

COURSE DELIVERY PLAN - THEORY

Department of Applied Mathematics

B.Tech : CHEMICAL ENGINEERING Regulation: 2022 LP: MA22351

Academic Year: 2023-2024 Rev. No.: 00

Sub. Code / Sub. Name : MA22351 - APPLIED MATHEMATICS-III Date: 04.08.2023

Unit 1 : Applications of Differential Equations

Unit Syllabus: Applications of Differential Equations of First Order-Geometrical Applications-Orthogonal Trajectories-Physical Applications-Application of Linear Differential Equations-Simple Harmonic Motions-Deflection of Beams-Applications of Simultaneous Linear Differential Equations.

Objective: Competent in solving applications of ordinary differential equations using analytical methods to obtain their exact solutions

metrical Applications ns. based on Geometrical Applications nogonal Trajectories ns. based on Orthogonal Trajectories sical Applications-Pblms.	1-Ch. 12; Pg.751 1-Ch. 12; Pg.751 1-Ch 12; Pg.752-754 1-Ch. 12; Pg.755 1-Ch. 12; Pg.755	LCD/BB LCD/BB LCD/BB LCD/BB
metrical Applications ns. based on Geometrical Applications nogonal Trajectories ns. based on Orthogonal Trajectories	1-Ch. 12; Pg.751 1-Ch 12; Pg.752-754 1-Ch. 12; Pg.755 1-Ch. 12; Pg.755	LCD/BB LCD/BB
ns. based on Geometrical Applications nogonal Trajectories ns. based on Orthogonal Trajectories	Pg.752-754 1-Ch. 12; Pg.755 1-Ch. 12; Pg.755	LCD/BB
nogonal Trajectories ns. based on Orthogonal Trajectories	1-Ch. 12; Pg.755 1-Ch. 12; Pg.755	LCD/BB
ns. based on Orthogonal Trajectories	1-Ch. 12; Pg.755	1
	Pg.758	LCD/BB
lication of Linear Differential Equations	1-Ch. 14; Pg.815	LCD/BB
8 Pblms. based on application of Linear Differential Pg.815		LCD/BB
9 Simple Harmonic Motions 1-Ch. 14; Pg.815-820		LCD/BB
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		LCD/BB
Applications of Simultaneous Linear Differential 1-Ch 14; Equations. Pg.846		LCD/BB
orial class	Worksheet	LCD/BB
le	cation of Beams cations of Simultaneous Linear Differential tions. ial class syllabus covered (if any):	te Harmonic Motions Pg.815-820 1-Ch 14; Pg.842-843 cations of Simultaneous Linear Differential pg.846 Pg.845-820 1-Ch 14; Pg.846

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Sub. Code / Sub. Name: MA22351- APPLIED MATHEMATICS-III

: Partial Differential Equations Unit II

Unit Syllabus: Formation of partial differential equations - Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear homogeneous partial differential equations of second and higher order with constant coefficients.

Objective: To introduce the effective mathematical tools for the solutions of partial differential

Session No *	that model several physical processes Topics to be covered	Ref	Teaching Aids
13	Introduction to PDE and Formation of PDE by elimination of arbitrary constants and by elimination of arbitrary functions.	2 - Ch.17; Pg.577-579	LCD/BB
14	Formation of PDE by elimination of arbitrary functions.	2 - Ch.17; Pg.577-579	LCD/BB
15	15 Tutorial class		LCD/BB
16	Various solutions of a general PDE – complete, singular, particular and general integrals		LCD/BB
17	Solving standard types of PDEs of the form $F(p, q) = 0$.	2 - Ch.17; Pg.584-586	LCD/BB
18	Solving standard types of PDEs of the form F(z, p,q)=0.	2 - Ch.17; Pg.584-586	LCD/BB
19	Solving standard types of PDEs of the form $z = px+qy + f(p, q)$.	2 - Ch.17; Pg.586-587	LCD/BB
20	Solving standard types of PDEs of the form $F_1(x, p) = F_2(y, q).$		LCD/BB
21	Equations reducible to standard forms	Worksheet	LCD/BB
22	Solving Lagrange's linear equation by Method of multipliers	3 - Ch.6; Pg.244-251	LCD/BB
23	Solution of homogeneous linear partial differential equations of second and higher order with constant coefficients.	2 - Ch.17, Pg.590-596	LCD/BE
24	More problems on homogeneous linear partial differential equations of second and higher order with constant coefficients.	2 - Ch.17; Pg.590-596	LCD/BE

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Sub. Code / Sub. Name: MA22351 - APPLIED MATHEMATICS-III

Unit III : FOURIER SERIES

Unit Syllabus: Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Parseval's identity - Harmonic Analysis.

Objective: To introduce Fourier series analysis this is central to many applications in engineering apart from its uses in solving boundary value problems.

Session No *	Topics to be covered	Ref	Teaching Aid
25	Introduction to periodic functions, Bernoulli's formula, Fourier series and Dirichlet's conditions.	2 - Ch.10; Pg.395-401	LCD/BB
26	General Fourier series and problems based on that.	ral Fourier series and problems based on 2 - Ch.10; Pg. 401-408	
27	Fourier series for functions with arbitrary 2 - Ch.10; Pg. 401-408		LCD/BB
28	Tutorial class	Worksheet	LCD/BB
29	Introduction to odd and even functions and Fourier series for odd and even functions	2 - Ch.10; Pg. 408-412 3-Ch.7 Pg. 294-298	LCD/BB
30	Half range cosine series and problems.	2 - Ch.10; Pg. 412-416	LCD/BB
31 Half range sine series and problems.		2 - Ch.10; Pg. 412-416	LCD/BB
32	2 Tutorial class Worksheet		LCD/BB
RMS value of a function, Derivation of Parseval's Identity		2 – Ch.10; Pg. 418- 419	LCD/BB
34	Problems using Parseval's Identity 2 - Ch.10; Pg. 417- 418		LCD/BB
35	Harmonic analysis for functions with period 2 2 - Ch.10; and arbitrary period 2 Pg. 420- 423		LCD/BB
36	Tutorial class	2 - Ch.10; Pg. 424- 425	LCD/BB

^{*} Session duration: 50 minutes

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Sub. Code / Sub. Name: MA22351 - APPLIED MATHEMATICS-III

Unit IV : BOUNDARY VALUE PROBLEMS

Unit Syllabus: Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

Objective: Acquire the knowledge of using Fourier series techniques in Boundary value problems

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction and Classification of PDE.	2 - Ch.18; Pg. 600	LCD/BB
38	38 Method of separation of variables. 2- Pg. 6		LCD/BB
39	C.L.C. C		LCD/BB
40	Problems on wave equation with the given initial and boundary conditions	2 - Ch.18; Pg. 603- 609	LCD/BB
41	Tutorial class	Worksheet	LCD/BB
42	Solution of one-dimensional heat equation by method of separation of variables	2 – Ch.18; Pg. 611	LCD/BB
43	Problems on heat equation with the given initial and boundary conditions	2 – Ch.18; Pg. 612– 616	LCD/BB
44	14 Tutorial class Work		LCD/BB
45	Steady state solution of two dimensional equation of heat conduction by method of separation of variables		LCD/BB
46	Problems on Laplace equation for a finite plate. 2 - Ch.18; Pg. 621-623		LCD/BB
47	Problems on Laplace equation for a semi - infinite 2 - Ch.18; Pg. 620-621 LCD		LCD/BB
48	Tutorial class	Worksheet	LCD/BB

nowledge of heat transfer in circular plate is included.

Sub. Code / Sub. Name: MA22351- APPLIED MATHEMATICS-III

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Unit V

: FOURIER AND Z -TRANSFORMS

Unit Syllabus: Fourier transform pair – Fourier sine and cosine transforms – Properties (without proof) – Convolution theorem – Parseval's identity. Z- Transforms – Elementary properties – Inverse Z - transform (using partial fraction) – Convolution theorem – Solution of difference equations using Z - transform

Objective: Achieve an understanding of the basic concepts of the Fourier transform and Z-transform techniques and its application in Engineering.

Session No *	Topics to be covered	Ref	Teaching Aids	
49	Fourier transforms pair and problems.	2 - Ch 22; Pg 769-772	LCD/BB	
50	Fourier cosine and sine transform and problems	2 - Ch.22, Pg.769& Pg.772-777	LCD/BB	
51	Properties of Fourier transforms,	3- Ch.8; Pg.4 - 7	LCD/BB	
52	Properties of Fourier sine transforms and cosine transforms.	Pg.23- Ch.8; Pg.4-7 LCD/BI		
53	Problems on properties of Fourier transforms, Fourier sine transforms and cosine transforms.	Pg.23 – Ch.8. Pg.4 – 7 LCD/B Pg.23 – 24		
54	Derivation of Convolution theorem and Parseval's identity for Fourier transforms	2 - Ch.22, Pg.777-778	LCD/BB	
55	Introduction to Z- transforms and Elementary properties of Z-transforms	2 - Ch.23; Pg.793	LCD/BB	
56	Problems based on elementary properties of Z-transforms	2 - Ch.23; Pg.793-799	LCD/BB	
57	Inverse Z – transform using partial fraction	aform using partial fraction 2 - Ch.23; Pg.805-806 LCD/BB		
58	Inverse Z – transform using Convolution theorem.	2 - Ch.23; Pg.802	LCD/BB	
59	Formation of difference equations	2 - Ch.23; Pg.808	LCD/BB	
60	Solution of difference equation using Z-transforms	2 - Ch.23, Pg.808-811	LCD/BB	

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Sub Code / Sub Name: MA22351- APPLIED MATHEMATICS-III

TEXT BOOKS:

- Erwin Kreyszig, "Advanced Engineering Mathematics". 10 th Edition, Wiley India, 2011.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S. Viswanathan Publishers Pvt. Ltd. 1998. REFERENCES:

- 1. Bali.N.P. and Manish Goyal, "A Textbook of Engineering Mathematics", 8th Edition, Laxmi
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education,
- 3. Vecrarajan. T., "Transforms and Partial Differential Equations", Tata MGraw Hill Publishing
- 4. Ray Wylie, C and Barrett, L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, New Delhi, 2012.
- 5 Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India Pvt. Ltd.

	Prepared by	
Signature	Vichadultu	Approved by
Name	Ms. VISALAKSHI SUBRAMANIAN	Dr. R. MUTHUCUMARASWAMY
Designation	Assistant Professor	
Date	04/08/2023	Professor and Head
Remarks *: -		04/08/2023

Remarks *: -

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD