becomes a
normal R data set and can be manipulated or analyzed using all
the powerful packages and functions.

RMySQL Package

• R has a built-in package named "RMySQL" which provides
native connectivity between with MySql database.

• You can install this package in the R environment using the
following command.

install.packages("RMySQL")

Methods of Usage
• dbConnect connect to a database
• dbDisconnect close the connection to a database
• dbSendQuery send a query to the database and use fetch

to get results
• dbGetQuery send a query to the database and get the

results
• dbClearResult returns TRUE or FALSE after clearing results
• dbListTables shows all the tables in a database
• dbListFields shows the names of columns in a database
• dbExistsTable returns TRUE or FALSE
• dbRemoveTable returns TRUE or FALSE
• dbWriteTable stores a data frame in a database
• dbReadTable reads a data from database as dataframe

Arguments

drv
an object that inherits from DBIDriver, a character string specifying the

DBMS driver, e.g., "RMariaDB", "RMySql” or possibly
another dbConnect object.

conn
a connection object as produced by dbConnect.

...

authorization arguments needed by the DBMS instance; these typically
include user, password, dbname, host, port, etc. For details see

the appropriate DBIDriver.

Usage
dbConnect(drv, ...)

dbDisconnect(conn, ...)

dbConnect dbDisconnect
Create A Connection To A DBMS To Close the Connection

dbDisconnect returns a logical value indicating whether the operation

succeeded or not.

To connect to a MySQL database simply install the package and load

the library.

install.packages("RMySQL")
library(RMySQL)

Connecting to MySQL:

Once the RMySQL library is installed create a database connection

object.

mydb = dbConnect(MySQL(), user='user',
password='password', dbname='database_name', host='host')

dbDisconnect(mydb)

RMySql is a database interface and MySql driver for R

dbSendQuery, dbGetQuery, dbClearResult.

Execute A Statement On A Given Database Connection

Submits and executes an arbitrary SQL statement on a specific connection. Also, clears (closes) a result set.

Arguments

conn

a connection object.

statement

a character vector of length 1 with the SQL statement.

res
a result set object (i.e., the value of dbSendQuery).

...

database-specific parameters may be specified.

Usage
dbSendQuery(conn, statement, ...)

dbGetQuery(conn, statement, ...)

dbClearResult(res, ...)

 dbSendQuery only executes the SQL statement to the database

engine.

 It does not extracts any records --- for that you need to use the
function fetch (make sure you invoke dbClearResult when

you finish fetching the records you need).

 The function dbGetQuery does all these in one operation

(submits the statement, fetches all output records, and clears the

result set).

 dbGetQuery returns a data.frame with the output (if any) of the

query.

 dbClearResult frees all resources associated with a result

set.

 dbClearResult returns a logical indicating whether clearing

the result set was successful or not.

https://www.rdocumentation.org/link/fetch?package=DBI&version=0.2-0

dbSendQuery and dbGetQuery

dbSendQuery(mydb, 'drop table if exists some_table,
some_other_table')
dbGetQuery(mydb, ‘select * from table')

Retrieving data from MySQL:

To retrieve data from the database we need to save a results set object.

rs = dbSendQuery(mydb, "select * from some_table")

To access the results in R we need to use the fetch function.

data = fetch(rs, n=-1)

This saves the results of the query as a data frame object. The n in the function

specifies the number of records to retrieve, using n=-1 retrieves all pending

records.

dbClearResult(rs)

Clears the fetching process from rs

dbReadTable, dbWriteTable, dbExistsTable,

dbRemoveTable

dbWriteTable(conn, name, value, row.names = F, ..., overwrite =

F, append = F)

dbReadTable(conn, name, row.names = "row_names", ...)

dbExistsTable(conn, name, ...)

dbRemoveTable(conn, name, ...)
Arguments

conn

a database connection object.

name

a character string specifying a DBMS table name.

value

a data.frame (or coercible to data.frame).

row.names
in the case of dbReadTable, this argument can be a string or an index specifying the
column in the DBMS table to be used as row.names in the output data.frame

(a NULL, "", or 0 specifies that no)

overwrite

a logical specifying whether to overwrite an existing table or not. Its default
is FALSE.

append

a logical specifying whether to append to an existing table in the DBMS. Its default
is FALSE.

...

any optional arguments that the underlying database driver supports.

Making tables:

We can create tables in the database using R dataframes.

dbWriteTable(mydb, name='table_name',
value=data.frame.name)

dbWriteTable(con, “data", data[,])
dbReadTable(con, “data")

dbWriteTable(con, " data ", data[6:10,], append = TRUE)
dbReadTable(con, " data ")

dbWriteTable(con, " data ", data[1:10,], overwrite =
TRUE)
dbReadTable(con, " data ")

No row names
dbWriteTable(con, " data ", data[1:10,], overwrite =
TRUE, row.names = FALSE)
dbReadTable(con, " data ")

https://rdrr.io/cran/DBI/man/dbWriteTable.html
https://rdrr.io/cran/DBI/man/dbReadTable.html
https://rdrr.io/cran/DBI/man/dbWriteTable.html
https://rdrr.io/r/base/append.html
https://rdrr.io/r/base/logical.html
https://rdrr.io/cran/DBI/man/dbReadTable.html
https://rdrr.io/cran/DBI/man/dbWriteTable.html
https://rdrr.io/r/base/logical.html
https://rdrr.io/cran/DBI/man/dbReadTable.html
https://rdrr.io/cran/DBI/man/dbWriteTable.html
https://rdrr.io/r/base/logical.html
https://rdrr.io/r/base/row.names.html
https://rdrr.io/r/base/logical.html
https://rdrr.io/cran/DBI/man/dbReadTable.html

row.names

•If FALSE or NULL, row names are ignored.

•If TRUE, row names are converted to a column named

"row_names”.

•If NA, a column named "row_names" is created if the data

has custom row names, no extra column is created in the

case of natural row names.

The default is row.names = FALSE.

dbExistsTable(con, “data")

dbRemoveTable(con, “data")

https://rdrr.io/cran/DBI/man/dbWriteTable.html
https://rdrr.io/cran/DBI/man/dbReadTable.html

dbListTables and dbListFields

• dbListTables(dbCon)

• dbListFields(dbCon, table_name)

• Example:

list the tables in database

dbListTables(mysqlconnection)

List the Field Names of the Table "data"
dbListFields(mysqlconnection, "data")

Exercise

1) Write a R program to get Input for the Employee (No, Name,

Salary) data frame from user at runtime and create an excel

file.

2) Create an Xml file for students and Write a R program to

convert into json file.

3) Write a R program to read data from csv file and create a

binary file by using the data.

Graphics - Pie Charts

• R Programming language has numerous libraries to create

charts and graphs.

• A pie-chart is a representation of values as slices of a circle

with different colors. The slices are labeled and the numbers

corresponding to each slice is also represented in the chart.

• In R the pie chart is created using the pie() function which

takes positive numbers as a vector input.

• The additional parameters are used to control labels, color, title

etc.

Pie chart
Syntax

pie(x, labels, radius, main, col, clockwise, density, border)

• Description of the parameters

– x is a vector containing the numeric values used in the pie chart.

– labels is used to give description to the slices.

– radius indicates the radius of the circle of the pie chart.(value

between −1 and +1).

– main indicates the title of the chart.

– col indicates the color palette.

– clockwise is a logical value indicating if the slices are drawn

clockwise or anti clockwise.

– density specify the shading lines density (in lines per inch). By

default, it is NULL, which means no shading lines.

- border indicates border color.

Pie chart - Example
x <- c(21, 62, 10, 53)

country <- c("London", "New York", "Singapore", "Mumbai")

• # Give the chart file a name.

png(file = "city.png")

• # Plot the chart.

pie(x,labels=country)

• # Save the file.

dev.off()

Pie Chart Title and Colors

• # Plot the chart with title and rainbow color pallet.

pie(x, labels, main = "City pie chart", col =

rainbow(length(x)))

Slice Percentages and Chart Legend

piepercent<- round(100*x/sum(x), 1)

pie(x, labels = piepercent, main = "City pie chart",col =

rainbow(length(x)))

legend("topright", c("London","New

York","Singapore","Mumbai"), cex = 0.5,fill =

rainbow(length(x)))

Pie chart for data frame Values

df <-

data.frame(Count=c(45,35,20),Group=c("Male","Female","Ch

ild"))

pie(df$Count,df$Group,col=c("Green","Red","Blue"))

Output:

3D Pie Chart

library(plotrix)

x <- c(21, 62, 10,53)

lbl <- c("London","New York","Singapore","Mumbai")

pie3D(x,labels = lbl,explode = 0.1, main = "Pie Chart of

Countries ")

Bar Chart
• A bar chart represents data in rectangular bars with length

of the bar proportional to the value of the variable.

• R uses the function barplot() to create bar charts.

Syntax
barplot(H,xlab,ylab,main, names.arg,col)

• Description of the parameters
– H is a vector or matrix containing numeric values used in bar

chart.

– xlab is the label for x axis.

– ylab is the label for y axis.

– main is the title of the bar chart.

– names.arg is a vector of names appearing under each bar.

– col is used to give colors to the bars in the graph.

Bar Chart - Example
• # Create the data for the chart

H <- c(7,12,28,3,41)

• # Plot the bar chart

barplot(H)

Bar Chart Labels, Title and Colors
H <- c(7,12,28,3,41)

M <- c("Mar","Apr","May","Jun","Jul")

barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="blue",

main="Revenue chart",border="red")

Group Bar Chart and Stacked Bar
Chart

• We can create bar chart with groups of bars and stacks in each

bar by using a matrix as input values.

• More than two variables are represented as a matrix which is

used to create the group bar chart and stacked bar chart.

• # Create the input vectors.

colors = c("green","orange","brown")

months <- c("Mar","Apr","May","Jun","Jul")

regions <- c("East","West","North")

• # Create the matrix of the values.

Values <- matrix(c(2,9,3,11,9,4,8,7,3,12,5,2,8,10,11),
nrow = 3, ncol = 5, byrow = TRUE)

• # Create the bar chart

barplot(Values, main = "total revenue", names.arg =
months, xlab = "month", ylab = "revenue", col = colors)

• # Add the legend to the chart

legend("topleft", regions, cex = 1.3, fill = colors)

Bar Chart
• For example, the airquality dataset contains a numeric Temp column and a

Month column.

• We can create a bar chart of the mean temperature by month in two steps.

First, we compute the means:

heights <- tapply(airquality$Temp, airquality$Month, mean)

• That gives the heights of the bars, from which we create the bar chart:

barplot(heights)

• barplot(heights,main="Mean Temp. by Month“,names.arg=c("May", "Jun",

"Jul", "Aug", "Sep"), ylab="Temp (deg. F)")

Stacked Bar Plot
counts <- table(mtcars$vs, mtcars$gear)

Counts

Output:

3 4 5

0 12 2 4

1 3 10 1

barplot(counts, main="Car Distribution by Gears and

VS",xlab="Number of Gears", col=c("darkblue","red"),legend

= rownames(counts))

Grouped Bar Plot

barplot(counts, main="Car Distribution by Gears and

VS",xlab="Number of Gears", col=c("darkblue","red"),legend

= rownames(counts), beside=TRUE)

Output:

Horizontal Bar Plot

barplot(counts, main="Car Distribution by Gears and

VS",ylab="Number of Gears", col=c("darkblue","red"),

horiz=TRUE)

Box plot

• Boxplots are a measure of how well distributed is the data in a

data set.

• This graph represents the minimum, maximum, median, first

quartile and third quartile in the data set.

• It is also useful in comparing the distribution of data across

data sets by drawing boxplots for each of them.

• Boxplots are created in R by using the boxplot() function.

Box Plot
• Syntax

boxplot(x, data, notch, varwidth, names, main)

• Description of the parameters

– x is a vector or a formula.

– data is the data frame.

– notch is a logical value. Set as TRUE to draw a notch.

– varwidth is a logical value. Set as true to draw width of the

box proportionate to the sample size.

– names are the group labels which will be printed under

each boxplot.

– main is used to give a title to the graph.

Box Plot
Example

input <- mtcars[,c('mpg','cyl')]

print(head(input))

Output:

mpg cyl

Mazda RX4 21.0 6

Mazda RX4 Wag 21.0 6

Datsun 710 22.8 4

Hornet 4 Drive 21.4 6

Hornet Sportabout 18.7 8

Valiant 18.1 6

• The function boxplot() can also take in formulas of the

form y~x where, y is a numeric vector which is grouped

according to the value of x.

Creating the Boxplot

• boxplot(mpg ~ cyl, data = mtcars, xlab = "Number of

Cylinders", ylab = "Miles Per Gallon", main = "Mileage

Data")

Boxplot with Notch
• We can draw boxplot with notch to find out how the medians of different

data groups match with each other.

boxplot(mpg ~ cyl, data = mtcars,

xlab = "Number of Cylinders",

ylab = "Miles Per Gallon",

main = "Mileage Data",

notch = TRUE,

varwidth = TRUE,

col = c("green","yellow","purple"),

names = c("High","Medium","Low")

)

Dot plot
• Dot plot in R also known as dot chart is an alternative to bar charts,

where the bars are replaced by dots.

• A simple Dot plot in R can be created using dotchart function.

• Syntax

dotchart (NumericVector, cex = 1, col = “black”, labels = NULL, main =

NULL, pch = 1, sub = NULL, xlab = NULL)

• Description of the parameters

cex - plot scaling factor(size) . More the value of cex, more the plot size will be

col - colour of the dot

labels - A vector containing the label names for each plotted value.

main - Title of the dot chart

pch - numeric value which decides the type of plot … if pch=1 then dot, pch=2 then

triangle, pch=3 then ‘+’

Sub - subtitle of the dot chart

Xlab - x axis label

Example

• dotchart(mtcars$mpg,labels=row.names(mtcars), main="Gas

Milage for Car Models", xlab="Miles Per Gallon", cex=0.7)

Dot plot in R for groups

• Suppose if we want to create the different dot plots for different

group of the same data set.

• PlantGrowth data set have 3 groups ctrl, trt1 and trt2.

pg <- PlantGrowth

pg$color[pg$group=="ctrl"] <- "red"

pg$color[pg$group=="trt1"] <- "Violet"

pg$color[pg$group=="trt2"] <- "blue“

dotchart(PlantGrowth$weight,

labels=PlantGrowth$group,cex=0.8,groups= PlantGrowth$group,

main="group vs weight",

xlab="weight", gcolor="black", color=pg$color)

Dot plot - Output

Histogram

• A histogram represents the frequencies of values of a variable

bucketed into ranges.

• Histogram is similar to bar chat but the difference is it groups

the values into continuous ranges.

• Each bar in histogram represents the height of the number of

values present in that range.

• R creates histogram using hist() function.

Histogram

• Syntax

hist(v,main,xlab,xlim,ylim,breaks,col,border)

• Description of the parameters

– v is a vector containing numeric values used in histogram.

– main indicates title of the chart.

– col is used to set color of the bars.

– border is used to set border color of each bar.

– xlab is used to give description of x-axis.

– xlim is used to specify the range of values on the x-axis.

– ylim is used to specify the range of values on the y-axis.

– breaks is used to mention the width of each bar.

Example

v <- c(9,13,21,8,36,22,12,41,31,33,19)

hist(v,xlab = "Weight",col = "yellow",border = "blue")

Range of X and Y values

hist(v,xlab = "Weight",col = "green",border = "red", xlim =

c(0,40), ylim = c(0,5),breaks = 5)

Line Graphs

• A line chart is a graph that connects a series of points by

drawing line segments between them.

• These points are ordered in one of their coordinate (usually the

x-coordinate) value.

• Line charts are usually used in identifying the trends in data.

• The plot() function in R is used to create the line graph.

Line Graphs

• Syntax

plot(v,type,col,xlab,ylab,lty)

• Description of the parameters

– v is a vector containing the numeric values.

– xlab is the label for x axis.

– ylab is the label for y axis.

– main is the Title of the chart.

– col is used to give colors to both the points and lines.

• type: character indicating the type of plotting. Allowed values are:

– “p” for points

– “l” for lines

– “b” for both points and lines

– “c” for empty points joined by lines

– “o” for overplotted points and lines

– “s” and “S” for stair steps

– “n” does not produce any points or lines

• lty: line types. Line types can either be specified as an integer

(0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash,

5=longdash, 6=twodash) or as one of the character strings “blank”,

“solid”, “dashed”, “dotted”, “dotdash”, “longdash”, or “twodash”,

where “blank” uses ‘invisible lines’ (i.e., does not draw them).

•

Example

v <- c(7,12,28,3,41)

plot(v,type = "o")

Line Chart Title, Color and Labels

v <- c(7,12,28,3,41)

plot(v,type = "o", col = "red", xlab = "Month", ylab = "Rain

fall",main = "Rain fall chart")

Multiple Lines in a Line Chart
• More than one line can be drawn on the same chart by using

the lines()function.

• After the first line is plotted, the lines() function can use an

additional vector as input to draw the second line in the chart,

v <- c(7,12,28,3,41)

t <- c(14,7,6,19,3)

plot(v,type = "o",col = "red", xlab = "Month", ylab = "Rain fall",

main = "Rain fall chart")

lines(t, type = "o", col = "blue")

Scatterplots

• Scatterplots show many points plotted in the Cartesian plane.

• Each point represents the values of two variables.

• One variable is chosen in the horizontal axis and another in the

vertical axis.

• The simple scatterplot is created using the plot() function.

Scatterplots

• Syntax

plot(x, y, main, xlab, ylab, xlim, ylim, axes)

• Description of the parameters
– x is the data set whose values are the horizontal coordinates.

– y is the data set whose values are the vertical coordinates.

– main is the title of the graph.

– xlab is the label in the horizontal axis.

– ylab is the label in the vertical axis.

– xlim is the limits of the values of x used for plotting.

– ylim is the limits of the values of y used for plotting.

– axes indicates whether both axes should be drawn on the plot.

Example

• We use the data set "mtcars" available in the R environment to
create a basic scatterplot.

• use the columns "wt" and "mpg" in mtcars.

input <- mtcars[,c('wt','mpg')]

head(input)

Output:

wt mpg
Mazda RX4 2.620 21.0
Mazda RX4 Wag 2.875 21.0
Datsun 710 2.320 22.8
Hornet 4 Drive 3.215 21.4
Hornet Sportabout 3.440 18.7
Valiant 3.460 18.1

Creating the Scatterplot

input <- mtcars[,c('wt','mpg')]

plot(x = input$wt,y = input$mpg,

xlab = "Weight",

ylab = "Milage",

xlim = c(2.5,5),

ylim = c(15,30),

main = "Weight vs Milage"

)

Scatterplot Matrices

• When we have more than two variables and we want to find

the correlation between one variable versus the remaining ones

we use scatterplot matrix.

• We use pairs() function to create matrices of scatterplots.

• Syntax

pairs(formula, data)

• Description of the parameters

– formula represents the series of variables used in pairs.

– data represents the data set from which the variables will be taken.

Example

• # Plot the matrices between 4 variables giving 12 plots.

• # One variable with 3 others and total 4 variables.

pairs(~wt+mpg+disp+cyl,data = mtcars,main = "Scatterplot

Matrix")

Kernel Density Plot

• Density plots can be thought of as plots of smoothed

histograms.

• The smoothness is controlled by a bandwidth parameter.

• Kernel density plots are usually a much more effective way to

view the distribution of a variable.

x <- c(10,20,24,23,30)

plot(density(x))

Kernel Density Plots

Example

d <- density(mtcars$mpg)

plot(d)

Example

d <- density(mtcars$mpg)

plot(d, main="Kernel Density of Miles Per Gallon")

Filled density plot

polygon(d, col="red", border="blue")

Writing plot to a file
• The first step in deciding how to save plots is to decide on the output

format that you want to use.

Format Driver Notes

JPG jpeg be used anywhere, but doesn't resize

PNG png Can be used anywhere, but doesn't

resize

WMF win.metafile Windows only; best choice

with Word; easily resizable

PDF pdf Best choice with pdflatex; easily

resizable

Postscript postscript Best choice with latex and Open

Office; easily resizable

Methods

A General Method

jpeg('rplot.jpg')

plot(x,y)

dev.off()

Another Approach

dev.copy(png,'myplot.png')

dev.off()

Another Approach

Plots panel –> Export –> Save as Image or Save as PDF

Changing graphical parameters

• You can customize many features of your graphs (fonts,

colors, axes, titles) through graphic options.

• One way is to specify these options in the par() function.

• If you set parameter values here, the changes will be in effect

for the rest of the session or until you change them again.

• Syntax

par(optionname=value, optionname=value, ...)

Set a graphical parameter using par()

par() # view current settings
opar <- par() # make a copy of current settings
par(col.lab="red") # red x and y labels
hist(mtcars$mpg) # create a plot with these new settings

par(opar) # restore original settings

Method 2

• specify graphical parameters by providing

the optionname=value pairs directly to a high level plotting

function.

• In this case, the options are only in effect for that specific

graph.

Example

• hist(mtcars$mpg, col.lab="red")

Text and Symbol Size

• The following options can be used to control text and symbol

size in graphs.

Option Description

cex number indicating the amount by which
plotting text and symbols should be scaled
relative to the default. 1=default, 1.5 is 50%
larger, 0.5 is 50% smaller, etc.

cex.axis magnification of axis annotation relative to
cex

cex.lab magnification of x and y labels relative to cex

cex.main magnification of titles relative to cex

cex.sub magnification of subtitles relative to cex

Plotting Symbols

• Use the pch= option to specify symbols to use when plotting

points.

• For symbols 21 through 25, specify border color (col=) and fill

color (bg=).

Example

x <- c(22,23,24,25,26)

y <- c(2,2.3,2.4,2.5,3)

plot(x, y, pch = 25, col = "black", cex = 1,bg="red")

Lines

• You can change lines using the following options.

• This is particularly useful for reference lines, axes, and fit

lines.

option description

lty line type. see the chart below.

lwd line width relative to the default (default=1). 2 is
twice as wide.

Lines - Example

plot(1:10, 1:10,type="l",lty=1,lwd=3)

Colors

• Options that specify colors include the following.

option description

col Default plotting color. Some functions (e.g. lines) accept a
vector of values that are recycled.

col.axis color for axis annotation

col.lab color for x and y labels

col.main color for titles

col.sub color for subtitles

fg plot foreground color (axes, boxes - also sets col= to same)

bg plot background color

colors

• You can specify colors in R by index, name, hexadecimal, or

RGB.

For example col=1, col="white", and col="#FFFFFF" are

equivalent.

Example

x <- c(22,23,24,25,26)

y <- c(2,2.3,2.4,2.5,3)

plot(x, y, pch = 15, col = "red")

Fonts

• You can easily set font size and style and font family.

option description

font Integer specifying font to use for text.
1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol

font.axis font for axis annotation

font.lab font for x and y labels

font.main font for titles

font.sub font for subtitles

ps font point size (roughly 1/72 inch)
text size=ps*cex

family font family for drawing text. Standard values are
"serif", "sans", "mono", "symbol". Mapping is
device dependent.

Fonts - Example

plot(1:10)

text(2, 2, "welcome", family = "mono", font=2)

Margins and Graph Size

• You can control the margin size using the following

parameters.

option description

mar numerical vector indicating margin size c(bottom,
left, top, right) in lines. default = c(5, 4, 4, 2) + 0.1

mai numerical vector indicating margin size c(bottom,
left, top, right) in inches

pin plot dimensions (width, height) in inches

Example

• plot(1:10, mar = c(2, 2, 2, 2))

UNIT III - PROBABILITY

Introduction-Sample Space -Events-Counting

Methods-Conditional probability -Independent

Events-Bayes Rule-Random Variables-Probability

distribution-Discrete and continuous Distribution-

Multivariate Distribution.

Introduction

• Probabilities are associated with experiments where the

outcome is not known in advance or cannot be predicted.

• For example, if you toss a coin, will you obtain a head or tail?

If you roll a die will obtain 1, 2, 3, 4, 5 or 6?

• The value of a probability is a number between 0 and 1

inclusive.

• An event that cannot occur has a probability equal to 0 and the

probability of an event that is certain to occur has a probability

equal to 1.

Deterministic and Random

• A deterministic experiment is one whose outcome may be

predicted with certainty beforehand.

Example - adding two numbers such as 2 + 3.

• A random experiment is one whose outcome is determined

by chance. We posit that the outcome of a random experiment

may not be predicted with certainty beforehand, even in

principle.

Example - tossing a coin, rolling a die

Sample space

• For a random experiment E, the set of all possible outcomes of

E is called the sample space and is denoted by the letter S .

• Example 1: For the coin-toss experiment, S would be the

results “Head” and “Tail”, which we may represented by

S = {H, T}.

• Example 2: If a die is rolled, the sample space S is given by

S = {1,2,3,4,5,6}

• Example 3: If two coins are tossed, the sample space S is

given by

S = {HH,HT,TH,TT}

How to do it with R

• A sample space is (usually) represented by a data frame, that

is, a rectangular collection of variables.

• Each row of the data frame corresponds to an outcome of the

experiment.

• Example -Consider the random experiment of dropping a

Styrofoam cup onto the floor from a height of four feet.

• The cup hits the ground and eventually comes to rest. It could

land upside down, right side up, or it could land on its side. We

represent these possible outcomes of the random experiment

by the following.

S <- data.frame(lands = c("down", "up", "side"))

Example

• Consider the random experiment of tossing a coin. The
outcomes are H and T.

• We can set up the sample space quickly with the tosscoin
function:

install.packages("prob")

library("prob")

tosscoin(1)

Output:

Toss1

1 H

2 T

• The number 1 tells that we only want to toss the coin once.

Example

• roll a fair die

rolldie(1)

Output:

X1

1 1

2 2

3 3

4 4

5 5

6 6

• The rolldie function defaults to a 6-sided die, but we can
specify others with the nsides argument.

• The command rolldie(1, nsides = 4) would be used to roll a 4-

sided die three times.

rolldie(1, nsides = 4)

Output:

X1

1 1

2 2

3 3

4 4

Example

• we would like to draw one card from a standard set of playing
cards (it is a long data frame):

cards() - This generates a data frame sample space of a
standard deck of 52 playing cards.

cards(jokers = FALSE, makespace = FALSE)

Output:

rank suit

1 2 Club

2 3 Club

3 4 Club

4 5 Club

Sampling from Urns

• This is the most fundamental type of random experiment.

• We have an urn that contains a bunch of distinguishable

objects (balls) inside.

• We shake up the urn, reach inside, grab a ball, and take a look.

• But there are all sorts of variations on this theme. Maybe we

would like to grab more than one ball – say, two balls. What

are all of the possible outcomes of the experiment now?

• Sampling with replacement - We could select a ball, take a

look, put it back, and sample again.

• Sampling without replacement - select a ball, take a look –

but do not put it back – and sample again

• Suppose we do not actually keep track of which ball came

first.

• All we observe are the two balls, and we have no idea about

the order in which they were selected.

• We call this unordered sampling (in contrast to ordered)

because the order of the selections does not matter with respect

to what we observe.

• Tossing a coin twice is equivalent to selecting two balls

labeled H and T from an urn, with replacement.

• The die-roll experiment is equivalent to selecting a ball from

an urn with six elements, labeled 1 through 6.

How to do it with R

• The prob package accomplishes sampling from urns with the

urnsamples function.

Syntax

urnsamples(x, size, replace = FALSE, ordered = FALSE)

– x - represents the urn from which sampling is to be done.

– size - tells how large the sample will be.

– ordered and replace - arguments are logical and specify how sampling

will be performed.

Example
• Let our urn simply contain three balls, labeled 1, 2, and 3,

respectively. We are going to take a sample of size 2 from the urn.

Ordered, With Replacement

• If sampling is with replacement, then we can get any outcome 1, 2,
or 3 on any draw.

• Further, by “ordered” we mean that we shall keep track of the order
of the draws that we observe.

urnsamples(1:3, size = 2, replace = TRUE, ordered = TRUE)

A={1,2,3} and k=2
Output:

X1 X2

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

Ordered, Without Replacement

• Here sampling is without replacement, so we may not observe the
same number twice in any row. Order is still important.

urnsamples(1:3, size = 2, replace = FALSE, ordered = TRUE)
A={1,2,3} and k=2

Output:
X1 X2

1 1 2
2 2 1
3 1 3
4 3 1
5 2 3
6 3 2

Unordered, Without Replacement

• we may not observe the same outcome twice, but in this case,

we will only retain those outcomes which (when jumbled)

would not duplicate earlier ones.

urnsamples(1:3, size = 2, replace = FALSE, ordered = FALSE)

Output:

X1 X2

1 1 2

2 1 3

3 2 3

Unordered, With Replacement

• We replace the balls after every draw, but we do not remember
the order in which the draws came.

urnsamples(1:3, size = 2, replace = TRUE, ordered = FALSE)

Output:

X1 X2

1 1 1

2 1 2

3 1 3

4 2 2

5 2 3

6 3 3

Sampling from cards

S <- cards()

urnsamples(S, size = 2)

Output:

[[1000]]

rank suit

26 A Diamond

51 K Spade

Example

• Consider an urn which has 5 red ball, 3 green balls and 8 blue
balls. We randomly pick one ball from the urn.

First, we need to carefully define the urn from which the
sample is drawn. This is done by using rep function.

rep(x) function replicates the values x

urn=rep(c("red","green","blue"),times=c(5,3,8))

urnsamples(urn,1)

Output:

out

1 red 2 red 3 red 4 red 5 red 6 green 7 green 8 green 9 blue 10
blue 11 blue 12 blue 13 blue 14 blue 15 blue 16 blue

Events

• An event A is a collection of outcomes, or in other words, a

subset of the sample space.

• After the performance of a random experiment E we say that

the event A occurred if the experiment’s outcome belongs to A.

• For instance, in the coin-toss experiment the events A =

{Heads} and B = {Tails} would be mutually exclusive.

Events

• When we say "Event“, it mean one (or more) outcomes.

Example Events:

• Getting a Tail when tossing a coin is an event

• Rolling a "5" is an event.

An event can include several outcomes:

• Choosing a "King" from a deck of cards (any of the 4 Kings) is

also an event

• Rolling an "even number" (2, 4 or 6) is an event

Type of Events

Events can be:

• Independent - each event is not affected by other events

• Dependent - also called "Conditional", where an

event is affected by other events

• Mutually Exclusive - events can't happen at the same time

Independent Events

• Events can be "Independent", meaning each event is not

affected by any other events.

Example:

• You toss a coin three times and it comes up "Heads" each time

... what is the chance that the next toss will also be a "Head"?

• The chance is simply 1/2, or 50%, just like ANY OTHER toss

of the coin.

• What it did in the past will not affect the current toss!

Dependent Events

• means they can be affected by previous events.

Example: Drawing 2 Cards from a Deck

• After taking one card from the deck there are less

cards available, so the probabilities change!

look at the chances of getting a King.

• For the 1st card the chance of drawing a King is 4 out of 52

• But for the 2nd card: If the 1st card was a King, then the 2nd

card is less likely to be a King, as only 3 of the 51 cards left

are Kings.

• If the 1st card was not a King, then the 2nd card is

slightly more likely to be a King, as 4 of the 51 cards left are

King.

• Replacement: When we put each card back after drawing it

the chances don't change, as the events are independent.

• Without Replacement: The chances will change, and the

events are dependent.

Mutually Exclusive

• we can't get both events at the same time.

Examples:

• Turning left or right are Mutually Exclusive (you can't do both

at the same time)

• Heads and Tails are Mutually Exclusive

• Kings and Aces are Mutually Exclusive

What isn't Mutually Exclusive

• Kings and Hearts are not Mutually Exclusive, because we can

have a King of Hearts!

How to do it with R
Tossing two coins

S <- tosscoin(2, makespace = TRUE)

Output:

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

4 T T 0.2

Given a data frame sample/probability space S, we may extract rows
using the [] operator:

S[1:3,]

Output:

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

S[c(2, 4),]

Output:

toss1 toss2 probs

2 T H 0.25

4 T T 0.25

We may also extract rows that satisfy a logical expression using

the subset function, for instance

S <- cards()

subset(S, suit == "Heart")

Output:

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

subset(S, rank %in% 7:9)

Output:

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

32 7 Heart

33 8 Heart

34 9 Heart

45 7 Spade

46 8 Spade

47 9 Spade

subset(rolldie(3), X1 + X2 + X3 > 16)

Output:

X1 X2 X3

180 6 6 5

210 6 5 6

215 5 6 6

216 6 6 6

Functions for Finding Subsets

The %in% function

• The function %in% helps to learn whether each value of one

vector lies somewhere inside another vector.

x <- 1:10

y <- 8:12

y %in% x

Output:

[1] TRUE TRUE TRUE FALSE FALSE

The isin function

• To check whether the whole vector y is in x. We can do this

with the isin function.

x <- 1:10

y <- c(3, 3, 7)

all(y %in% x)

Output:

[1] TRUE

isin(x, y)

Output:

[1] FALSE

• argument ordered which tests whether the elements of y appear

in x in the order in which they are appear in y.

isin(x, c(3, 4, 5), ordered = TRUE)

Output:

[1] TRUE

isin(x,c(3,5,4),ordered=T)

Output:

[1] FALSE

• The connection to probability is that have a data frame sample space and
we would like to find a subset of that space.

• A data.frame method was written for isin that simply applies the function
to each row of the data frame.

S <- rolldie(4)

subset(S, isin(S, c(2, 2, 6), ordered = TRUE))

Output:

X1 X2 X3 X4

188 2 2 6 1

404 2 2 6 2

620 2 2 6 3

836 2 2 6 4

1052 2 2 6 5

1088 2 2 1 6

Set Union, Intersection, and
Difference

• Given subsets A and B, it is often useful to manipulate them in

an algebraic fashion.

• we have three set operations - union, intersection, and

difference.

Name Denoted Defined by elements Code

Union A U B in A or B or both union(A,B)

Intersection A ∩B in both A and B intersect(A,B)

Difference A\B in A but not in B setdiff(A,B)

Union
S = cards()

A = subset(S, suit == "Heart")

B = subset(S, rank %in% 7:9)

union(A,B)
Output:

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

27 2 Heart

28 3 Heart

Intersect and Set
intersect(A, B)

Output:

rank suit

32 7 Heart

33 8 Heart

34 9 Heart

setdiff(A, B)

Output:

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

35 10 Heart

Counting Methods

• The equally-likely model is a convenient and popular way to

analyze random experiments.

• Equally likely events are those events which have

an equal probability of occuring.

• For example: When we toss an unbiased coin, the probability

of getting a heads is 1/2 and the probability of getting a tails is

1/2. So, it is an equally likely event.

• when the equally likely model applies, finding the probability

of an event A is equal to counting the number of outcomes that

A contains (together with the number of events in S).

The Multiplication Principle

• Suppose that an experiment is composed of two successive

steps.

• The first step may be performed in n1 distinct ways while the

second step may be performed in n2 distinct ways. Then the

experiment may be performed in n1n2 distinct ways.

• More generally, if the experiment is composed of k successive

steps which may be performed in n1, n2, . . . , nk distinct

ways, respectively, then the experiment may be performed in

n1n2 · · · nk distinct ways.

Sample problem

• A fast-food restaurant has a meal special: $5 for a drink, sandwich, side

item and dessert.

• The choices are:

– Sandwich: Grilled chicken, All Beef Patty, Vegeburger and Fish Filet.

– Side: Regular fries, Cheese Fries, Potato Wedges.

– Dessert: Chocolate Chip Cookie or Apple Pie.

– Drink: Fanta, Dr. Pepper, Coke, Diet Coke and Sprite.

• Q. How many meal combos are possible?

• There are 4 stages:

– Choose a sandwich.

– Choose a side.

– Choose a dessert.

– Choose a drink.

• There are 4 different types of sandwich, 3 different types of side, 2 different

types of desserts and five different types of drink.

• The number of meal combos possible is 4 * 3 * 2 * 5 = 120.

• You take a survey for five questions with “yes” or “no”

answers. How many different ways could you complete the

survey?

• There are 5 stages: Question 1, question 2, question 3,

question 4, and question 5.

• There are 2 choices for each question (Yes or No).

So the total number of possible ways to answer is:

2 * 2 * 2 * 2 * 2 = 25 = 32.

Q: A company puts a code on each different product they sell.

The code is made up of 3 numbers and 2 letters. How many

different codes are possible?

There are 5 stages (number 1, number 2, number 3, letter 1

and letter 2).

There are 10 possible numbers: 0 – 9.

There are 26 possible letters: A – Z.

So we have:

10 * 10 * 10 * 26 * 26 = 676000 possible codes.

Ordered Samples
• Imagine a bag with n distinguishable balls inside. Now shake

up the bag and select k balls at random. How many possible

sequences might we observe?

• Proposition- The number of ways in which one may select an

ordered sample of k subjects from a population that has n

distinguishable members is

• nk if sampling is done with replacement,

• n(n − 1)(n − 2) · · · (n − k + 1) if sampling is done without

replacement.

Examples

• Take a coin and flip it 7 times. How many
sequences of Heads and Tails are possible?

• In a class of 20 students, we randomly select a
class president, a class vicepresident, and a
treasurer. How many ways can this be done?

• We rent five movies to watch over the span of two
nights. We wish to watch 3 movies on the first
day. How many distinct sequences of 3 movies
could we possibly watch?

• Answer: 27 = 128.

• Answer: 20 · 19 · 18 = 6840.

• Answer: 5 · 4 · 3 = 60.

Unordered Samples

• The number of ways in which one may select an unordered

sample of k subjects from a population that has n

distinguishable members is

• (n − 1 + k)!/[(n − 1)!k!] if sampling is done with replacement,

• n!/[k!(n − k)!] if sampling is done without replacement.

• The quantity n!/[k!(n − k)!] is called a binomial coefficient and

plays a special role in mathematics; it is denoted

and is read “n choose k”.

ordered = TRUE ordered = FALSE

• replace = TRUE nk (n−1+k)!/(n−1)!k!

• replace = FALSE n!/(n−k)!

• You rent five movies to watch over the span of two nights, but

only wish to watch 3 movies the first day. Your friend, Fred,

wishes to borrow some movies to watch at his house on the

first day. You allow him to select 2 movies from the set of 5.

How many choices does Fred have?

• Answer:

(5)

2

= 10

How to do it with R
• The factorial n! is computed with the command factorial(n)

• The binomial coefficient with the command choose(n,k).

• We will compute the number of outcomes for each of the four

urnsamples

• examples . Recall that we took a sample of size two from an urn

with three distinguishable elements.

nsamp(n = 3, k = 2, replace = TRUE, ordered = TRUE)

[1] 9

nsamp(n = 3, k = 2, replace = FALSE, ordered = TRUE)

[1] 6

nsamp(n = 3, k = 2, replace = FALSE, ordered = FALSE)

[1] 3

nsamp(n = 3, k = 2, replace = TRUE, ordered = FALSE)

[1] 6

The Multiplication Principle

• A benefit of nsamp is that it is vectorized so that entering

vectors instead of numbers for n, k, replace, and ordered

results in a vector of corresponding answers.

• This becomes particularly convenient for combinatorics

problems.

Example

Question

• There are 11 artists who each submit a portfolio containing 7

paintings for competition in an art exhibition. Unfortunately,

the gallery director only has space in the winners’ section to

accommodate 12 paintings in a row equally spread over three

consecutive walls. The director decides to give the first,

second, and third place winners each a wall to display the

work of their choice. The walls boast 31 separate lighting

options apiece. How many displays are possible?

Answer

• The judges will pick 3 (ranked) winners out of 11 (with rep =

FALSE, ord =TRUE).

• Each artist will select 4 of his/her paintings from 7 for display

in a row (rep = FALSE, ord = TRUE), and lastly, each of the 3

walls has 31 lighting possibilities (rep = TRUE, ord= TRUE).

These three numbers can be calculated quickly with

n <- c(11, 7, 31)

k <- c(3, 4, 3)

r <- c(FALSE, FALSE, TRUE)

x <- nsamp(n, k, rep = r, ord = TRUE)

Output: [1] 990 840 29791

• By the Multiplication Principle, the number of ways to

complete the experiment is the product of the entries of x:

prod(x)

Output: [1] 24774195600

• Compare this with the some other ways to compute the same

thing:

(11 * 10 * 9) * (7 * 6 * 5 * 4) * 31^3

[1] 24774195600

or alternatively

prod(9:11) * prod(4:7) * 31^3

[1] 24774195600

Conditional Probability

• Consider a full deck of 52 standard playing cards. Now select

two cards from the deck, in succession.

• Let A = {first card drawn is an Ace} and B = {second card

drawn is an Ace}.

• Since there are four Aces in the deck, it is natural to assign

P(A) = 4/52.

• Suppose we look at the first card. What now is the probability

of B? Of course, the answer depends on the value of the first

card.

• If the first card is an Ace, then the probability that the second

also is an Ace should be 3/51.

• if the first card is not an Ace, then the probability that the

second is an Ace should be 4/51.

• As notation for these two situations we write

P(B|A) = 3/51, P(B|Ac) = 4/51.

The conditional probability of B given A, denoted P(B|A), is

defined by

Example
• Toss a coin twice. The sample space is given by

S = {HH, HT, TH, TT}.

• Let A = {a head occurs} and B = {a head and tail occur}.

• It should be clear that P(A) = 3/4, P(B) = 2/4, and P(A ∩ B) =

2/4.

• What now are the probabilities P(A|B) and P(B|A)?

P(A|B) = IP(A ∩ B) / P(B) = 2/4 / 2/4 = 1,

• in other words, once we know that a Head and Tail occur, we

may be certain that a Head occurs. Next

P(B|A) = P(A ∩ B) / P(A) = 2/4 / 3/4 = 2 / 3

How to do in R

s <- tosscoin(2,makespace=T)

s

Output:

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

4 T T 0.25

• Next we define the events

A <- s[1:3,]

B <- s[2:3,]

• To do conditional probability, we use the given argument of
the prob function:

Prob(A,given=B)

Output:

[1] 1

Prob(B,given=A)

Output:

[1] 0.6666667

• Roll a six-sided die twice. The sample space consists of all

ordered pairs (i, j) of the numbers 1, 2, . . . , 6, that is, S = {(1,

1), (1, 2), . . . , (6, 6)}. #S= 62 = 36.

• Let A = {outcomes match} and B = {sum of outcomes at least

8}.

• The sample space may be represented by a matrix:

• Now it is clear that

P(A) = 6/36, P(B) = 15/36, and P(A ∩B) = 3/36.

Finally,

How to do it with R

S <- rolldie(2, makespace = TRUE)

head(S)

Output:

X1 X2 probs

1 1 1 0.02777778

2 2 1 0.02777778

3 3 1 0.02777778

4 4 1 0.02777778

5 5 1 0.02777778

6 6 1 0.02777778

• Next we define the events

A <- subset(S, X1 == X2)

B <- subset(S, X1 + X2 >= 8)

• To do conditional probability, we use the given argument of
the prob function:

prob(A, given = B)

Output:

[1] 0.2

prob(B, given = A)

Output:

[1] 0.5

• we do not actually need to define the events A and B

separately as long as we reference the original probability

space S as the first argument of the prob calculation:

Prob(S, X1==X2, given = (X1 + X2 >= 8))

Output:

[1] 0.2

Prob(S, X1+X2 >= 8, given = (X1==X2))

Output:

[1] 0.5

Properties and Rules

• The following theorem establishes that conditional

probabilities behave just like regular probabilities when the

conditioned event is fixed.

For any fixed event A with P(A) > 0,

1. P(B|A) ≥ 0, for all events B S ,

2. P(S |A) = 1, and

3. If B1, B2, B3,. . . are disjoint events, then

For any events A, B, and C with P(A) > 0,

• The Multiplication Rule is very important because it allows us

to find probabilities in random experiments that have a

sequential structure.

• Example - At the beginning of the section we drew two cards

from a standard playing deck. Now we may answer our

original question, what is P(both Aces)?

How to do it with R

• First we employ the cards function to get a data frame L with

two columns: rank and suit. Both columns are stored internally

as factors with 13 and 4 levels, respectively.

L <- cards()

• Next we sample two cards randomly from the L data frame by

way of the urnsamples function. It returns a list M which

contains all possible pairs of rows from L (there are

choose(52,2) of them). The sample space for this experiment is

exactly the list M.

M <- urnsamples(L, size = 2)

• we associate a probability model with the sample space.

N <- probspace(M)

• Now that we have the probability space N we are ready to do

some probability.

• We use the prob function. The only trick is to specify the event

of interest correctly, and recall that we were interested in

P(both Aces).

• But if the cards are both Aces then the rank of both cards

should be "A", which sounds like a job for the all function:

Prob(N, all(rank=="A"))

Output:

[1] 0.004524887

• Consider an urn with 10 balls inside, 7 of which are red and 3

of which are green. Select 3 balls successively from the urn.

Let A = 1st ball is red, B = 2nd ball is red, and C =3rd ball is

red. Then

How to do it with R

• We need to set up an urn (vector L) to hold the balls,

• we sample from L to get the sample space (data frame M), and

• we associate a probability vector (column probs) with the

outcomes (rows of M) of the sample space. The final result is a

probability space (an ordinary data frame N).

L <- rep(c("red", "green"), times = c(7, 3))

M <- urnsamples(L, size = 3, replace = FALSE, ordered =

TRUE)

N <- probspace(M)

• Now let us think about how to set up the event {all 3 balls are red}.
Rows of N that satisfy this condition have X1=="red"&
X2=="red"& X3=="red“.

Prob(N,X1=="red" & X2=="red" & X3=="red")

Output:

[1] 0.2916667

• The isrep function (short for “is repeated”) in the prob package was
written for this purpose.

• The command isrep(N,"red",3) will test each row of N to see
whether the value "red" appears 3 times. The result is exactly what
we need to define an event with the prob function.

Prob(N, isrep(N, "red", 3))

Output:

[1] 0.2916667

• What is the probability of getting two "red"s?

prob(N, isrep(N, "red", 2))

Output: [1] 0.525

• What is the probability of observing "red", then "green", then
"red"?

prob(N, isin(N, c("red", "green", "red"), ordered = TRUE))

Output: [1] 0.175

• What is the probability of observing "red", "green", and "red",
in no particular order?

prob(N, isin(N, c("red", "green", "red")))

Output: [1] 0.525

Independent Events

• Toss a coin twice. The sample space is S = {HH, HT, TH, TT}.

We know that P(1st toss is H) = 2/4, P(2nd toss is H) = 2/4,

and P(both H) = 1/4. Then

• Events A and B are said to be independent if

• Otherwise, the events are said to be dependent.

• The connection with the above example stems from the

following. We know that when IP(B) > 0 we may write

• In the case that A and B are independent, the numerator of the

fraction factors so that IP(B) cancels with the result:

• The events A, B, and C are mutually independent if the

following four conditions are met:

and

• If only the first three conditions hold then A, B, and C are said

to be independent pairwise.

• Note that pairwise independence is not the same as mutual

independence when the number of events is larger than two.

• Toss ten coins. What is the probability of observing at least one
Head?

• Let Ai ={the ith coin shows H}, i = 1, 2, . . . , 10.

• Supposing that we toss the coins in such a way that they do not
interfere with each other, this is one of the situations where all of the
Ai may be considered mutually independent due to the nature of the
tossing. Of course, the only way that there will not be at least one
Head showing is if all tosses are Tails. Therefore,

• which is approximately 0.9990234.

How to do it with R

S <- tosscoin(10, makespace = TRUE)

A <- subset(S, isrep(S, vals = "T", nrep = 10))

1 - Prob(A)

Output:

[1] 0.9990234

Independent, Repeated Experiments

• It is common to repeat a certain experiment multiple times

under identical conditions and in an independent manner. We

have seen many examples of this already: tossing a coin

repeatedly, rolling a die or dice, etc.

• The iidspace function was designed specifically for this

situation. It has three arguments:

– x, which is a vector of outcomes,

– ntrials, which is an integer telling how many times to repeat the

experiment,

– probs to specify the probabilities of the outcomes of x in a single trial.

• We may represent tossing our unbalanced coin three times

with the following:

iidspace(c("H","T"), ntrials = 3, probs = c(0.7, 0.3))

Output:

Bayes’ Rule

• Let B1, B2, . . . , Bn be mutually exclusive and exhaustive and

let A be an event with P(A) > 0. Then

• Proof. The proof follows from looking at P(Bk ∩ A) in two

different ways. For simplicity, suppose that P(Bk) > 0 for all k.

Then

• Since P(A) > 0 we may divide through to obtain

• Now remembering that {Bk} is a partition, the Theorem of

Total Probability gives the denominator of the last expression

to be

Misfiling Assistants.

• In this problem, there are three assistants working at a
company: Moe, Larry, and Curly. Their primary job duty is to
file paperwork in the filing cabinet when papers become

available. The three assistants have different work schedules:

Moe Larry Curly

Workload 60% 30% 10%

• That is, Moe works 60% of the time, Larry works 30% of the
time, and Curly does the remaining 10%, and they file
documents at approximately the same speed.

• Suppose a person were to select one of the documents from the
cabinet at random.

• Let M be the event

M = {Moe filed the document}

and let L and C be the events that Larry and Curly, respectively,

filed the document.

What are these events’ respective probabilities?

In the absence of additional information, reasonable prior

probabilities would just be

• Now, the boss comes in one day, opens up the file cabinet, and

selects a file at random. The boss discovers that the file has been

misplaced. The boss is so angry at the mistake that (s)he threatens to

fire the one who erred. The question is: who misplaced the file?

• The boss has information about Moe, Larry, and Curly’s filing

accuracy in the past (due to historical performance evaluations). The

performance information may be represented by the following table:

• Moe misfiles 0.3% of the documents he is supposed to file.

• Notice that Moe was correct: he is the most accurate filer, followed

by Larry, and lastly Curly.

• The boss would like to use this updated information to update

the probabilities for the three assistants, that is, (s)he wants to

use the additional likelihood that the document was misfiled to

update his/her beliefs about the likely culprit.

• Let A be the event that a document is misfiled.

• What the boss would like to know are the three probabilities

• We use Bayes’ Rule in the form

• Let’s try to find IP(M ∩ A), which is just P(M) ·P(A|M) by the

Multiplication Rule.

• We already know IP(M) = 0.6 and P(A|M) is nothing more

than Moe’s misfile rate, given above to be IP(A|M) = 0.003.

Thus, we compute

P(M ∩ A) = (0.6)(0.003) = 0.0018.

• Using the same procedure we may calculate

P(L∩A) = 0.0021 and P(C∩A) = 0.0010.

• Further, these possibilities are mutually exclusive. We may use

the Theorem of Total Probability to write

P(A) = P(M ∩ A) + P(L ∩ A) + P(C ∩ A)

• Thus

P(A) = 0.0018 + 0.0021 + 0.0010 = 0.0049.

• Therefore, Bayes’ Rule yields

• This last quantity is called the posterior probability that Moe
misfiled the document, since it incorporates the observed data
that a randomly selected file was misplaced (which is
governed by the misfile rate). We can use the same argument
to calculate

• The conclusion: Larry gets the axe.

How to do it with R

• Misfiling assistants

• We store the prior probabilities and the likelihoods in vectors.

prior <- c(0.6, 0.3, 0.1)

like <- c(0.003, 0.007, 0.01)

post <- prior * like

post/sum(post)

Output:

[1] 0.3673469 0.4285714 0.2040816

Bayes' Theorem

• Bayes' Theorem is a way of finding a probability when we

know certain other probabilities.

• The formula is:

Where:

• P(A|B) – the probability of event A occurring, given event B

has occurred

• P(B|A) – the probability of event B occurring, given event A

has occurred

• P(A) – the probability of event A

• P(B) – the probability of event B

Example: Picnic Day

You are planning a picnic today, but the morning is cloudy

• Oh no! 50% of all rainy days start off cloudy!

• But cloudy mornings are common (about 40% of days start

cloudy)

• And this is usually a dry month (only 3 of 30 days tend to be

rainy, or 10%)

• What is the chance of rain during the day?

• We will use Rain to mean rain during the day, and Cloud to mean

cloudy morning.

• The chance of Rain given Cloud is written P(Rain|Cloud)

• So let's put that in the formula:

P(Rain|Cloud) = P(Rain) P(Cloud|Rain) / P(Cloud)

P(Rain) is Probability of Rain = 10%

P(Cloud|Rain) is Probability of Cloud, given that Rain happens = 50%

P(Cloud) is Probability of Cloud = 40%

P(Rain|Cloud) = 0.1 X 0.5 / 0.4 = .125

Or a 12.5% chance of rain.

• Not too bad, let's have a picnic!

How to do in R

probCloudgivenrain <-0.5

probcloud <-0.4

probrain <- 0.1

probraingivencloud <- (probrain *

probCloudgivenrain)/probcloud

Probrainivencloud

Output:

[1] 0.125

• Imagine 100 people at a party, and you tally how many wear

pink or not, and if a man or not, and get these numbers:

Pink Not Pink

Man 5 35

Not Man 20 40

Can you discover P(Man|Pink) ?

P(Man|Pink) = P(Man) P(Pink|Man) / P(Pink)

Pink Not Pink

Man 5 35 40

Not Man 20 40 60

25 75 100

• the probability of being a man is P(Man) = 40/ 100 = 0.4

• the probability of wearing pink is P(Pink) = 25/100 = 0.25

• the probability that a man wears pink is P(Pink|Man) = 5/40 =

0.125

• P(Man|Pink) = P(Man) P(Pink|Man) / P(Pink)

• P(Man|Pink) = 0.4 × 0.125 / 0.25 = 0.2

Random Variables

• A Random Variable is a set of possible values from a random
experiment.

• Example: Tossing a coin: we could get Heads or Tails.

• Let's give them the values Heads=0 and Tails=1 and we have a
Random Variable "X":

X = {0, 1}

• We have an experiment (such as tossing a coin)

• We give values to each event

• The set of values is a Random Variable

• Let E be the experiment of flipping a coin twice. We have seen

that the sample space is S = {HH, HT, TH, TT}.

• Now define the random variable X = the number of heads.

That is, for example, X(HH) = 2, while X(HT) = 1.

• We may make a table of the possibilities:

• Taking a look at the second row of the table, we see that the

support of X – the set of all numbers that X assumes – would

be SX = {0, 1, 2}.

• Let E be the experiment of flipping a coin repeatedly until

observing a Head.

• The sample space would be S = {H, TH, TTH, TTTH, . . .}.

Now define the random variable Y = the number of Tails

before the first head. Then the support of Y would be SY =

{0, 1, 2, . . .}.

How to do it with R

• The primary function is the addrv function. There are two

ways to use it.

Supply a Defining Formula

• Write a formula defining the random variable inside the

function, and it will be added as a column to the data frame. As

an example, let us roll a 4-sided die three times, and let us

define the random variable U = X1 − X2 + X3

S <- rolldie(3, nsides = 4, makespace = TRUE)

S <- addrv(S, U = X1 - X2 + X3)

head(S)

Output:

X1 X2 X3 U probs

1 1 1 1 1 0.015625

2 2 1 1 2 0.015625

3 3 1 1 3 0.015625

4 4 1 1 4 0.015625

5 1 2 1 0 0.015625

6 2 2 1 1 0.015625

We see from the U column it is operating just like it should. We can

now answer questions like

prob(S, U > 6)

Output: [1] 0.015625

Supply a Function

• The addrv function has an argument FUN. Its value should be a legitimate

function from R, such as sum, mean, median, etc.

Or define own function

V = max(X1, X2, X3) and

W = X1 + X2 + X3.

S <- addrv(S, FUN = max, invars = c("X1", "X2", "X3"), name = "V")

S <- addrv(S, FUN = sum, invars = c("X1", "X2", "X3"), name = "W")

head(S)

X1 X2 X3 U V W probs

1 1 1 1 1 1 3 0.015625

2 2 1 1 2 2 4 0.015625

3 3 1 1 3 3 5 0.015625

4 4 1 1 4 4 6 0.015625

5 1 2 1 0 2 4 0.015625

6 2 2 1 1 2 5 0.015625

• Marginal Distributions

• We can use the marginal function to aggregate the rows of the
sample space by values of V, all the while accumulating the
probability associated with V’s distinct values.

marginal(S, vars = "V")

Output:

V probs

1 1 0.015625

2 2 0.109375

3 3 0.296875

4 4 0.578125

suppose we would like to examine the joint distribution of V

and W.

marginal(S, vars = c("V", "W"))

Output:

V W probs

1 1 3 0.015625

2 2 4 0.046875

3 2 5 0.046875

4 3 5 0.046875

5 2 6 0.015625

Discrete Distribution

• A discrete distribution describes the probability of

occurrence of each value of a discrete random variable.

• A discrete random variable has a countable number of

possible values.

• It take values in a finite or countable infinite support set.

• The probability of each value of a discrete random variable is

between 0 and 1, and the sum of all the probabilities is equal to

1.

Discrete Random Variables

Probability Mass Functions

• Discrete random variables are characterized by their supports

which take the form

• Every discrete random variable X has associated with it a

probability mass function (PMF) defined by

• All PMFs satisfy

Example
• Toss a coin 3 times. The sample space would be

S = {HHH, HTH, THH, TTH, HHT, HTT, THT, TTT}

• Now let X be the number of Heads observed. Then X has support

SX = {0, 1, 2, 3}.

• Assuming that the coin is fair and was tossed in exactly the same

way each time, it is not unreasonable to suppose that the outcomes

in the sample space are all equally likely.

What is the PMF of X?

• Notice that X is zero exactly when the outcome TTT occurs, and this

event has probability 1/8. Therefore, fX(0) = 1/8, and the same

reasoning shows that fX(3) = 1/8.

• Exactly three outcomes result in X = 1, thus, fX(1) = 3/8 and fX(2)

holds the remaining 3/8 probability (the total is 1).

• We can represent the PMF with a table:

Mean, Variance, and Standard
Deviation

• There are numbers associated with PMFs.

• One important example is the mean μ, also known as E X:

provided the (potentially infinite) series is convergent.

• Another important number is the variance:

• which can be computed with the alternate formula

• Directly defined from the variance is the standard deviation.

Example

• Toss a coin 3 times. We can represent the PMF with a table

• We will calculate the mean of X

• μ = 1.5

• F(x) = P(X ≤ x) = Ʃ xi≤x f(xi)

P(X<=1) = P(X=0)+P(X=1)

How to do it with R

• The mean and variance of a discrete random variable is easy to
compute.

• We will start by defining a vector x containing the support of
X.

• A vector f to contain the values of fX at the respective
outcomes in x:

x <- c(0,1,2,3)

f <- c(1/8, 3/8, 3/8, 1/8)

mu <- sum(x * f)

mu

Output:

• [1] 1.5

• To compute the variance , we subtract the value of mu from

each entry in x, square the answers, multiply by f, and sum.

sigma2 <- sum((x-mu)^2 * f)

sigma2

Output:

[1] 0.75

The standard deviation is simply the square root

sigma <- sqrt(sigma2)

sigma

Output:

[1] 0.8660254

• Finally, we may find the values of the CDF FX on the support

by accumulating the probabilities in fX with the cumsum

function.

F = cumsum(f)

F

Output:

[1] 0.125 0.500 0.875 1.000

• We can also do this with the distrEx package .

• We define a random variable X as an object, then compute
things from the object such as mean, variance, and standard
deviation with the functions E, var, and sd:

library(distrEx)

X <- DiscreteDistribution(supp = 0:3, prob = c(1,3,3,1)/8)

E(X)

[1] 1.5

var(X)

[1] 0.75

sd(X)

[1] 0.8660254

Continuous Distributions

• A continuous distribution describes the probabilities of the

possible values of a continuous random variable.

• A continuous random variable is a random variable with a set

of possible values (known as the range) that is infinite and

uncountable.

Continuous Random Variables

• Continuous random variables have supports that look like

SX = [a, b] or (a, b)

or unions of intervals of the above form.

• Examples of random variables that are often taken to

be continuous are:

• the height or weight of an individual

• other physical measurements such as the length or size of an

object

• durations of time

• Every continuous random variable X has a probability density

function (PDF) denoted fX associated with it that satisfies three

basic properties:

• CDF has a relatively convenient form:

• For any continuous CDF FX the following are true.

• There is a handy relationship between the CDF and PDF in the

continuous case. Consider the derivative of FX:

Expectation of Continuous Random
Variables

Example

• Let the continuous random variable X have PDF

How to do in R

f <- function(x) 3 * x^2

integrate(f, lower = 0.14, upper = 0.71)

Output:

0.355167 with absolute error < 3.9e-15

• We could integrate the function x f (x) = 3*x^3 from zero to one to
get the mean

f <- function(x) 3 * x^3

integrate(f, lower = 0, upper = 1)

Output:

0.75 with absolute error < 8.3e-15

• Let us redo Example with the distr package. We define an

absolutely continuous random variable:

library(distr)

f <- function(x) 3 * x^2

X <- AbscontDistribution(d = f, low1 = 0, up1 = 1)

p(X)(0.71) - p(X)(0.14)

Output:

[1] 0.355167

library(distrEx)

E(X)

[1] 0.7496337

var(X)

[1] 0.03768305

3/80

[1] 0.0375

Example

• We will try one with unbounded support to brush up on

improper integration.

• Let the random variable X have PDF

g <- function(x) 3/x^3

integrate(g, lower = 1, upper = Inf)

Output:

1.5 with absolute error < 1.7e-14

Multivariate Distributions

• We have seen distributions, discrete and continuous. They were all
univariate, however, meaning that we only considered one random
variable at a time.

• We can imagine many random variables associated with a single
person:

• their height, their weight, their wrist circumference (all continuous),
or their eye/hair color, shoe size, whether they are right handed, left
handed, or ambidextrous (all categorical), and we can even surmise
reasonable probability distributions to associate with each of these
variables.

• But there is a difference: for a single person, these variables are
related. For instance, a person’s height betrays a lot of information
about that person’s weight. The concept we are hinting at is the
notion of dependence between random variables.

Joint and Marginal Probability
Distributions

• Consider two discrete random variables X and Y with PMFs fX

and fY that are supported on the sample spaces SX and SY,

respectively.

• Let SX,Y denote the set of all possible observed pairs (x, y),

called the joint support set of X and Y. Then the joint

probability mass function of X and Y is the function fX,Y

defined by

• PMFs fX and fY are called the marginal PMFs of X and

Y, respectively.

• If we are given only the joint PMF then we may recover each

of the marginal PMFs by using the Theorem of Total

Probability

• Associated with the joint PMF is the joint cumulative

distribution function FX,Y defined by

Example

• Roll a fair die twice. Let X be the face shown on the first roll,

and let Y be the face shown on the second roll.

• For this example, it suffices to define

Example

• Let the random experiment again be to roll a fair die twice,

except now let us define the random variables U and V by

U = the maximum of the two rolls, and

V = the sum of the two rolls.

• We see that the support of U is SU = {1, 2, . . . , 6} and the

support of V is SV = {2, 3, . . . , 12}.

• We may represent the sample space with a matrix, and for each

entry in the matrix we may calculate the value that U assumes.

• We can use the table to calculate the marginal PMF of U, we

know that each entry in the matrix has probability 1/36

associated with it.

• For instance, there is only one outcome in the matrix with U =

1, namely, the top left corner. This single entry has probability

1/36, therefore, it must be that fU(1) = IP(U = 1) = 1/36.

• Similarly we see that there are three entries in the matrix with

U = 2, thus fU(2) = 3/36. Continuing in this manner

we will find the marginal distribution of U may be written

• We may do a similar thing for V.

• Collecting all of the probability we will find that the marginal

PMF of V is

• We may collapse the two matrices into one, big matrix of pairs

of values (u, v).

• Again, each of these pairs has probability 1/36 associated with

it and we are looking at the joint PDF of (U, V).

• Many of the pairs are repeated, but some of them are not: (1,

2) appears twice, but (2, 3) appears only once.

How to do it with R

• First we set up the sample space with the rolldie function.

• Next, we add random variables U and V with the addrv

function. We take a look at the very top of the data frame

(probability space) to make sure that everything is operating

according to plan.

S <- rolldie(2, makespace = TRUE)

S <- addrv(S, FUN = max, invars = c("X1", "X2"), name = "U")

S <- addrv(S, FUN = sum, invars = c("X1", "X2"), name = "V")

head(S)

Output:

• The U and V columns have been added to the data frame and

have been computed correctly. This result would be fine as it

is, but the data frame has too many rows: there are repeated

pairs (u, v) which show up as repeated rows in the data frame.

• The goal is to aggregate the rows of S such that the result has

exactly one row for each unique pair (u, v) with positive

probability. This sort of thing is exactly the task for which the

marginal function was designed.

UV <- marginal(S, vars = c("U", "V"))

head(UV)

• The data frame is difficult to understand. It would be better to

have a tabular display .We can do that with the xtabs function.

xtabs(round(probs, 3) ~ U + V, data = UV)

• We can repeat the process with marginal to get the univariate

marginal distributions of U and V separately.

• marginal(UV, vars = "U")

• head(marginal(UV, vars = "V"))

Example

• Let the joint PDF of (X, Y) be given by

UNIT-IV

STATISTICS

UNIT-IV

• Regression-Linear-Multiple-Logistic-Poisson-
Analysis of Covariance-Time Series Analysis-
Nonlinear Least Square-Decision Tree-Random
Forest-Survival Analysis-t-Test-Chi Square
Test,ANOVA.

Regression

• Regression analysis is a very widely used statistical tool to

establish a relationship model between two variables.

• One of these variable is called predictor variable whose value

is gathered through experiments.

• The other variable is called response variable whose value is

derived from the predictor variable.

Linear Regression

• In Linear Regression these two variables are related through an

equation, where exponent (power) of both these variables is 1.

• Mathematically a linear relationship represents a straight line

when plotted as a graph.

• The general mathematical equation for a linear regression is

y = ax + b

• y is the response variable.

• x is the predictor variable.

• a and b are constants which are called the coefficients.

The Linear Regression Equation

• Linear regression is a way to model the relationship between

two variables.

• You might also recognize the equation as the slope formula.

• The equation has the form Y= a + bX, where Y is the

dependent variable (that’s the variable that goes on the Y axis),

X is the independent variable (i.e. it is plotted on the X axis), b

is the slope of the line and a is the y-intercept.

https://tinyurl.com/y2ebznan
https://calculushowto.com/y-intercept/

• Step 1

• Step 2: Use the following equations to find a and b

a = 65.1416

b = .385225

• Step 3: Insert the values into the equation.

y = a + bx

y = 65.14 + .385225x

• Step 4 : Predict the value of y when new x value is given

If x=20 then y= 72.84607

Steps to Establish a Regression in R

The steps to create the relationship is

• Carry out the experiment of gathering a sample of observed

values.

• Create a relationship model using the lm() functions in R.

• Find the coefficients from the model created and create the

mathematical equation using these

• Get a summary of the relationship model to know the average

error in prediction. Also called residuals.

• To predict the Y of new persons, use the predict() function in

R.

lm() Function

• This function creates the relationship model between the

predictor and the response variable.

Syntax

lm(formula,data)

Description of the parameters

• formula is a symbol representing the relation between x and y.

• data is the vector on which the formula will be applied.

Create Relationship Model & get the
Coefficients

x <- c(43,21,25,42,57,59)

y <- c(99,65,79,75,87,81)

relation <- lm(y~x)

relation

Output:

Get the Summary of the Relationship

summary(relation)

predict() Function

Syntax

predict(object, newdata)

Description of the parameters

• object is the formula which is already created using the lm()

function.

• newdata is the vector containing the new value for predictor

variable.

predict() Function

a<-data.frame(x=20)

result<-predict(relation,a)

result

Output:

1

72.84607

Visualize the Regression Graphically
x <- c(43,21,25,42,57,59)

y <- c(99,65,79,75,87,81)

plot(x,y,abline(lm(y~x)),col="blue")

Output:

Example 2

• Below is the sample data representing the observations

• # Values of height

151, 174, 138, 186, 128, 136, 179, 163, 152, 131

• # Values of weight.

63, 81, 56, 91, 47, 57, 76, 72, 62, 48

Create Relationship Model & get the
Coefficients

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm() function.

relation <- lm(y~x)

print(relation)

Output:

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-38.4551 0.6746

Get the Summary of the Relationship

summary(relation)

Output:

Predict the weight of new persons

Find weight of a person with height 170.

a <- data.frame(x = 170)

result <- predict(relation,a)

Result

Output:

1

76.22869

Visualize the Regression Graphically
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

relation <- lm(y~x)

plot(y,x,col = "blue",main = "Height & Weight Regression",

abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in

Kg",ylab = "Height in cm")

Output:

Multiple Regression
• Multiple regression is an extension of linear regression into

relationship between more than two variables.

• In simple linear relation we have one predictor and one

response variable, but in multiple regression we have more

than one predictor variable and one response variable.

• The general mathematical equation for multiple regression is −

y = a + b1x1 + b2x2 +...bnxn

Description of the parameters used

• y is the response variable.

• a, b1, b2...bn are the coefficients.

• x1, x2, ...xn are the predictor variables.

• We create the regression model using the lm() function in R.

• The model determines the value of the coefficients using the

input data.

• Next we can predict the value of the response variable for a

given set of predictor variables using these coefficients.

lm() Function

• This function creates the relationship model between the

predictor and the response variable.

Syntax

lm(y ~ x1+x2+x3...,data)

Description of the parameters

• formula is a symbol representing the relation between the

response variable and predictor variables.

• data is the vector on which the formula will be applied.

Input Data

• Consider the data set "mtcars" available in the R environment.

• It gives a comparison between different car models in terms of

mileage per gallon (mpg), cylinder displacement("disp"), horse

power("hp"), weight of the car("wt") and some more

parameters.

• The goal of the model is to establish the relationship between

"mpg" as a response variable with "disp","hp" and "wt" as

predictor variables.

input <- mtcars[,c("mpg","disp","hp","wt")]

head(input)

Output:

Create Relationship Model & get the
Coefficients

input <- mtcars[,c("mpg","disp","hp","wt")]

model <- lm(mpg~disp+hp+wt, data = input)

model

a <- coef(model)[1]

Xdisp <- coef(model)[2]

Xhp <- coef(model)[3]

Xwt <- coef(model)[4]

Output

Create Equation for Regression Model

• Based on the above intercept and coefficient values, we create

the mathematical equation

Y = a+Xdisp.x1+Xhp.x2+Xwt.x3

Y = 37.15+(-0.000937)*x1+(-0.0311)*x2+(-3.8008)*x3.

Predicting New Values
• We can use the regression equation created above to predict

the mileage when a new set of values for displacement, horse
power and weight is provided.

• For a car with disp = 221, hp = 102 and wt = 2.91 the
predicted mileage is −

Y = 37.15+(-0.000937)*221+(-0.0311)*102+(-3.8008)*2.91

Y = 22.7104

R Code

p<-data.frame(disp = 221, hp = 102, wt = 2.91)

predict(model,p)

Output:

1

22.65987

• Given these matrices, the multiple regression equation can be

expressed concisely as:

Y = Xb

• This simple expression describes the regression equation for 1,

2, 3, or any number of independent variables.

Normal Equations in Matrix Form

• Just as the regression equation can be expressed compactly in

matrix form, so can the normal equations. The least squares

normal equations can be expressed as:

X'Y = X'Xb

• Here, matrix X' is the transpose of matrix X.

• To solve for regression coefficients, simply pre-multiply by the

inverse of X'X:

(X'X)-1X'Xb = (X'X)-1X'Y

b = (X'X)-1X'Y

• where (X'X)-1X'X = I, the identity matrix.

• Consider the table below. It shows three performance measures

for five students.

• Using multiple regression, develop a regression equation to

predict test score, based on (1) IQ and (2) the number of hours

that the student studied.

• For this problem, we have some raw data; and we want to use this raw data

to define a regression equation:

y = b0 + b1x1 + b2x2

• where y is the predicted test score; b0, b1, and b2 are regression coefficients;

x1 is an IQ score; and x2 is the number of hours that the student studied.

• On the right side of the equation, the only unknowns are the regression

coefficients. To define the regression coefficients, we use the following

equation:

b = (X'X)-1X'Y

• To solve this equation, we need to complete the following steps:

• Define X.

• Define X'.

• Compute X'X.

• Find the inverse of X'X.

• Define Y.

TO do in R

dat <-

data.frame(student=c(1,2,3,4,5)),test=c(100,90,80,70,60),IQ=c

(110,120,100,90,80),hr=c(40,30,20,0,10))

dat

re <- lm(test~IQ+hr,data=dat)

re

Example 2

Predict for the value

youtube=250.1,facebook=35.4, newspaper=81.0

dat <-
data.frame(youtube=c(276.1,53.4,20.6,181.8),facebook=c(4
5.4,47.2,55.1,49.6),
newspaper=c(83.0,54.1,83.2,70.2),
sales=c(26.5,12.5,11.2,22.2))

dat

re <- lm(sales~youtube+facebook+newspaper,data=dat)

re

summary(re)

p<-data.frame(youtube=c(250.1),facebook=c(35.4),

newspaper=c(81.0),sales=c(26.5))

predict(re,p)

Logistic Regression
• The Logistic Regression is a regression model in which the response

variable (dependent variable) has categorical values such as

True/False or 0/1.

• It actually measures the probability of a binary response as the

value of response variable based on the mathematical equation

relating it with the predictor variables.

• The general mathematical equation for logistic regression is

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

Description of the parameters

• y is the response variable.

• x is the predictor variable.

• a and b are the coefficients which are numeric constants.

The function used to create the regression model is the glm() function.

If linear regression serves to predict continuous Y variables, logistic

regression is used for binary classification.

Linear regression is not capable of predicting probability. If you use linear

regression to model a binary response variable, for example, the resulting

model may not restrict the predicted Y values within 0 and 1. Here's where

logistic regression comes into play, where you get a probability score that

reflects the probability of the occurrence at the event.

glm function

• Syntax

glm(formula,data,family)

Following is the description of the parameters used −

• formula is the symbol representing the relationship between

the variables.

• data is the data set giving the values of these variables.

• family is R object to specify the details of the model. It's value

is binomial for logistic regression.

Example

• The in-built data set "mtcars" describes different models of a

car with their various engine specifications.

• In "mtcars" data set, the transmission mode (automatic or

manual) is described by the column am which is a binary value

(0 or 1).

• We can create a logistic regression model between the columns

"am" and 3 other columns - hp, wt and cyl.

input <- mtcars[,c("am","cyl","hp","wt")]

head(input)

Output:

Create Regression Model

• We use the glm() function to create the regression model and

get its summary for analysis.

am.data = glm(formula = am ~ cyl + hp + wt, data = input,

family = binomial)

summary(am.data)

Predict

p <- data.frame(cyl=4,hp=93,wt=2.315)

a <- predict(am.data,p,type=“response”)

result <- ifelse(a>=0.5,1,0)

result

Output

1

Example 2
install.packages("caTools")

library(caTools)

Splitting dataset

split <- sample.split(mtcars, SplitRatio = 0.8)

train_reg <- subset(mtcars, split == "TRUE")

test_reg <- subset(mtcars, split == "FALSE")

Training model

logistic_model <- glm(vs ~ wt + disp, data = train_reg, family =

"binomial")

logistic_model

summary(logistic_model)

Predict test data based on model

predict_reg <- predict(logistic_model, test_reg, type = "response")

predict_reg

Changing probabilities

predict_reg <- ifelse(predict_reg >0.5, 1, 0)

Evaluating model accuracy

using confusion matrix

table(test_reg$vs, predict_reg)

missing_classerr <- mean(predict_reg != test_reg$vs)

print(paste('Accuracy =', 1 - missing_classerr))

Poisson Regression
• Poisson Regression involves regression models in which the

response variable is in the form of counts and not fractional
numbers.

• For example, the count of number of births or number of wins
in a football match series.

• Also the values of the response variables follow a Poisson
distribution.

• The general mathematical equation for Poisson regression is −

log(y) = a + b1x1 + b2x2 + bnxn

Description of the parameters

• y is the response variable.

• a and b are the numeric coefficients.

• x is the predictor variable.

glm() function

• Syntax

glm(formula,data,family)

Description of the parameters

• formula is the symbol presenting the relationship between the

variables.

• data is the data set giving the values of these variables.

• family is R object to specify the details of the model. It's value

is 'Poisson' for Poisson Regression.

Example
• We have the in-built data set "warpbreaks" which describes the effect of

wool type (A or B) and tension (low, medium or high) on the number of

warp breaks per loom. Let's consider "breaks" as the response variable

which is a count of number of breaks. The wool "type" and "tension" are

taken as predictor variables.

input <- warpbreaks

Create Regression Model

output <-glm(formula = breaks ~ wool+tension, data = input,

family = poisson)

summary(output)

• In the summary we look for the p-value in the last column to be less
than 0.05 to consider an impact of the predictor variable on the
response variable.

• As seen the wooltype B having tension type M and H have impact
on the count of breaks

• Predict

newdata = data.frame(wool = "B", tension = "M")

predict(output, newdata, type = "response")

Output:

1

23.68056

Analysis of Covariance (ANCOVA)

• We use Regression analysis to create models which describe the

effect of variation in predictor variables on the response variable.

• Sometimes, if we have a categorical variable with values like

Yes/No or Male/Female etc.

• The simple regression analysis gives multiple results for each value

of the categorical variable.

• In such scenario, we can study the effect of the categorical variable

by using it along with the predictor variable and comparing the

regression lines for each level of the categorical variable.

• Such an analysis is termed as Analysis of Covariance also called

as ANCOVA.

Analysis of covariance is used to test the main and interaction

effects of categorical variables on a continuous dependent

variable, controlling for the effects of selected other

continuous variables, which co-vary with the dependent.

Example

input <- mtcars[,c("am","mpg","hp")]

head(input)

Output:

Model1: Interaction between hp and am

fit1 <- aov(mpg~hp*am,data = input)

summary(fit1)

• Both horse power and transmission type has significant effect on
miles per gallon as the p value in both cases is less than 0.05.

• Interaction between these two variables is not significant as the p-
value is more than 0.05.

• Model2: No interaction between hp and am

fit2 <- aov(mpg~hp+am,data = input)

summary(fit2)

• both horse power and transmission type has significant effect
on miles per gallon as the p value in both cases is less than
0.05.

Comparing Two Models

Objective: to conclude if the interaction of the variables is truly in-

significant

anova(fit1,fit2)

Output:

• As the p-value is greater than 0.05 we conclude that the interaction

between hp and am is not significant.

• So mpg will depend in a similar manner on the horse power of the

car in both auto and manual transmission mode.

Time Series Analysis

• Time series is a series of data points in which each data point

is associated with a timestamp.

• A simple example is the price of a stock in the stock market at

different points of time on a given day.

• Another example is the amount of rainfall in a region at

different months of the year.

• R language uses many functions to create, manipulate and plot

the time series data. The data for the time series is stored in an

R object called time-series object. It is also a R data object

like a vector or data frame.

The time series object is created by using the ts() function.

Syntax

timeseries.object.name <- ts(data, start, end, frequency)

Description of the parameters

data is a vector or matrix containing the values used in the time series.

start specifies the start time for the first observation in time series.

end specifies the end time for the last observation in time series.

frequency specifies the number of observations per unit time.

Example
• Consider the annual rainfall details at a place starting from

January 2012.

• We create an R time series object for a period of 12 months

and plot it.

rainfall <-

c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,

882.8,1071)

rain <- ts(rainfall,start = c(2012,1),frequency = 12)

rain

Plotting time series

plot(rain)

Representing Time Series Data

zoo and xts package

They define a data structure for time series, and they contain

many useful functions for working with time series data.

Create a zoo object this way, where x is a vector or data frame

and dt is a vector of corresponding dates or datetimes:

library(zoo)

ts <- zoo(x, dt)

Create an xts object in this way:

library(xts)

ts <- xts(x, dt)

Convert between representations of the time series data by using

as.zoo and as.xts:

as.zoo(ts)

Converts ts to a zoo object

as.xts(ts)

Converts ts to an xts object

Example

creates a zoo object that contains the price of IBM stock for the

first five days of 2010; it uses Date objects for the index:

prices <- c(132.45, 130.85, 130.00, 129.55, 130.85)

dates <- as.Date(c("2010-01-04", "2010-01-05", "2010-01-

06","2010-01-07","2010-01-08"))

ibm.daily <- zoo(prices, dates)

ibm.daily

Output:

• This example captures the price of IBM stock at one-second

intervals.

• It represents time by the number of hours past midnight starting at

9:30 a.m. (1 second ≈ 0.00027778 hours):

prices <- c(131.18, 131.20, 131.17, 131.15, 131.17)

seconds <- c(9.5, 9.500278, 9.500556, 9.500833, 9.501111)

ibm.sec <- zoo(prices, seconds)

ibm.sec

Output:

• Previous two examples used a single time series, where the

data came from a vector.

• Both zoo and xts can also handle multiple, parallel time series.

For this, capture the several time series in a data frame and

then create a multivariate time series by calling the zoo (or xts)

function:

ts <- zoo(dfrm, dt) # OR: ts <- xts(dfrm, dt)

• The second argument is a vector of dates (or datetimes) for

each observation.

• Once the data is captured inside a zoo or xts object, you can

extract the pure data via coredata, which returns a simple

vector (or matrix):

coredata(ibm.daily)

[1] 132.45 130.85 130.00 129.55 130.85

• You can extract the date or time portion via index:

index(ibm.daily)

[1] "2010-01-04" "2010-01-05" "2010-01-06" "2010-01-07"

"2010-01-08"

Subsetting a Time Series

You can index a zoo or xts object by position. Use one or two

subscripts, depending

upon whether the object contains one time series or multiple time

series:

ts[i]

• Selects the ith observation from a single time series

ts[j,i]

• Selects the ith observation of the jth time series of multiple

time series

• You can index the time series by a date object. Use the same

type of object as the index of your time series. This example

assumes that the index contains Date objects:

ts[as.Date("yyyy-mm-dd")]

• You can index it by a sequence of dates:

dates <- seq(startdate, enddate, increment)

ts[dates]

• The window function can select a range by start and end date:

window(ts, start=startdate, end=enddate)

ibm.daily[2]

2010-01-05

130.85

ibm.daily[2:4]

2010-01-05 2010-01-06 2010-01-07

130.85 130.00 129.55

ibm.daily[as.Date('2010-01-05')]

2010-01-05

130.85

We can select by a vector of Date objects:

dates <- seq(as.Date('2010-01-04'), as.Date('2010-01-08'),

by=2)

ibm.daily[dates]

2010-01-04 2010-01-06 2010-01-08

132.45 130.00 130.85

The window function is easier for selecting a range of

consecutive dates:

window(ibm.daily, start=as.Date('2010-01-05'),

end=as.Date('2010-01-07'))

2010-01-05 2010-01-06 2010-01-07

130.85 130.00 129.55

Merging Several Time Series

• Use the zoo object to represent the time series; then use the

merge function to combine them:

merge(ts1, ts2)

• Merging two time series is an incredible headache when the

two series have differing timestamps.

merge(ibm.daily,ibm.sec)

Lagging a Time Series
• You want to shift a time series in time, either forward or backward.

• Use the lag function. The second argument, k, is the number of
periods to shift the data:

lag(ts, k)

ibm.daily

2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08

132.45 130.85 130.00 129.55 130.85

• To shift the data forward one day, we use k=+1:

lag(ibm.daily, k=+1, na.pad=TRUE)

2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08

130.85 130.00 129.55 130.85 NA

• We also set na.pad=TRUE to fill the trailing dates with NA.
Otherwise, they would simply be dropped, resulting in a shortened
time series.

To shift the data backward one day, we use k=-1. Again we use

na.pad=TRUE to pad the beginning with NAs:

lag(ibm.daily, k=-1, na.pad=TRUE)

2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08

NA 132.45 130.85 130.00 129.55

Computing Successive Differences

• Given a time series, x, you want to compute the difference

between successive observations: (x2 − x1), (x3 − x2), (x4 − x3),

• Use the diff function:

diff(x)

diff(ibm.daily)

2010-01-05 2010-01-06 2010-01-07 2010-01-08

-1.60 -0.85 -0.45 1.30

Performing Calculations on Time Series

Fortunately, when we divide one series by the other, R aligns the
series for us and returns a zoo object:

diff(ibm.daily) / ibm.daily

2010-01-05 2010-01-06 2010-01-07 2010-01-08

-0.012227742 -0.006538462 -0.003473562 0.009935040

• We can scale the result by 100 to compute the percentage
change, and the result is another a zoo object:

100 * (diff(ibm.daily) / ibm.daily)

2010-01-05 2010-01-06 2010-01-07 2010-01-08

-1.2227742 -0.6538462 -0.3473562 0.9935040

log(ibm.daily)

2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08

4.886205 4.874052 4.867534 4.864067 4.874052

Uses of Time Series

• It helps us to predict the future behavior of the variable based

on past experience

• It is helpful for business planning as it helps in comparing the

actual current performance with the expected one

• We can compare the changes in the values of different

variables at different times or places, etc.

Components for Time Series Analysis

• The various reasons or the forces which affect the values of an

observation in a time series are the components of a time

series.

• The four categories of the components of time series are

– Trend

– Seasonal Variations

– Cyclic Variations

– Random or Irregular movements

Trend

• The trend shows the general tendency of the data to increase or

decrease during a long period of time.

• A trend is a smooth, general, long-term, average tendency.

• It is observable that the tendencies may increase, decrease or

are stable in different sections of time.

• But the overall trend must be upward, downward or stable.

Linear and Non-Linear Trend

• If we plot the time series values on a graph in accordance with

time t.

• The pattern of the data clustering shows the type of trend.

• If the set of data cluster more or less around a straight line,

then the trend is linear otherwise it is non-linear.

Seasonal Variations

• These are the rhythmic forces which operate in a regular and

periodic manner over a span of less than a year.

• The repeating short-term cycle in the series.

• They have the same or almost the same pattern during a period

of 12 months.

• This variation will be present in a time series if the data are

recorded hourly, daily, weekly, quarterly, or monthly.

Random or Irregular Movements

• They are not regular variations and are purely random or

irregular.

• These fluctuations are unforeseen, uncontrollable,

unpredictable, and are erratic.

• These forces are earthquakes, wars, flood and any other

disasters.

Example
• analyze the R dataset of monthly totals of international

airline passengers between 1949 to 1960 and apply a simple
model to forecast 3-point estimates for 1961’s monthly totals.

data(AirPassengers)

class(AirPassengers)

[1] "ts”

start(AirPassengers)

[1] 1949 1

end(AirPassengers)

[1] 1960 12

frequency(AirPassengers)

[1] 12

Load Data & Plot

AP <- AirPassengers

plot(AP, ylab="Passengers",type="o", pch =20)

Interpretation

Y(t)=T(t)∗S(t)∗e(t))

where,

* Y(t) is the number of passengers at time t,

* T(t) is the trend component at time t,

* S(t) is the seasonal component at time t,

* and e(t) is the random error component at time t.

Decomposing the Data
• Decomposing the data into its trend, seasonal, and random

error components will give some idea how these components

relate to the observed dataset.

AP.decompM <- decompose(AP, type = "multiplicative")

plot(AP.decompM)

Model Fitting

Trend Component

• Inspecting the trend component in the decomposition plot

suggests that the relationship is linear, thus fitting a linear

model:

t <- seq(1, 144, 1)

modelTrend <- lm(formula = AP.decompM$trend ~ t)

summary(modelTrend)

• Therefore, the relationship between trend and time can be

expressed as:

T(t)=2.667t+84.648

• And so for 1961 (time 145 to 156 inc.), the trend component

(T) is:

Data1961 <- data.frame("T" = 2.667*seq(145, 156, 1) +

84.648, S=rep(0,12), e=rep(0,12), row.names = c("Jan", "Feb",

"Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",

"Nov", "Dec"))

Data1961

• Output:

Seasonal Component

• Inspecting the seasonal (S) component of the decomposition

reveals:

AP.decompM$seasonal

• Thus the seasonal (S) component to the new 1961 dataset is:

Data1961$S <- unique(AP.decompM$seasonal)

Data1961

Random Error Component

• Ploting the density estimation of the random error (e)

component of the decomposition shows an approximate

normal distribution:

plot(density(AP.decompM$random[7:138]), main="Random

Error")

• Bootstrapping the mean statistic of the random error would

produce an accurate approximation of the population mean of

the random error.

mean(AP.decompM$random[7:138])

Output: [1] 0.9982357

which is 1.

• Thus the decomposed dataset for 1961 is:

Data1961$e <- 1

Predictions (1961)

Data1961$R <- Data1961$T * Data1961$S * Data1961$e

Data1961$R

Output:

[1] 429.0489 418.8649 480.2085 467.8142 473.0546 539.3602

597.7802 597.7954 522.5033 456.6072 399.0131 450.0414

xr = c(1,156)

plot(AP.decompM$x, xlim=xr, ylab = "Passengers (100s)", xlab =

"Month")

lines(data.frame(AP.decompM$x))

lines(Data1961$R, x=seq(145,156,1), col="blue")

ARIMA model
• A popular and widely used statistical method for time series

forecasting is the ARIMA model.

• ARIMA is an acronym that stands for AutoRegressive

Integrated Moving Average.

• It is a class of model that captures a suite of different standard

temporal structures in time series data.

• We will be following an ARIMA modeling procedure of the

AirPassengers dataset as follows:

1. Perform exploratory data analysis

2. Decomposition of data

3. Test the stationarity

4. Fit a model used an automated algorithm

5. Calculate forecasts

Library(ggfortify)

library(tseries)

library(forecast)

LOAD DATA

data(AirPassengers)

AP <- AirPassengers

PERFORM EXPLORATORY DATA
ANALYSIS

class(AP)

summary(AP)

frequency(AP)

Plot(AP)

TIME SERIES DECOMPOSITION

• We will decompose the time series for estimates of trend,

seasonal, and random components using moving average

method.

• With this model, we will use the decompose function in R.

decomposeAP <- decompose(AP,"multiplicative")

plot(decomposeAP)

https://www.rdocumentation.org/packages/stats/versions/3.4.1/topics/decompose

TEST STATIONARITY OF THE TIME
SERIES

Test stationarity of the time series (ADF)

• In order to test the stationarity of the time series, let’s run the

Augmented Dickey-Fuller Test using the adf.test function from

the tseries R package.

First set the hypothesis test:

• The null hypothesis H0 : that the time series is non stationary

The alternative hypothesis HA : that the time series is

stationary

https://www.rdocumentation.org/packages/aTSA/versions/3.1.2/topics/adf.test

adf.test(AP)

Output:

Augmented Dickey-Fuller Test

data: AP

Dickey-Fuller = -7.3186, Lag order = 5, p-value = 0.01

alternative hypothesis: stationary

As per the test results above, the p-value is 0.01 which is
<0.05 therefore we reject the null in favour of the alternative
hypothesis that the time series is stationary.

FIT A TIME SERIES MODEL

ARIMA Model

• Use the auto.arima function from the forecast R package to fit

the best model and coefficients, given the default parameters

including seasonality as TRUE.

arimaAP <- auto.arima(AP)

arimaAP

https://www.otexts.org/fpp/8/7 auto.arima
https://www.rdocumentation.org/packages/forecast

CALCULATE FORECASTS

• Finally we can plot a forecast of the time series using the

forecast function, with a 95% confidence interval where h is

the forecast horizon periods in months.

forecastAP <- forecast(arimaAP, level = c(95), h = 12)

autoplot(forecastAP)

Non Linear Least Square
• Linear regression is a basic tool. It works on the assumption

that there exists a linear relationship between the dependent

and independent variable.

• However, not all problems have such a linear relationship. In

fact, many of the problems we see today are nonlinear in

nature.

• A very basic example is our own decision making process

which involves deciding an outcome based on various

questions. For example, when we decide to have dinner, our

thought process is not linear. It is based a combination of our

tastes, our budget, our past experiences with a restaurant,

alternatives available, weather conditions etc.

• This is how non-linear regression came into practice – a powerful
alternative to linear regression for nonlinear situations.

• Similar to linear regression, nonlinear regression draws a line
through the set of available data points in such a way that the line
fits to the data with the only difference that the line is not a straight
line or in other words, not linear.

• The goal of both linear and non-linear regression is to adjust the
values of the model's parameters to find the line or curve that comes
closest to your data.

• To perform this, Non-Linear Least Square approach is used to
minimize the total sum of squares of residual values or error values
i.e., the difference between vertical points on the graph from
regression line and will fit the non-linear function accordingly.

Syntax

nls(formula, data, start)

Description of the parameters

– formula is a nonlinear model formula including variables and

parameters.

– data is a data frame used to evaluate the variables in the formula.

– start is a named list or named numeric vector of starting estimates.

Example

• We will consider a nonlinear model with assumption of initial

values of its coefficients.

• So let's consider the below equation for this purpose −

a = b1*x^2+b2

• Let's assume the initial coefficients to be 1 and 3 and fit these

values into nls() function.

x <- c(1.6,2.1,2,2.23,3.71,3.25,3.4,3.86,1.19,2.21)

y <- c(5.19,7.43,6.94,8.11,18.75,14.88,16.06,19.12,3.21,7.58)

model <- nls(y ~ b1*x^2+b2,start = list(b1 = 1,b2 = 3))

summary(model)

a <- data.frame(x=1.6)

predict(model,a)

Output:

[1] 5.057202

sum(resid(model)^2)

Output:

[1] 1.081935

Decision Tree

• Decision tree builds classification or regression models in the

form of a tree structure.

• It breaks down a dataset into smaller and smaller subsets

while at the same time an associated decision tree is

incrementally developed.

• The final result is a tree with decision nodes and leaf nodes.

• A decision node has two or more branches .

• Leaf node represents a classification or decision.

• The topmost decision node in a tree which corresponds to the

best predictor called root node.

• Decision trees can handle both categorical and numerical data.

Decision Tree

• A decision tree is a flowchart-like structure in which each

internal node represents a “test” on an attribute , each branch

represents the outcome of the test, and each leaf node

represents a class label .

• The paths from root to leaf represent classification rules.

• Decision trees are referred to as CART(Classification and

Regression trees).

• Tree based methods empower predictive models with high

accuracy, stability and ease of interpretation.

• Unlike linear models, they map non-linear relationships quite

well.

Example – Decision Tree

Example - Decision Tree

Terms – Decision Tree

• Root Node: It represents entire population or sample and this

further gets divided into two or more homogeneous sets.

• Splitting: It is a process of dividing a node into two or more

sub-nodes.

• Decision Node: When a sub-node splits into further sub-

nodes, then it is called decision node.

• Leaf/ Terminal Node: Nodes do not split is called Leaf or

Terminal node.

• Pruning: When we remove sub-nodes of a decision node, this

process is called pruning. You can say opposite process of

splitting.

Terms – Decision Tree

• Branch / Sub-Tree: A sub section of entire tree is called

branch or sub-tree.

• Parent and Child Node: A node, which is divided into sub-

nodes is called parent node of sub-nodes whereas sub-nodes

are the child of parent node.

Decision Tree Algorithm Pseudocode

• The decision tree algorithm tries to solve the problem, by

using tree representation.

• Each internal node of the tree corresponds to an attribute, and

each leaf node corresponds to a class label.

• Place the best attribute of the dataset at the root of the tree.

• Split the training set into subsets. Subsets should be made in

such a way that each subset contains data with the same value

for an attribute.

• Repeat step 1 and step 2 on each subset until you find leaf

nodes in all the branches of the tree.

Types of Decision Trees

• ID3 → (extension of D3)

- Iterative Dichotomiser 3
C4.5 → (successor of ID3)

CART → (Classification And Regression Tree)

Steps in ID3 algorithm:

• It begins with the original set S as the root node.

• On each iteration of the algorithm, it iterates through the very

unused attribute of the set S and

calculates Entropy(H) and Information gain(IG) of this

attribute.

• It then selects the attribute which has the smallest Entropy or

Largest Information gain.

• The set S is then split by the selected attribute to produce a

subset of the data.

• The algorithm continues to recur on each subset, considering

only attributes never selected before.

Attribute Selection Measures

• Entropy,

Information gain,

Gini index,

Gain Ratio,

Reduction in Variance

Chi-Square

Entropy

• Entropy is a measure of the randomness in the information

being processed.

• The higher the entropy, the harder it is to draw any conclusions

from that information.

• ID3 follows the rule — A branch with an entropy of zero is a

leaf node and A branch with entropy more than zero needs

further splitting.

Entropy in binary classification
• Entropy measures the impurity of a collection of examples. It

depends from the distribution of the random variable p.

– S is a collection of training examples

– p+ the proportion of positive examples in S

– p– the proportion of negative examples in S

Entropy (S) – p+ log2 p+ – p–log2 p–

Entropy ([14+, 0–]) = – 14/14 log2 (14/14) – 0 log2 (0) = 0

Entropy ([9+, 5–]) = – 9/14 log2 (9/14) – 5/14 log2 (5/14) = 0.94

Entropy ([7+, 7–]) = – 7/14 log2 (7/14) – 7/14 log2 (7/14) =

= 1/2 + 1/2 = 1

Information Gain

• Information gain or IG is a statistical property that measures

how well a given attribute separates the training examples

according to their target classification.

• Constructing a decision tree is all about finding an attribute

that returns the highest information gain and the smallest

entropy.

Information Gain

Information Gain

Classification using ID3 algorithm

Classification Using ID3

• There are four independent variable to determine the

dependent variable.

• The independent variables are Outlook, Temperature,

Humidity, and Wind.

• The dependent variable is whether to play football or not.

• As the first step, we have to find the parent node for our

decision tree. For that follow the steps:

Find the entropy of class variable.

E(S) = -[(9/14)log(9/14) + (5/14)log(5/14)] = 0.94

Data for outlook

E(S, outlook) = (5/14)*E(3,2) + (4/14)*E(4,0) + (5/14)*E(2,3)

= (5/14)(-(3/5)log(3/5)-(2/5)log(2/5))+ (4/14)(0)

+ (5/14)((2/5)log(2/5)-(3/5)log(3/5)) = 0.693

calculate average weighted entropy.

• we have found the total of weights of each feature multiplied

by probabilities.

• Next step is to find the information gain. It is difference

between parent entropy and average weighted entropy we

found above.

• IG(S, outlook) = 0.94 - 0.693 = 0.247

• Similarly find Information gain for Temperature, Humidity and

Windy.

• IG(S, Temperature) = 0.940 - 0.911 = 0.029

• IG(S, Humidity) = 0.940 - 0.788 = 0.152

• IG(S, Windy) = 0.940 - 0.8932 = 0.048

• Now select the feature having largest information gain.

• Here it is Outlook. So it forms first node(root node) of our

decision tree.

Data after root node is decided

• Since overcast contains only examples of class ‘Yes’ we can

set it as yes. That means If outlook is overcast football will be

played.

• Next step is to find the next node in our decision tree.

• Now we will find one under sunny.

• We have to determine which of the following Temperature

,Humidity or Wind has higher information gain.

• Calculate parent entropy E(sunny)

• E(sunny) = (-(3/5)log(3/5)-(2/5)log(2/5)) = 0.971.

• Now Calculate information gain of Temperature. IG(sunny,

Temperature)

E(sunny, Temperature) = (2/5)*E(0,2) + (2/5)*E(1,1) +

(1/5)*E(1,0)=2/5=0.4

Now calculate information gain.

IG(sunny, Temperature) = 0.971–0.4 =0.571

Similarly we get

IG(sunny, Humidity) = 0.971

IG(sunny, Windy) = 0.020

• Here IG(sunny, Humidity) is the largest value. So Humidity is

the node which comes under sunny.

• For humidity from the above table, we can say that play will

occur if humidity is normal and will not occur if it is high.

Similarly, find the nodes under rainy.

Decision Tree to Decision Rules

• IF outlook=overcast then play=Yes

• IF Outlook=sunny and Humidity=High then play=No

Disadvantages:

• More likely to overfit noisy data.

• The probability of overfitting on noise increases as a tree gets

deeper.

• A solution for it is pruning.

Advantages:

• It requires fewer data preprocessing from the user, for

example, there is no need to normalize columns.

• Decision trees are easy to interpret and visualize.

• It can be used for feature engineering such as predicting

missing values, suitable for variable selection.

library(rpart)

library(rpart.plot)

Outlook=c('Sunny','Sunny','Overcast','Rain','Rain','Rain','Overcast','Sunny','Su
nny','Rain','Sunny','Overcast','Overcast','Rain')

Temp=c('Hot','Hot','Hot','Mild','Cool','Cool','Cool','Mild','Cool','Mild','Mild','M
ild','Hot','Mild')

Humidity=c('High','High','High','High','Normal','Normal','Normal','High','Nor
mal','Normal','Normal','High','Normal','High')

Windy=c('Week','Strong','Weak','Weak','Weak','Strong','Strong','Weak','Weak','
Weak','Strong','Strong','Weak','Strong')

Play=c('No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No')

dat=data.frame(Outlook,Temp,Humidity,Windy,Play)

model <- rpart(Play ~ Outlook + Temp + Humidity + Windy,
data = dat, control = rpart.control(minsplit = 2))

rpart.plot(model)

Minsplit - the minimum number of observations that must exist
in a node in order for a split to be attempted.

a <-
data.frame(Outlook="Rain",Humidity="Normal",Temp="Hot",
Windy="Strong")

predict(model,a)

The R package Party

• install.packages("party")

• The package "party" has the function ctree() which is used to

create and analyze decison tree.

Syntax

ctree(formula, data)

• formula is a formula describing the predictor and response

variables.

• data is the name of the data set used.

Input Data

• The R in-built data set named readingSkills to create a

decision tree.

• It describes the score of someone's readingSkills if we know

the variables "age","shoesize","score" and whether the person

is a native speaker or not.

library(party)

head(readingSkills)

nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085

6 yes 10 30.07843 52.83124

• We will use the ctree() function to create the decision tree and

see its graph.

library(party)

input.dat <- readingSkills[c(1:105),]

output.tree <- ctree(nativeSpeaker ~ age + shoeSize + score,

data = input.dat)

plot(output.tree)

• From the decision tree shown above we can conclude that

anyone whose readingSkills score is less than 38.3 and age is

more than 6 is not a native Speaker.

library(datasets)

library(caTools)

library(party)

library(dplyr)

library(magrittr)

Step 2:

head(readingSkills)

Step 3: Splitting dataset into 4:1 ratio for train and test data

sample_data = sample.split(readingSkills, SplitRatio = 0.8)

train_data <- subset(readingSkills, sample_data == TRUE)

test_data <- subset(readingSkills, sample_data == FALSE)

Step 4: Create the decision tree model using ctree and plot the

model

model<- ctree(nativeSpeaker ~ ., train_data)

plot(model)

Step 5: Making a prediction

predict_model<-predict(model, test_data)

m_at <- table(test_data$nativeSpeaker, predict_model)

m_at

Step 6: Determining the accuracy of the model developed

ac_Test <- sum(diag(m_at)) / sum(m_at)

print(paste('Accuracy for test', ac_Test))

Random Forest

• In the random forest approach, a large number

of decision trees are created. Every observation is fed into

every decision tree.

• The most common outcome for each observation is used as the

final output.

• A new observation is fed into all the trees and taking a

majority vote for each classification model.

• The R package "randomForest" is used to create random

forests.

Random Forest

• The random forest algorithm works by aggregating the

predictions made by multiple decision trees of varying depth.

• Every decision tree in the forest is trained on a subset of the

dataset called the bootstrapped dataset.

Out of Bag

• The portion of samples that were left out during the

construction of each decision tree in the forest are referred to

as the Out-Of-Bag (OOB) dataset.

• The model will automatically evaluate its own performance by

running each of the samples in the OOB dataset through the

forest.

Random Forest

• When deciding on the criteria with which to split a decision

tree, the impurity produced by each feature is measured using

the Gini index or entropy.

• In random forest, however, we randomly select a predefined

number of feature as candidates.

• The latter will result in a larger variance between the trees

which would otherwise contain the same features (i.e those

which are highly correlated with the target label).

Random Forest
• When the random forest is used for classification and is presented

with a new sample, the final prediction is made by taking the

majority of the predictions made by each individual decision tree in

the forest.

• The final prediction is made by taking the average of the predictions

made by each individual decision tree in the forest.

• Generally, the more trees in the forest the more robust the forest

looks like.

• Similarly, in the random forest classifier, the higher the number of

trees in the forest, greater is the accuracy of the results.

Random Forest

• Random forest is an ensemble of decision trees, it randomly

selects a set of parameters and creates a decision tree for each

set of chosen parameters.

Example- Random Forest

• consider the below sample data set. In this data set we have

four predictor variables, namely:

• Weight

• Blood flow

• Blocked Arteries

• Chest Pain

Steps – Creating Random Forest

• This data set is used to create a Random Forest that predicts if

a person has heart disease or not.

Creating A Random Forest

Step 1: Create a Bootstrapped Data Set

• Bootstrapping is an estimation method used to make

predictions on a data set by re-sampling it.

• To create a bootstrapped data set, randomly select samples

from the original data set.

• can select the same sample more than once.

Step 2: Creating Decision Trees

• Next task is to build a Decision Tree by using the bootstrapped data

set created in the previous step.

Step 3: Go back to Step 1 and Repeat

• Each Decision Tree predicts the output class based on the respective

predictor variables used in that tree.

• Finally, the outcome of all the Decision Trees in a Random Forest is

recorded and the class with the majority votes is computed as the output

class.

• Thus, now create more decision trees by considering a subset of random

predictor variables at each step.

• To do this, go back to step 1, create a new bootstrapped data set and then

build a Decision Tree by considering only a subset of variables at each step.

• Step 4: Predicting the outcome of a new data point
Now that we’ve created a random forest, let’s see how it can

be used to predict whether a new patient has heart disease or

not.

• Step 5: Evaluate the Model

• Our final step is to evaluate the Random Forest model. Earlier

while we created the bootstrapped data set, we left out one

entry/sample since we duplicated another sample. In a real-

world problem, about 1/3rd of the original data set is not

included in the bootstrapped data set.

How to do it in R

install.packages("randomForest")

Syntax

randomForest(formula, data)

• formula is a formula describing the predictor and response

variables.

• data is the name of the data set used.

• R in-built data set named readingSkills is used to create a

decision tree.

• It describes the score of someone's readingSkills if we know

the variables “age","shoesize","score" and whether the person

is a native speaker.

library(party)

head(readingSkills)

nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085

6 yes 10 30.07843 52.83124

• Use the randomForest() function to create the decision tree

and see it's graph.

Create the forest.

output.forest <- randomForest(nativeSpeaker ~ age + shoeSize +

score, data = readingSkills)

output.forest

Prediction

a<-data.frame(age=10,shoeSize=30.265,score=51.678)

predict(model,a)

Output:

1

yes

Example 2

Library(caTools)

sample_data = sample.split(readingSkills, SplitRatio = 0.8)

train_data <- subset(readingSkills, sample_data == TRUE)

test_data <- subset(readingSkills, sample_data == FALSE)

model<- randomForest(nativeSpeaker ~ ., train_data)

model

predict_model<-predict(model, test_data)

m_at <- table(test_data$nativeSpeaker, predict_model)

m_at

ac_Test <- sum(diag(m_at)) / sum(m_at)

print(paste('Accuracy for test', ac_Test))

Survival Analysis
• Survival analysis deals with predicting the time when a specific

event is going to occur.

• It is also known as failure time analysis or analysis of time to death.

• For example predicting the number of days a person with cancer

will survive or predicting the time when a mechanical system is

going to fail.

• The R package named survival is used to carry out survival

analysis.

• This package contains the function Surv() which takes the input

data as a R formula and creates a survival object among the chosen

variables for analysis.

• Then we use the function survfit() to create a plot for the analysis.

install.packages("survival")

Syntax

Surv(time,event)

survfit(formula)

Description of the parameters

time is the follow up time until the event occurs.

event indicates the status of occurrence of the expected event.

formula is the relationship between the predictor variables.

Example

• We will use the Survival package for the analysis.

• using Lung dataset preloaded in survival package which

contains data of 228 patients with advanced lung cancer from

North Central cancer treatment group based on 10 features.

• Here, we are interested in “time” and “status” as they play an

important role in analysis.

• Time represents the survival time of patients. Since patients

survive, we will consider their status as dead or non-dead.

install.packages("survival")

library(survival)

Dataset information

?lung

head(lung)

Fitting the survival model

Survival_Function = survfit(Surv(lung$time, lung$status ==

2)~1)

Survival_Function

• The Surv() function takes time and status as input and creates

an object which serves as the input of survfit() function.

• We pass ~1 in survfit() function to ensure that we are telling

the function to fit the model on basis of survival object and

have an interrupt.

• survfit() creates survival curves and prints number of values,

number of events(people suffering from cancer), the median

time and 95% confidence interval.

•

plot(Survival_Function)

• Here, the x-axis specifies “Number of days” and the y-axis
specifies the “probability of survival“. The dashed lines are upper
confidence interval and lower confidence interval.

• We also have the confidence interval which shows the margin of
error expected i.e In days of surviving 200 days, upper confidence
interval reaches 0.76 or 76% and then goes down to 0.60 or 60%.

Hypothesis Testing

• A hypothesis is made by the researchers about the data
collected for any experiment or data set.

• A hypothesis is an assumption made by the researchers that are
not mandatory true.

• In simple words, a hypothesis is a decision taken by the
researchers based on the data of the population collected.

• Hypothesis Testing in R Programming is a process of testing
the hypothesis made by the researcher or to validate the
hypothesis.

• To perform hypothesis testing, a random sample of data from
the population is taken and testing is performed. Based on the
results of testing, the hypothesis is either selected or rejected.
This concept is known as Statistical Inference.

Four Step Process of Hypothesis
Testing

• State the hypothesis- This step is started by stating null and alternative

hypothesis which is presumed as true.

• Formulate an analysis plan and set the criteria for decision- In this step,

significance level of test is set. The significance level is the probability of a

false rejection in a hypothesis test.

• Analyze sample data- In this, a test statistic is used to formulate the

statistical comparison between the sample mean and the mean of the

population or standard deviation of the sample and standard deviation of the

population.

• Interpret decision- The value of the test statistic is used to make the

decision based on the significance level. For example, if the significance

level is set to 0.1 probability, then the sample mean less than 10% will be

rejected. Otherwise, the hypothesis is retained to be true.

t-test

• The basic idea behind a t-test is to use statistic to evaluate two

contrary hypotheses.

• H0: NULL hypothesis: The average is the same as the sample used

• H3: True hypothesis: The average is different from the sample used

• The t-test is commonly used with small sample sizes. To perform a

t-test, you need to assume normality of the data.

• The basic syntax for t.test() is:

t.test(x, y = NULL, mu = 0, var.equal = FALSE)

arguments: - x : A vector to compute the one-sample t-test

• y: A second vector to compute the two sample t-test –

• mu: Mean of the population

• var.equal: Specify if the variance of the two vectors are equal. By

default, set to `FALSE`

One-sample t-test

The t-test, compares the mean of a vector against a theoretical

mean. The formula used to compute the t-test is:

Here

m refers to the mean

µ to the theoretical mean

s is the standard deviation

n the number of observations.

• To evaluate the statistical significance of the t-test, you need to

compute the p-value.

• The p-value ranges from 0 to 1, and is interpreted as follow:

• A p-value lower than 0.05 means you are strongly confident to

reject the null hypothesis, thus H3 is accepted.

• A p-value higher than 0.05 indicates that you don't have

enough evidences to reject the null hypothesis.

Example

• Suppose you are a company producing cookies.

• Each cookie is supposed to contain 10 grams of sugar. The

cookies are produced by a machine that adds the sugar in a

bowl before mixing everything.

• You believe that the machine does not add 10 grams of sugar

for each cookie. If your assumption is true, the machine needs

to be fixed. You stored the level of sugar of thirty cookies.

• You can create a distribution with 30 observations with a mean
of 9.99 and a standard deviation of 0.04.

set.seed(123)

sugar_cookie <- rnorm(30, mean = 9.99, sd = 0.04)
head(sugar_cookie)

• You can use a one-sample t-test to check whether the level of
sugar is different than the recipe. You can draw a hypothesis
test:

• H0: The average level of sugar is equal to 10

• H3: The average level of sugar is different than 10

• You use a significance level of 0.05.

• # H0 : mu = 10

• t.test(sugar_cookie, mu = 10)

• The p-value of the one sample t-test is 0.1079 and above 0.05.

• You can be confident at 95% that the amount of sugar added

by the machine is between 9.973 and 10.002 grams.

• You cannot reject the null (H0) hypothesis. There is not

enough evidence that amount of sugar added by the machine

does not follow the recipe.

Two sample T-test
It is used to help us to understand that the difference between the two

means is real or simply by chance.

shopOne <- rnorm(50, mean = 140, sd = 4.5)

shopTwo <- rnorm(50, mean = 150, sd = 4)

t.test(shopOne, shopTwo, var.equal = TRUE)

You obtained a p-value is lower than the threshold of 0.05.

You conclude the averages of the two groups are significantly different.

Paired Sample T-test

• This is a statistical procedure that is used to determine whether the

mean difference between two sets of observations is zero.

• In a paired sample t-test, each subject is measured two times,

resulting in pairs of observations.

• sweetOne <- c(rnorm(100, mean = 14, sd = 0.3))

• sweetTwo <- c(rnorm(100, mean = 13, sd = 0.2))

• t.test(sweetOne, sweetTwo, paired = TRUE)

Chi-Square test

• Chi-Square test is a statistical method to determine if two

categorical variables have a significant correlation between

them.

• Both those variables should be from same population and they

should be categorical like − Yes/No, Male/Female, Red/Green

etc.

• For example, we can build a data set with observations on

people's ice-cream buying pattern and try to correlate the

gender of a person with the flavor of the ice-cream they prefer.

If a correlation is found we can plan for appropriate stock of

flavors by knowing the number of gender of people visiting.

Syntax

chisq.test(data)

– data is the data in form of a table containing the count

value of the variables in the observation.

• The null and alternative hypotheses are:

• H0 : the variables are independent, there is no relationship

between the two categorical variables. Knowing the value of

one variable does not help to predict the value of the other

variable

• H1 : the variables are dependent, there is a relationship

between the two categorical variables. Knowing the value of

one variable helps to predict the value of the other variable

Example

• In the built-in data set survey, the Smoke column records the

students smoking habit, while the Exer column records their

exercise level.

• The allowed values in Smoke are "Heavy", "Regul"

(regularly), "Occas" (occasionally) and "Never". As for Exer,

they are "Freq" (frequently), "Some" and "None".

• We can tally the students smoking habit against the exercise

level with the table function in R. The result is called

the contingency table of the two variables.

library(MASS)

head(survey)

tbl = table(survey$Smoke, survey$Exer)

tbl

chisq.test(tbl)

As the p-value 0.4828 is greater than the .05 significance

level, we do not reject the null hypothesis that the smoking

habit is independent of the exercise level of the students.

• The warning message found in the solution above is due to the

small cell values in the contingency table.

• To avoid such warning, we combine the second and third

columns of tbl, and save it in a new table named ctbl. Then we

apply the chisq.test function against ctbl instead.

ctbl = cbind(tbl[,"Freq"], tbl[,"None"] + tbl[,"Some"])

ctbl

chisq.test(ctbl)

ANOVA
• Analysis of Variance (ANOVA) is a statistical test for estimating

how a quantitative dependent variable changes according to the

levels of one or more categorical independent variables.

• ANOVA tests whether there is a difference in means of the groups at

each level of the independent variable.

• ANOVA test involves setting up:

Null Hypothesis: All population mean are equal.

Alternate Hypothesis: Atleast one population mean is different

from other.

• ANOVA test are of two types:

One way ANOVA: It takes one categorical group into

consideration.

Two way ANOVA: It takes two categorical group into

consideration.

Performing One Way ANOVA test

• One way ANOVA test is performed using mtcars dataset

between disp attribute, a continuous attribute and gear

attribute, a categorical attribute.

head(mtcars)

boxplot(mtcars$disp~factor(mtcars$gear),xlab = "gear", ylab = "disp")

Step 1: Setup Null Hypothesis and Alternate Hypothesis

H0 = mu = mu01 = mu02(There is no difference

between average displacement for different gear)

H1 = Not all means are equal

Step 2: Calculate test statistics using aov function

mtcars_aov <- aov(mtcars$disp~factor(mtcars$gear))

summary(mtcars_aov)

• The summary shows that gear attribute is very significant to

displacement(Three stars denoting it).

• Also, P value less than 0.05, so it proves that gear is significant

to displacement i.e related to each other and we reject the Null

Hypothesis.

Performing Two Way ANOVA test

• Two way ANOVA test is performed using mtcars dataset

between disp attribute, a continuous attribute and gear

attribute, a categorical attribute, am attribute, a categorical

attribute.

mtcars_aov2 <- aov(mtcars$disp~factor(mtcars$gear)* factor(mtcars$am))

summary(mtcars_aov2)

• The summary shows that gear attribute is very significant to

displacement(Three stars denoting it) and am attribute is not

much significant to displacement.

• P-value of gear is less than 0.05, so it proves that gear is

significant to displacement i.e related to each other.

• P-value of am is greater than 0.05, am is not significant to

displacement i.e not related to each other.

UNIT V
ADVANCED METHODS

• Advanced methods for missing data-Steps in dealing with

missing data-Identifying missing values-Exploring missing

value patterns-Understanding the sources and impact of

missing data-rational Approaches for dealing with incomplete

data-Lit wise deletion-Multiple Imputation-Advanced

Graphics-Lattice Package-ggPlot2 Package-Interactive graphs.

• Data can be missing for many reasons.

• Survey participants may forget to answer one or more questions,

refuse to answer sensitive questions, or grow fatigued and fail to

complete a long questionnaire.

• Recording equipment may fail, internet connections may be lost,

and data may be miscoded.

• Most statistical methods assume that you’re working with complete

matrices, vectors, and data frames. In most cases, you have to

eliminate missing data before you address the substantive questions

that led you to collect the data.

• You can eliminate missing data by

(1) removing cases with missing data, or

(2) replacing missing data with reasonable substitute values.

• In either case, the end result is a dataset without missing values.

Steps in dealing with missing data

1. Identify the missing data.

2. Examine the causes of the missing data.

3. Delete the cases containing missing data or replace (impute)

the missing values with reasonable alternative data values.

A classification system for missing data

Missing completely at random

• If the presence of missing data on a variable is unrelated to any

other observed or unobserved variable, then the data are

missing completely at random (MCAR).

Missing at random

•If the presence of missing data on a variable is related to other

observed variables but not to its own unobserved value, the data

is missing at random (MAR).

Not missing at random

• If the missing data for a variable is neither MCAR nor MAR,

it is not missing at random (NMAR).

Methods for handling Incomplete Data

Identifying missing values

• R represents missing values using the symbol NA (not

available) and impossible values by the symbol NaN (not a

number).

• In addition, the symbols Inf and -Inf represent positive infinity

and negative infinity, respectively.

• The functions is.na(), is.nan(), and is.infinite() can be used to

identify missing, impossible, and infinite values respectively.

• Each returns either TRUE or FALSE.

Missing Data - Example

• let y <- c(1, 2, 3, NA).

• Then is.na(y) will return the vector

OUTPUT:

c(FALSE, FALSE, FALSE, TRUE).

• The function return an object that’s the same size as its

argument, with each element replaced by TRUE if the element

is of the type being tested, and FALSE otherwise.

Missing Data - Example

• mammal sleep dataset (sleep) provided in the VIM package

• The data come from a study by Allison and Chichetti (1976) that
examined the relationship between sleep, ecological, and
constitutional variables for 62 mammal species.

• Sleep variables included length of dreaming sleep (Dream),
nondreaming sleep (NonD), and their sum (Sleep).

• The constitutional variables included body weight in kilograms
(BodyWgt), brain weight in grams (BrainWgt), life span in years
(Span),and gestation time in days (Gest).

• The ecological variables included degree to which species were
preyed upon (Pred), degree of their exposure while sleeping (Exp),
and overall danger (Danger) faced.

• The ecological variables were measured on 5-point rating scales that
ranged from 1 (low) to 5 (high).

• The function complete.cases() can be used to identify the rows in a
matrix or data frame that don’t contain missing data.

• It returns a logical vector with TRUE for every row that contains
complete cases and FALSE for every row that has one or more
missing values.

Library(VIM)

data(sleep,package="VIM")

head(sleep)

list the rows that do not have missing values

sleep[complete.cases(sleep),]

list the rows that have one or more missing values

sleep[!complete.cases(sleep),]

• Examining the output reveals that 42 cases have complete data

and 20 cases have one or more missing values.

• Because the logical values TRUE and FALSE are equivalent to

the numeric values 1 and 0, the sum() and mean() functions

can be used to obtain useful information about missing data.

• Consider the following:

sum(is.na(sleep$Dream))

[1] 12

mean(is.na(sleep$Dream))

[1] 0.19

mean(!complete.cases(sleep))

[1] 0.32

• The results indicate that there are 12 missing values for the

variable Dream. Nineteen percent of the cases have a missing

value on this variable.

• In addition, 32 percent of the cases in the dataset contain one

or more missing values.

Exploring missing values patterns

• To determine which variables have missing values, in what

amounts, and in what combinations, tabular, graphical, and

correlational methods are used.

Tabulating missing values

• The md.pattern() function in the mice package will produce a

tabulation of the missing data patterns in a matrix or data

frame.

• Apply this function to the sleep dataset:

library(mice)

data(sleep, package="VIM")

md.pattern(sleep)

Tabulating missing values

BodyWgt BrainWgt Pred Exp Danger Sleep Span Gest Dream NonD
42 1 1 1 1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 0 1 1 1 1
3 1 1 1 1 1 1 1 0 1 1 1
9 1 1 1 1 1 1 1 1 0 0 2
2 1 1 1 1 1 0 1 1 1 0 2
1 1 1 1 1 1 1 0 0 1 1 2
2 1 1 1 1 1 0 1 1 0 0 3
1 1 1 1 1 1 1 0 1 0 0 3
0 0 0 0 0 4 4 4 12 14 3 8

Tabulating missing values

• The 1’s and 0’s in the body of the table indicate the missing

values patterns, with a 0 indicating a missing value for a given

column variable and a 1 indicating a non missing value.

• The first row describes the pattern of “no missing values” (all

elements are 1).

• The second row describes the pattern “no missing values

except for Span.”

• The first column indicates the number of cases in each missing

data pattern, and the last column indicates the number of

variables with missing values present in each pattern.

Tabulating missing values

• There are 42 cases without missing data and 2 cases that are

missing Span alone.

• Nine cases are missing both NonD and Dream values.

• The dataset contains a total of (42 x 0) + (2 x 1) + … + (1 x 3)

= 38 missing values.

• The last row gives the total number of missing values present

on each variable.

Exploring missing data visually

• The VIM package provides numerous functions for visualizing

missing values patterns in datasets.

• The aggr() function plots the number of missing values for

each variable alone and for each combination of variables.

library("VIM")

aggr(sleep, prop=FALSE, numbers=TRUE)

Exploring missing data visually - aggr

Exploring missing data visually

• From the above graph the variable NonD has the largest

number of missing values (14), and that 2 mammals are

missing NonD, Dream, and Sleep scores.

• Forty-two mammals have no missing data.

Exploring missing data visually

• The statement aggr(sleep, prop=TRUE, numbers=TRUE)

produces the same plot, but proportions are displayed instead

of counts.

• The option numbers=FALSE (the default) suppresses the

numeric labels.

matrixplot() function

• It produces a plot displaying the data for each case.

• Here, the numeric data is rescaled to the interval [0, 1] and

represented by grayscale colors, with lighter colors

representing lower values and darker colors representing larger

values.

• By default, missing values are represented in red.

• A matrix plot allows you to see if the presence of missing

values on one or more variables is related to the actual values

of other variables.

• Here, you can see that there are no missing values on sleep

variables (Dream, NonD, Sleep) for low values of body or

brain weight (BodyWgt, BrainWgt).

matrixplot() function

marginplot() function

• The marginplot() function produces a scatter plot between two

variables with information about missing values shown in the

plot’s margins.

• Consider the relationship between amount of dream sleep and

the length of a mammal’s gestation.

marginplot(sleep[c("Gest","Dream")], pch=c(20),

col=c("darkgray", "red", "blue"))

marginplot() function
• The body of the graph displays the scatter plot between Gest and

Dream (based on complete cases for the two variables).

In the left margin, box plots display the distribution of Dream for

mammals with (dark gray) and without (red) Gest values.

• In grayscale, red is the darker shade.

• Four red dots represent the values of Dream for mammals missing

Gest scores.

• In the bottom margin, the roles of Gest and Dream are reversed.

• A negative relationship exists between length of gestation and dream

sleep and that dream sleep tends to be higher for mammals that are

missing a gestation score.

• The number of observations with missing values on both variables at

the same time is printed in blue at the intersection of both margins

(bottom left).

Using correlations to explore missing
values

• can replace the data in a dataset with indicator variables, coded

1 for missing and 0 for present.

• The resulting matrix is sometimes called a shadow matrix.

• Correlating these indicator variables with each other and with

the original (observed) variables can help you to see which

variables tend to be missing together, as well as relationships

between a variable’s “missingness” and the values of the other

variables.

Using correlations to explore missing
values

x <- as.data.frame(abs(is.na(sleep)))

The elements of data frame x are 1 if the corresponding element

of sleep is missing and 0 otherwise.

head(sleep, n=5)

head(x, n=5)

Using correlations to explore missing
values

The statement

y <- x[which(sd(x) > 0)]

extracts the variables that have some (but not all) missing values,

and

cor(y)

gives you the correlations among these indicator variables:

Using correlations to explore missing
values

• can see that Dream and NonD tend to be missing together

(r=0.91).

• To a lesser extent, Sleep and NonD tend to be missing together

(r=0.49) and Sleep and Dream tend to be missing together

(r=0.20).

• The relationship between the presence of missing values in a

variable and the observed values on other variables:

cor(sleep, y, use="pairwise.complete.obs")

Using correlations to explore missing
values

Using correlations to explore missing
values

• In this correlation matrix, the rows are observed variables, and

the columns are indicator variables representing missingness.

• can ignore the warning message and NA values in the

correlation matrix.

• From the first column of the correlation matrix, can see that

non dreaming sleep scores are more likely to be missing for

mammals with higher body weight (r=0.227),gestation period

(r=0.202), and sleeping exposure (0.245).

Understanding the sources and impact
of missing data

• Identify the amount, distribution, and pattern of missing data

in order to evaluate

(1) the potential mechanisms producing the missing data

(2) the impact of the missing data on ability to answer

substantive questions.

The following questions:

■ What percentage of the data is missing?

■ Is it concentrated in a few variables, or widely distributed?

■ Does it appear to be random?

■ Does the covariation of missing data with each other or with

observed data suggest a possible mechanism that’s producing the

missing values?

Understanding the sources and impact
of missing data

• If the missing data are concentrated in a few relatively

unimportant variables, you may be able to delete these

variables and continue your analyses normally.

• If there’s a small amount of data (say less than 10 percent)

that’s randomly distributed throughout the dataset (MCAR),

you may be able to limit your analyses to cases with complete

data and still get reliable and valid results.

• If you can assume that the data are either MCAR or MAR, you

may be able to apply multiple imputation methods to arrive at

valid conclusions.

• If the data are NMAR, you can turn to specialized methods,

collect new data, or go into an easier and more rewarding

profession.

Rational approaches for dealing with
incomplete data

• In a rational approach, use mathematical or logical

relationships among variables to attempt to fill in or recover

the missing values.

Examples :

• In the sleep dataset, the variable Sleep is the sum of the Dream

and NonD variables.

• If you know a mammal’s scores on any two, you can derive

the third.

• Thus, if there were some observations that were missing only

one of the three variables, you could recover the missing

information through addition or subtraction.

Logical relationships - Example

• logical relationships to recover missing data comes from a set

of leadership studies in which participants were asked if they

were a manager (yes/no) and the number of their direct reports

(integer).

• If they left the manager question blank but indicated that they

had one or more direct reports, it would be reasonable to infer

that they were a manager.

Complete-case analysis (listwise
deletion)

• In complete-case analysis, only observations containing valid

data values on every variable are retained for further analysis.

• This involves deleting any row containing one or more

missing values, and is also known as listwise, or case-wise,

deletion.

• Most popular statistical packages employ listwise deletion as

the default approach for handling missing data.

• it’s so common in carrying out analyses like regression or

ANOVA where there’s a “missing values problem” to be dealt

with.

Complete-case analysis (listwise
deletion)

• The function complete.cases() can be used to save the cases

(rows) of a matrix or data frame without missing data:

newdata <- mydata[complete.cases(mydata),]

• The same result can be accomplished with the na.omit

function:

newdata <- na.omit(mydata)

Complete-case analysis (listwise
deletion)

• In both statements, any rows containing missing data are

deleted from mydata before the results are saved to newdata.

• To find the correlations among the variables in the sleep study.

• Applying listwise deletion, delete all mammals with missing

data prior to calculating the correlations:

cor(na.omit(sleep))

Complete-case analysis (listwise
deletion)

Complete-case analysis (listwise
deletion)

• The correlations in this table are based solely on the 42

mammals that have complete data on all variables.

cor(sleep, use="complete.obs")

• To study the impact of life span and length of gestation on the

amount of dream sleep, employ linear regression with listwise

deletion:

fit <- lm(Dream ~ Span + Gest, data=na.omit(sleep))

summary(fit)

OUTPUT
Call:

lm(formula = Dream ~ Span + Gest, data = na.omit(sleep))

Residuals:

Min 1Q Median 3Q Max

-2.333 -0.915 -0.221 0.382 4.183

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.480122 0.298476 8.31 3.7e-10 ***

Span -0.000472 0.013130 -0.04 0.971

Gest -0.004394 0.002081 -2.11 0.041 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 1 on 39 degrees of freedom

Multiple R-squared: 0.167, Adjusted R-squared: 0.125

F-statistic: 3.92 on 2 and 39 DF, p-value: 0.0282

• mammals with shorter gestation periods have more dream sleep

• (controlling for life span) and that life span is unrelated to dream sleep
when controlling for gestation period. The analysis is based on 42 cases
with complete data.

Complete-case analysis (listwise
deletion)

• Listwise deletion assumes that the data are MCAR (that is, the

complete observations are a random subsample of the full

dataset).

• In the current example, we’ve assumed that the 42 mammals

used are a random subsample of the 62 mammals collected.

• To the degree that the MCAR assumption is violated, the

resulting regression parameters will be biased. Deleting all

observations with missing data can also reduce statistical

power by reducing the available sample size.

• In the example above, listwise deletion reduced the sample

size by 32 percent.

Multiple imputation
• Multiple imputation (MI) provides an approach to missing

values that’s based on repeated simulations.

• MI is frequently the method of choice for complex missing

values problems.

• In MI, a set of complete datasets (typically 3 to 10) is

generated from an existing dataset containing missing values.

• Monte Carlo methods are used to fill in the missing data in

each of the simulated datasets.

• Standard statistical methods are applied to each of the

simulated datasets, and the outcomes are combined to provide

estimated results and confidence intervals that take into

account the uncertainty introduced by the missing values.

• Good implementations are available in R through the Amelia,

mice, and mi packages.

Multiple imputation

Multiple imputation
• The function mice() starts with a data frame containing missing

data and returns an object containing several complete datasets (the

default is 5).

• Each complete dataset is created by imputing values for the

missing data in the original data frame.

• There’s a random component to the imputations, so each complete

dataset is slightly different.

• The with() function is then used to apply a statistical model (for

example, linear or generalized linear model) to each complete

dataset in turn.

• Finally, the pool() function combines the results of these separate

analyses into a single set of results.

• The standard errors and p-values in this final model correctly

reflect the uncertainty produced by both the missing values and the

multiple imputations.

Multiple imputation

• An analysis based on the mice package will typically conform

to the following structure:

library(mice)

imp <- mice(mydata, m)

fit <- with(imp, analysis)

pooled <- pool(fit)

summary(pooled)

Multiple imputation
• mydata is a matrix or data frame containing missing values.

• imp is a list object containing the m imputed datasets, along with

information on how the imputations were accomplished. By default,

m=5.

• analysis is a formula object specifying the statistical analysis to be

applied to each of the m imputed datasets. Examples include lm() for

linear regression models, glm() for generalized linear models, gam()

for generalized additive models, and nbrm() for negative binomial

models. Formulas within the parentheses give the response variables

on the left of the ~ and the predictor variables (separated by + signs)

on the right.

• fit is a list object containing the results of the m separate statistical

analyses.

• pooled is a list object containing the averaged results of these m

statistical analyses.

Multiple imputation

• apply multiple imputation to our sleep dataset.

• use all 62 mammals.

library(mice)

data(sleep, package="VIM")

imp <- mice(sleep, seed=1234)

fit <- with(imp, lm(Dream ~ Span + Gest))

pooled <- pool(fit)

summary(pooled)

Multiple imputation

Multiple imputation

• can access more information about the imputation by

examining the objects created in the analysis.

• example, view a summary of the imp object:

imp

OUTPUT

Multiply imputed data set
Call:
mice(data = sleep, seed = 1234)
Number of multiple imputations: 5
Missing cells per column:
BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
0 0 14 12 4 4 4 0
Exp Danger
0 0
Imputation methods:
BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
"" "" "pmm" "pmm" "pmm" "pmm" "pmm" ""
Exp Danger
"" ""
VisitSequence:
NonD Dream Sleep Span Gest
3 4 5 6

Multiple imputation

• From the resulting output, you can see that five synthetic

datasets were created, and that the predictive mean matching

(pmm) method was used for each variable with missing data.

• No imputation ("") was needed for BodyWgt, BrainWgt, Pred,

Exp, or Danger, because they had no missing values.

• The Visit Sequence tells you that variables were imputed from

right to left, starting with NonD and ending with Gest.

• Finally, the Predictor Matrix indicates that each variable with

missing data was imputed using all the other variables in the

dataset.

Multiple imputation

• imp$Dream

• displays the five imputed values for each of the 12 mammals

with missing data on the Dream variable.

Multiple imputation

• can view each of the m imputed datasets via the complete()

function. The format is

complete(imp, action=#)

• where # specifies one of the m synthetically complete datasets.

dataset3 <- complete(imp, action=3)

dataset3

Other approaches to missing data
• R supports several other approaches for dealing with

missing data.

• There are two methods for dealing with missing data

(1) pairwise deletion

(2) simple imputation.

Pairwise deletion

• Pairwise deletion is often considered an alternative to listwise

deletion when working with datasets containing missing

values.

• In pairwise deletion, observations are only deleted if they’re

missing data for the variables involved in a specific analysis.

• Consider the following code:

cor(sleep, use="pairwise.complete.obs")

Simple (nonstochastic) imputation
• In simple imputation, the missing values in a variable are replaced with a

single value (for example, mean, median, or mode).

• Using mean substitution you could replace missing values on Dream with

the value 1.97 and missing values on NonD with the value 8.67 (the means

on Dream and NonD, respectively).

• The substitution is nonstochastic, meaning that random error isn’t

introduced (unlike multiple imputation).

• An advantage to simple imputation is that it solves the “missing values

problem” without reducing the sample size available for the analyses.

Simple imputation is simple, but it produces biased results for data that

aren’t MCAR.

• If there are moderate to large amounts of missing data, simple imputation

is likely to underestimate standard errors, distort correlations among

variables, and produce incorrect p-values in statistical tests.

Advanced Graphics

The four graphic systems in R

• The base graphic system in R, written by Ross Ihaka, is

included in every R installation. Most of the graphs produced

in previous chapters rely on base graphics functions.

• The grid graphics system, written by Paul Murrell (2006), is

implemented through the grid package. Grid graphics offer a

lower-level alternative to the standard graphics system. The

user can create arbitrary rectangular regions on graphics

devices, define coordinate systems for each region, and use a

rich set of drawing primitives to control the arrangement and

appearance of graphic elements.

• The lattice package , written by Deepayan Sarkar (2008),
implements trellis graphics as outlined by Cleveland (1985,
1993). Built using the grid package, the lattice package has
grown beyond Cleveland’s original approach to visualizing
multivariate data, and now provides a comprehensive
alternative system for creating statistical graphics in R.

• The ggplot2 package , written by Hadley Wickham (2009a),
provides a system for creating graphs based on the grammar of
graphics described by Wilkinson (2005) and expanded by
Wickham (2009b). The intention of the ggplot2 package is to
provide a comprehensive, grammar-based system for
generating graphs in a unified and coherent manner, allowing
users to create new and innovative data visualizations.

• Base graphic functions are automatically available.

• To access grid and lattice functions, you must load the package

explicitly (for example, library(lattice)) .

• To access ggplot2 functions, install the package

(install.packages("ggplot2")).

Access to Graphic system

The lattice package
• The lattice package provides a comprehensive graphical

system for visualizing univariate and multivariate data.

• In particular, many users turn to the lattice package because of

its ability to easily generate trellis graphs.

• A trellis graph displays the distribution of a variable or the

relationship between variables, separately for each level of one

or more other variables.

• Consider the following question: How do the heights of

singers in the New York Choral Society vary by their vocal

parts?

• Data on the heights and voice parts of choral members is

provided in the singer dataset contained in the lattice package.

library(lattice)

histogram(~height| voice.part, data = singer, main="Distribution

of Heights by Voice Pitch", xlab="Height (inches)")

• height is the dependent variable, voice.part is called the

conditioning variable, and a histogram is created for each of

the eight voice parts. It appears that tenors and basses tend to

be taller than altos and sopranos.

• In trellis graphs, a separate panel is created for each level of the

conditioning variable.

• If more than one conditioning variable is specified, a panel is

created for each combination of factor levels. The panels are

arranged into an array to facilitate comparisons. A label is provided

for each panel in an area called the strip.

• The user has control over the graph displayed in each panel, the

format and placement of the strip, the arrangement of the panels, the

placement and content of legends, and many other graphic features.

• The lattice package provides a wide variety of functions for

producing univariate (dot plots, kernel density plots, histograms,

bar charts, box plots), bivariate (scatter plots, strip plots, parallel box

plots), and multivariate (3D plots, scatter plot matrices) graphs.

Each high-level graphing function follows the format

graph_function(formula, data=, options)

where:

– graph_function is one of the functions listed in the second column of

table.

– formula specifies the variable(s) to display and any conditioning

variables.

– data specifies a data frame.

– options are comma-separated parameters used to modify the content,

arrangement, and annotation of the graph.

Graph types and corresponding
functions in the lattice package

• Let lowercase letters represent numeric variables and uppercase letters

represent categorical variables (factors). The formula in a high-level

graphing function typically takes the form

y ~ x | A * B

• where variables on the left side of the vertical bar are called the primary

variables and variables on the right are the conditioning variables.

• Primary variables map variables to the axes in each panel. Here, y~x

describes the variables to place on the vertical and horizontal axes,

respectively. For single-variable plots, replace y~x with ~x.

• For 3D plots, replace y~x with z~x*y.

• For multivariate plots (scatter plot matrix or parallel coordinates plot)

replace y~x with a data frame.

• Note that conditioning variables are always optional.

• Following this logic, ~x|A displays numeric variable x for each

level of factor A.

• y~x|A*B displays the relationship between numeric variables

y and x separately for every combination of factor A and B

levels.

• A~x displays categorical variable A on the vertical axis and

numeric variable x on the horizontal axis.

• ~x displays numeric variable x alone.

Example
• The graphs are based on the automotive data (mileage, weight,

number of gears, number of cylinders, and so on) included in

the mtcars data frame .

attach(mtcars)

gear <- factor(gear, levels=c(3, 4, 5), labels=c("3 gears", "4 gears", "5

gears"))

cyl <- factor(cyl, levels=c(4, 6, 8), labels=c("4 cylinders", "6

cylinders", "8 cylinders"))

densityplot(~mpg, main="Density Plot“,xlab="Miles per Gallon")

Kernel Density Plot

densityplot(~mpg | cyl, main="Density Plot by Number of

Cylinders", xlab="Miles per Gallon")

Box Plot

bwplot(cyl ~ mpg | gear,main="Box Plots by Cylinders and

Gears", xlab="Miles per Gallon", ylab="Cylinders")

Scatter Plot

xyplot(mpg ~ wt | cyl * gear, main="Scatter Plots by Cylinders

and Gears", xlab="Car Weight", ylab="Miles per Gallon")

3D Scatter Plot

cloud(mpg ~ wt * qsec | cyl, main="3D Scatter Plots by

Cylinders")

Dot Plot

dotplot(cyl ~ mpg | gear, main="Dot Plots by Number of Gears

and Cylinders", xlab="Miles Per Gallon")

Scatter Plot matrix

• splom(mtcars[c(1, 3, 4, 5, 6)], main="Scatter Plot Matrix for

mtcars Data")

• detach(mtcars)

• High-level plotting functions in the lattice package produce

graphic objects that can be saved and manipulated.

• For example,

mygraph <- densityplot(~height|voice.part, data=singer)

• creates a trellis density plot and saves it as object mygraph.

But no graph is displayed.

• Issuing the statement plot(mygraph) (or simply mygraph) will

display the graph.

• It’s easy to modify lattice graphs through the use of options.

mygraph <- densityplot(~height|voice.part, data=singer)

plot(mygraph)

• You can also use the update() function to modify a lattice graphic

object. Continuing the singer example, the following would redraw

the graph using red curves and symbols (color="red"), filled dots

(pch=16), smaller (cex=.8) and more highly jittered points

(jitter=.05), and curves of double thickness (lwd=2).

• update(mygraph, col="red", pch=16, cex=.8, jitter=.05, lwd=2)

Conditioning variables
• one of the most powerful features of lattice graphs is the ability to

add conditioning variables.

• If one conditioning variable is present, a separate panel is created for

each level.

• If two conditioning variables are present, a separate panel is created

for each combination of levels for the two variables.

• Typically, conditioning variables are factors. But what if you want to

condition on a continuous variable? One approach would be to

transform the continuous variable into a discrete variable using R’s

cut() function .

• Alternatively, the lattice package provides functions for

transforming a continuous variable into a data structure called a

shingle. Specifically, the continuous variable is divided up into a

series of (possibly) overlapping ranges.

• For example, the function

myshingle <- equal.count(x, number=#, overlap=proportion)

• will take continuous variable x and divide it up into #

intervals, with proportion overlap, and equal numbers of

observations in each range, and return it as the variable

myshingle (of class shingle).

• Printing or plotting this object (for example, plot(myshingle))

will display the shingle’s intervals.

Example

• Once a continuous variable has been converted to a shingle, you can

use it as a conditioning variable.

• For example, let’s use the mtcars dataset to explore the relationship

between miles per gallon and car weight conditioned on engine

displacement.

• Because engine displacement is a continuous variable, first let’s

convert it to a shingle variable with three levels:

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

• Next, use this variable in the xyplot() function:

xyplot(mpg~wt|displacement, data=mtcars, main = "Miles per

Gallon vs. Weight by Engine Displacement", xlab = "Weight", ylab

= "Miles per Gallon", layout=c(3, 1), aspect=1.5)

• We have also used options to modify the layout of the panels (three
columns and one row) and the aspect ratio (height/width) in order to
make comparisons among the three groups easier.

Panel functions

• Each of the high-level plotting functions employs a default

function to draw the panels. These default functions follow the

naming convention panel.

• graph_function, where graph_function is the high-level

function. For example,

xyplot(mpg~wt|displacement, data=mtcars)

could have also be written as

xyplot(mpg~wt|displacement,data=mtcars,panel=panel.xyplot)

• This is a powerful feature because it allows you to replace the

default panel function with a customized function of your own

design.

xyplot with custom panel function

• if you wanted to include regression lines, rug plots, and grid lines. You can
do this by creating your own panel function

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

mypanel <- function(x, y) {

panel.xyplot(x, y, pch=19)

panel.rug(x, y)

panel.grid(h=-1, v=-1)

panel.lmline(x, y, col="red", lwd=1, lty=2)

}

xyplot(mpg~wt|displacement, data=mtcars, layout=c(3, 1),aspect=1.5,

main = "Miles per Gallon vs. Weight by Engine Displacement",

xlab = "Weight", ylab = "Miles per Gallon", panel = mypanel)

• we’ll graph the relationship between gas mileage and engine

displacement(considered as a continuous variable),

conditioned on type of automobile transmission.

• In addition to creating separate panels for automatic and

manual transmission engines, we’ll add smoothed fit lines and

horizontal mean lines.

mtcars$transmission <- factor(mtcars$am, levels=c(0,1),

labels=c("Automatic", "Manual"))

panel.smoother <- function(x, y) {

panel.grid(h=-1, v=-1)

panel.xyplot(x, y)

panel.loess(x, y)

panel.abline(h=mean(y), lwd=2, lty=2, col="green")

}

xyplot(mpg~disp|transmission,data=mtcars, scales=list(cex=.8,

col="red"), panel=panel.smoother, xlab="Displacement",

ylab="Miles per Gallon", main="MGP vs Displacement by

Transmission Type", sub = "Dotted lines are Group Means",

aspect=1)

• The panel.xyplot() function plots the individual points, and the

panel.loess() function plots nonparametric fit lines in each

panel.

• The panel.abline() function adds horizontal reference lines at

the mean mpg value for each level of the conditioning

variable.

• The scales= option renders scale annotations in red and at 80

percent of their default size.

Trellis graph of mpg versus engine displacement conditioned on transmission

type. Smoothed lines (loess), grids, and group mean levels have been added.

Grouping variables

• When you include a conditioning variable in a lattice graph

formula, a separate panel is produced for each level of that

variable.

• If you want to superimpose the results for each level instead,

you can specify the variable as a group variable.

• Let’s say that you want to display the distribution of gas

mileage for cars with manual and automatic transmissions

using kernel density plots.

• You can superimpose these plots using this code:

mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),

labels=c("Automatic", "Manual"))

densityplot(~mpg, data=mtcars,group=transmission,

main="MPG Distribution by Transmission Type",

xlab="Miles per Gallon“,auto.key=TRUE)

• The option auto.key=TRUE will create a rudimentary legend

and place it above the graph.

• You can make limited changes to this automated key by

specifying options in a list. For example,

auto.key=list(space=”right”, columns=1, title=”Transmission”)

• would move the legend to the right of the graph, present the

key values in a single column, and add a legend title.

Kernel density plot with a group
variable and customized legend

mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),

labels=c("Automatic", "Manual"))

colors = c("red", "blue")

lines = c(1,2)

points = c(16,17)

key.trans <- list(title="Trasmission", space="bottom", columns=2,

text=list(levels(mtcars$transmission)), points=list(pch=points,

col=colors), lines=list(col=colors, lty=lines), cex.title=1, cex=.9)

densityplot(~mpg, data=mtcars, group=transmission,

main="MPG Distribution by Transmission Type", xlab="Miles per

Gallon", pch=points, lty=lines, col=colors, lwd=2, jitter=.005,

key=key.trans)

Graphic parameters

• you learnt how to view and set default graphics parameters

using the par() function .

• Instead, the graphic defaults used by lattice functions are

contained in a large list object that can be accessed with the

• trellis.par.get() function and modified through the

trellis.par.set() function.

• The show.settings() function can be used to display the current

graphic settings visually.

show.settings()

mysettings <- trellis.par.get()

Next, look at the defaults that are specific to superimposed symbols:

mysettings$superpose.symbol

Output

$alpha

[1] 1 1 1 1 1 1 1

$cex

[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col

[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange" "#00ff00"

[7] "brown"

$fill

[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF"
"#FFFFCC" "#FFCCCC"

$font

[1] 1 1 1 1 1 1 1

$pch

[1] 1 1 1 1 1 1 1

• Here you see that the symbol used for each level of a group

variable is an open circle (pch=1). Seven levels are defined,

after which symbols recycle.

• Finally, issue the following statements:

mysettings$superpose.symbol$pch <- c(1:10)

trellis.par.set(mysettings)

show.settings()

Page arrangement
• The easiest method involves saving your lattice graphs as objects,

and using the plot() function with either the split= or position=

option specified.

• The split option divides a page up into a specified number of rows

and columns and places graphs into designated cells of the resulting

matrix.

• The format for the split option is

split=c(placement row, placement column, total number of rows, total

number of columns)

graph1 <- histogram(~height|voice.part, data=singer,

main="Heights of Choral Singers by Voice Part")

graph2 <- densityplot(~height, data=singer, group=voice.part,

plot.points=FALSE, auto.key=list(columns=4))

plot(graph1, split=c(1, 1, 1, 2))

plot(graph2, split=c(1, 2, 1, 2), newpage=FALSE)

• places the first graph directly above the second graph.

• Specifically, the first plot() statement divides the page up into

one column and two rows and places the graph in the first

column and first row (counting top-down and left-right).

• The second plot() statement divides the page up in the same

way, but places the graph in the first column and second row.

• You can gain more control of sizing and placement by using the
position= option.

graph1 <- histogram(~height|voice.part, data=singer,

main="Heights of Choral Singers by Voice Part")

graph2 <- densityplot(~height, data=singer, group=voice.part,

plot.points=FALSE, auto.key=list(columns=4))

plot(graph1, position=c(0, .3, 1, 1))

plot(graph2, position=c(0, 0, 1, .3), newpage=FALSE)

• Here, position=c(xmin, ymin, xmax, ymax), where the x-y
coordinate system for the page is a rectangle with dimensions
ranging from 0 to 1 on both the x and y axes, and the origin (0,0) at
the bottom left.

The ggplot2 package

• The ggplot2 package implements a system for creating

graphics in R based on a comprehensive and coherent

grammar.

• This provides a consistency to graph creation often lacking in

R, and allows the user to create graph types that are innovative

and novel.

• The simplest approach for creating graphs in ggplot2 is

through the qplot() or quick plot function. The format is

qplot(x, y, data=, color=, shape=, size=, alpha=, geom=,

method=, formula=, facets=, xlim=, ylim=, xlab=, ylab=,

main=, sub=)

Example

The following code creates box plots of gas mileage by number

of cylinders. The actual data points are superimposed (and

jittered to reduce overlap). Box plot colors vary by number of

cylinders.

library(ggplot2)

mtcars$cylinder <- as.factor(mtcars$cyl)

qplot(cylinder, mpg, data=mtcars, geom=c("boxplot", "jitter"),

fill=cylinder, main="Box plots with superimposed data points",

xlab= "Number of Cylinders", ylab="Miles per Gallon")

Example

• create a scatter plot matrix of gas mileage by car weight and
use color and symbol shape to differentiate cars with automatic
transmissions from those with manual transmissions.

• Additionally, we’ll add separate regression lines and
confidence bands for each transmission type.

transmission <- factor(mtcars$am, levels=c(0, 1),

labels=c("Automatic", "Manual"))

qplot(wt,mpg, data=mtcars, color=transmission,
shape=transmission,

geom=c("point", "smooth"), method="lm", formula=y~x,

xlab="Weight", ylab="Miles Per Gallon", main="Regression
Example")

Example

• create a faceted (trellis) graph. Each facet (panel) displays the
scatter plot between gas mileage and car weight.

• Row facets are defined by the transmission type, whereas
column facets are defined by the number of cylinders present.

• The size of each data point represents the car’s horsepower
rating.

mtcars$cyl <- factor(mtcars$cyl, levels=c(4, 6, 8),

labels=c("4 cylinders", "6 cylinders", "8 cylinders"))

mtcars$am <- factor(mtcars$am, levels=c(0, 1),

labels=c("Automatic", "Manual"))

qplot(wt,mpg, data=mtcars, facets=am~cyl, size=hp)

Example

data(singer, package="lattice")

qplot(height, data=singer, geom=c("density"),

facets=voice.part~., fill=voice.part)

Interactive graphs

Interacting with graphs: identifying points

• Using the identify() function , you can label selected points in a

scatter plot with their row number or row name using your mouse.

• Identification continues until you select Stop or right-click on the

graph. For example, after issuing the following statements

plot(mtcars$wt, mtcars$mpg)

identify(mtcars$wt, mtcars$mpg, labels=row.names(mtcars))

• the cursor will change from a pointer to a crosshair.

• Clicking on scatter plot points will label them until you select Stop

from the Graphics Device menu or right-click on the graph and

select Stop from the context menu.

playwith

• The playwith package provides a GTK+ graphical user interface that

allows users to edit and interact with R plots.

• You can install the playwith package on any platform using

install.packages("playwith", depend=TRUE).

• The playwith()function allows users to identify and label points,

view all variable values for an observation, zoom and pan, add

annotations (text, arrows, lines,rectangles, titles, labels), change

visual elements (colors, text sizes, and so on), apply previously

saved styles, and output the resulting graph in a variety of formats.

library(playwith)

library(lattice)

playwith(xyplot(mpg~wt|factor(cyl)*factor(am),data=mtcars,

subscripts=TRUE,type=c("r", "p")))

latticist

• The latticist package lets you explore a data set using lattice

displays.

• It provides a graphic user interface to the graphs, but it can

also be used to create displays from the vcd package.

• If desired, latticist can also be integrated with playwith. For

example, executing the following code

library(latticist)

mtcars$cyl <- factor(mtcars$cyl)

mtcars$gear <- factor(mtcars$gear)

latticist(mtcars, use.playwith=TRUE)

Interactive graphics with the iplots
package

• Whereas playwith and latticist allow you to interact with a single

graph, the iplots package takes interaction in a different direction.

• This package provides interactive mosaic plots, bar plots, box plots,

parallel plots, scatter plots, and histograms that can be linked

together and color brushed.

• This means that you can select and identify observations using the

mouse, and highlighting observations in one graph will

automatically highlight the same observations in all other open

graphs.

• You can also use the mouse to obtain information about graphic

objects such as points, bars, lines, and box plots.

iplots functions

library(iplots)

attach(mtcars)

cylinders <- factor(cyl)

gears <- factor(gear)

transmission <- factor(am)

ihist(mpg)

ibar(gears)

iplot(mpg, wt)

ibox(mtcars[c("mpg", "wt", "qsec", "disp", "hp")])

ipcp(mtcars[c("mpg", "wt", "qsec", "disp", "hp")])

imosaic(transmission, cylinders)

detach(mtcars)

rggobi

• GGobi is a comprehensive program for the visual and dynamic exploration

of high-dimensional data and is freely available for Windows, Mac OS X,

and Linux platforms.

• It offers a number of attractive features, including linked interactive scatter

plots, bar charts, parallel coordinate plots, time series plots, scatter plot

matrices, and 3D rotation; brushing and identification; multivariate

transformation methods; and sophisticated exploratory support, including

guided and manual 1D and 2D tours.

• The rggobi package provides a seamless interface between GGobi and R.

• The first step in using GGobi is to download and install the appropriate

software for your platform (www.ggobi.org/downloads/). Then install the

rggobi package within R using install.packages("rggobi", depend=TRUE).

• Once you’ve installed both, you can use the ggobi() function

to run GGobi from within R. This gives you sophisticated

interactive graphics access to all of your R data.

library(rggobi)

g <- ggobi(mtcars)

