

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

B.E., Electronics and Communication Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022 CHOICE BASED CREDIT SYSTEM

C i l	Z	Board of Studies	12.09.2023	Academic	18.10.2023				
Curriculum	00	recommendation	10.04.2023	Council	21.04.2023				
Revision No:	2	date ·	07.10.2022	Approved	08.10.2022				
	1	uate .	18.03.2022	date:	12.04.2022				
	17	The courses "Tamil la	inguage and Her	ritage of Ancient	Tamil Society" in				
	01	Semester I and "Scien	nce and Techno	logy in Ancient	Tamil Society" in				
	01.	Semester II are intr	roduced as per	r the recommen	dations of Anna				
		University/Governmen	t of Tamil Nadu						
	02.	The course "Technical	Drawing Laboration	atory" is introduce	ed in semester II				
		replacing "Engineering Drawing" of R2018. This will enable the students							
		to draw the circuit symbols using free hand sketches and simulation tools.							
	03	The course "Circuit T	The course "Circuit Theory" is shifted to semester II from semester III of						
	05.	R2018 and introduced	as Theory cum l	Practical Course.					
Salient Points of		The courses of R2018 "Engineering Mathematics III" and "Probability and							
the revision	04.	Random Processes" are replaced with the new course "Transforms and							
the revision		Random Processes" and the same is offered in semester IV.							
		The course "Environn	nental Sciences	and Sustainability	" is shifted to IV				
	05.	semester. This will	help the Later	al entry students	s to describe the				
		sustainable developme	nt for environme	ental protection.					
		The course "Machine	Learning" is in	troduced in seme	ster IV as Theory				
	06	cum Practical course.	This will enable	e the students to e	expose the various				
	00.	Machine Learning al	gorithms and i	mplementation of	f the same using				
		Python.							
	07	The course "Microco	ontroller System	ns" is introduced	as Theory cum				
	07.	Practical course in sem	nester IV.						

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025) REGULATIONS 2022

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- I. Create value to organizations as an EMPLOYEE at various levels, by improving the systems and processes using appropriate methods and tools learnt from the programme.
- II. Run an organization successfully with good social responsibility as an ENTREPRENEUR, making use of the knowledge and skills acquired from the programme.
- III. Contribute to the future by fostering research in the chosen area as an ERUDITE SCHOLAR, based on the motivation derived from the programme.

PROGRAM OUTCOMES (POs)

PO GRADUATE ATTRIBUTES

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- 13. An ability to apply the concepts of Electronics, Communications, Signal processing, VLSI, Control systems etc., in the design and implementation of application oriented engineering systems.
- 14. An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical and managerial skills to arrive appropriate solutions, either independently or in team.

PEO's - PO's & PSO's MAPPING:

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025) REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM AND SYLLABI FROM SEMESTER I TO IV

SL.	COURSE	COURSE TITLE	CATEGORV#	PE	ERIOE WEI)S PH EK	ER	TOTAL	Prereq	Position
NO.	CODE		CATEGORI	L	Т	P	C	Hours	uisite	
1.	IP22151	Induction Programme (Common to all Branches)	COLL	10	1	-	-	-	-	-
Theory	v Subjects	1.8ª		0	Ε,	1				
2.	HS22151	Tamil language and Heritage of Ancient Tamil Society (Common to all branches)	HS	1	0	0	1	1	Nil	F
3.	HS22152	Communicative English (Common to all Branches)	HS	3	0	0	3	3	Nil	F
4.	MA22151	Applied Mathematics I (Common to all Branches except MR)	BS	3	1	0	4	4	Nil	F
5.	PH22151	Applied Physics (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	Nil	F
6.	CY22151	Applied Chemistry (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	Nil	F
7.	EE22152	Basic Electrical Engineering	ES	3	0	0	3	3	Nil	F
8.	IT22101	Programming for Problem Solving (Common to IT, AD, CS, EE, EC)	ES	3	0	0	3	3	Nil	F
Practic	al Subjects	C 12	IT most	50	91	/				
9.	PH22161	Physics Laboratory (Common to all Branches except BT)	BS	0	0	2	1	2	Nil	F
10.	ME22161	Basic Civil and Mechanical Engineering Laboratory (Common to CE, EE, EC)	ES	0	0	2	1	2	Nil	F
11.	IT22111	Programming for Problem Solving Laboratory (Common to IT, AD, CS, EE, EC)	ES	0	0	3	1.5	3	Nil	F
			Total	19	1	7	23.5	27	-	-

SEMESTER I

SL.	COURSE			PF	ERIOI WE)S PE EK	R	TOTAL	Prerequi		
NO.	CODE	COURSE TITLE	CATEGORY*	L	T	P	С	Hours	site	Position	
Theory	Subjects				•	•	•			•	
1.	HS22251	Science and Technology in Ancient Tamil Society (Common to all Branches)	HS	2	0	0	2	2	Nil	F	
2.	HS22252	Technical English (Common to all Branches)HS30033					3	Nil	F		
3.	MA22251	Applied Mathematics II (Common to all Branches except MR)	BS	3	1	0	4	4	Nil	F	
4.	PH22252	Physics of Materials (Common to EE and EC)	BS	3	0	0	3	3	Nil	F	
5.	EC22201	Electron Devices	PC	3	0	0	3	3	Nil	F	
6.	EC22202	Circuit Theory	PC	3	0	2	4	5	EE22152	F	
Practic	al Subjects			1.5.5	1	1					
7.	CY22161	Chemistry Laboratory (Common to all Branches except AD, CS, IT)	BS	0	0	2	1	2	Nil	F	
8.	EC22211	Technical Drawing Laboratory	ES	0	0	2	1	2	Nil	F	
9.	EC22212	Electron Devices and Electrical Machines Laboratory	PC	0	0	3	1.5	3	Nil	F	
			Total	17	1	9	22.5	27	-	-	
	SEMESTER III										

SEMESTER II

SL.	COURSE		CATEGORY [#]	PE	RIOE WE)S PE EK	RO	TOTAL	Prerequi	Positio
NO.	0. CODE COURSE TITLE		c	L	T	P	C	Hours	site	n
Theory	v Subjects	1001	1000		1	0	1			
1.	MA22358	Transforms and Random Processes	BS	3	A	0	4	4	Nil	F
2.	EC22301	Object Oriented Programming and Data Structures	ES	3	0	0	3	3	Nil	F
3.	EC22302	Digital System Design	PC	3	0	0	3	3	PH22151	F
4.	EC22303	Electromagnetic Fields and Waves	PC	3	0	0	3	3	Nil	F
5.	EC22304	Electronic Circuits	PC	3	0	0	3	3	EC22201, EC22202	F
6.	EC22305	Signals and Systems	PC	3	0	0	3	3	Nil	F
Practic	al Subjects									
7.	EC22311	Analog and Digital Circuits Laboratory	PC	0	0	3	1.5	3	Nil	F
8.	EC22312	Object Oriented Programming and Data Structures Laboratory	ES	0	0	3	1.5	3	Nil	F
			Total	18	1	6	22	25	-	-

			SEMESIENIV							
SL.	COURSE	COUDCE TITLE	CATEGORY [#]	PF	ERIOI WE	DS PE EK	R	TOTAL	Prerequi	Positio
NU.	CODE	COURSE IIILE		L	Т	Р	С	Hours	site	n
Theory	y Subjects									
1.	EC22401	Analog Integrated Circuits and its Applications	PC	3	0	0	3	3	EC22304	F
2.	EC22402	Linear Control Systems	PC	3	0	0	3	3	Nil	F
3.	EC22408	Machine Learning: Theory and Practices	ES	3	0	2	4	5	Nil	F
4.	EC22409	Microcontroller Systems: Theory and Practices	PC	3	0	2	4	5	Nil	F
5.	EC22403	Discrete Time Signal Processing	COPC	3	0	0	3	3	EC22305	F
6.	GE22451	Environmental Sciences and Sustainability (Common to all branches)	HS	3	0	0	3	3	Nil	F
Practic	al Subjects	151	5 11 2 - 3		1	0	1	ŭ.		
7.	EC22411	Analog Integrated Circuits and Simulation Laboratory	PC	0	0	3	1.5	3	Nil	F
8.	EC22412	Discrete Time Signal Processing Laboratory	PC	0	0	3	1.5	3	Nil	F
			Total	18	0	10	23	28	-	-

SEMESTER IV

SEMESTER I

	தமிழ் மொழியும் தமிழர் மரபும்	L	Т	P	C				
HS22151	TAMIL LANGUAGE AND HERITAGE OF TAMILS	1	0	0	1				
	(Common to all branches)		Ŭ	Ŭ					
பாடத்தின் நோக்கங்கள்: 1. தமிழ் மொழியின் தோற்றம் பற்றியும், திணை கருத்துக்கள் வாயிலாக வாழ்வியல் முறைகளை பற்றியும் கற்றுக் கொள்வார்கள். 2. இந்திய தேசிய சுதந்திர இயக்கத்தில் தமிழர்களின் பங்களிப்பு மற்றும் தமிழர்களின் மேலாண்மை முறைகளை பற்றியும் கற்றுக் கொள்வார்கள்.									
Course Objectives :									
1 They will	cures.	ivo tv	nac	flond	łc				
2 They will	also learn about the contribution of Tamils in the Indian National Freedor	n Mo	veme	n lain	15. d the				
2. They will management	methods of Tamils		venic	in an	u uic				
management									
		÷			3				
<u> </u>	தமிழுக்கும் தொழில்நடபக் கல்விக்கும் உள்ள தொ ஸ். ––––––––––––––––––––––––––––––––––––	<u>-IJЦ</u>			3				
UNIT -1 LA Language far in Tamil – Co technical edu	தொழில் நட்பக் கல்வியில் தமிழ் மொழியின் முக்கியத்துவம். NGUAGE AND HERITAGE milies in India – Dravidan Languages – Tamil as a Classical language – ontribution of U. Ve. Saminathaiyar. Arumuka Navalar – Importance o ucation.	Class of Tan	ical I nil la	Litera ngua	iture ge in				
ച്ചலக്ര 2	திணை கருத்துக்கள்				9				
அலகு 2திணை கருத்துக்கள்9இணை கருத்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்கை முறைகள், இசை, நடனம், உணவு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப்பியம் மற்றும் சங்க இலக்கியங்களில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வி மற்றும் எழுத்தறிவு சங்க காலம் – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க காலத்தில் ஏற்றுமது மற்றும் இறக்குமதி – சோழர்களின் வெளிநாட்டு வெற்றி.9UNIT -2 THINAI CONCEPTSFive types of lands, animals, Gods, occupation, life styles, music, dance , food style, Floara and Fauna of Tamils - Agam and puram concept from Tholkappiyam and Sangam Literature – Aram concept of Tamil – Education and Literacy during Sangam Age – Ancient cities and Ports of Sangam Age – Export and Import during Sangam Age - Overseas Conquest of Choloas.									
ച്ചുവെട്ര 3	தமிழரின் மரபு				3				
இந்திய தே	சிய சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்	களின்	г цг	ங்களி	юц:-				

இந்திய தேசிய சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்களின் பங்களிப்பு:-சுப்ரமணிய பாரதி, வாஞ்சிநாதன், சுப்பிரமணிய சிவா, வீரபாண்டிய கட்ட பொம்மன், வா..ஊ சிதம்பரம் பிள்ளை, தீரன் சின்னமலை, மருது பாண்டிய சகோதரர்கள், பூலி தேவர், திருப்பூர் குமரன், வீரமங்கை வேலு நாச்சியார் - ,தமிழர் இலக்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி 200 வரை) – அகநானூறு, புறநானூறு, திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள்..

UNIT -3 HERITAGE OF TAMILS

Contribution of Tamils to Indian National Freedom Movement and Indian Culture : Contributions of Subramanya Bharathi, Vanchinathan, Subramaniya Siva, Veerapandiya Kattabomman, V O Chidambaram Pillai, Dheeran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur Kumaran, Veera Mangai Velunachiyar.

பாடநூல்கள்:

- 1. **பொன். முத்துகுமாரன்** (2002), "தமிழ் மரபு", காந்தளகம், 68, அண்ணா சாலை, சென்னை 600 002
- பி. டிறீனிவாச ஐயங்கார் (தமிழக்கமும் திறனாய்வும்) புலவர் கா. கோவிந்தன் (1988), "தமிழர் வரலாறு (முதல் பகுதி)", திருநெல்வேலி தென்னிந்திய சைவ சித்தாந்த நூற்பதிப்பு கழகம் ,154, TTK சாலை, சென்னை 18.
- 3. **டாக்டர். கே. கே. பிள்ளை** (2009), "தமிழக வரலாறு மக்களும் பண்பாடும்", உலக தமிழாராய்ச்சி நிறுவனம், தரமணி , சென்னை 600113
- 4. **முனைவர். ச. இராஜேந்திரன்** (2004), "தமிழில் சொல்லாக்கம்", தஞ்சாவூர் தமிழ் பல்கலைக் கழகம் வெளியீடு

பாடநெறி முடிவுகள் : படிப்பை வெற்றிகரமாக முடித்தவுடன் , மாணவர்கள் பின்வருவனவற்றைச் செய்ய முடியும்.

COURSE OUTCOMES : On completion of the course, the student will be able to

பா .வெ . எண் CO No	பாடத்திட்டத்தின் வெளிப்பாடு Course Outcomes	RBT* level					
1	மாணவர்கள் தமிழ் மொழித் தோற்றம் பற்றித் தெரிந்து கொள்வார்கள். Students will learn about the origin of the Tamil language	1					
2	தமிழர்களின் வாழ்வியல் முறைகளைத் தெரிந்து கொள்வார்கள். They will know the ways of life of Tamils.						
3	தமிழர்களின் சுதந்திர போராட்ட வீரர்களை பற்றியும், மேலாண்மைகளை பற்றியும் தெரிந்து கொள்வார்கள். They will know about the freedom fighters of Tamils and the management of Tamils	2					
1- Weak	; 2 - Moderate; 3 - Strong.						

US22152	COMMUNICATIVE ENGLISH	L	Τ	Р	С		
П522152	(Common to all Branches)	3	0	0	3		
COURSE OF	BJECTIVES:						
1. Enable	e learners to interact fluently on everyday social contexts.						
2. Train	learners to engage in conversations in an academic/scholarly setting.						
3. Instil c	confidence in learners to overcome public speaking barriers.						
4. Develo	op learners' ability to take notes and in the process, improve their liste	ening	skill	ls			
5. Enhan	ce learners' reading skill through reading text passages for comprehen	nsion	and				
conten	nplation.						
6. Impro	ve learners' skills to write on topics of general interest and drafting co	orrest	oonde	ences	for		
genera	l purposes.	1					
UNIT 1					9		
Listening - sł	ort video clips - conversational scenes form movies, celebrities' sr	beech	es /i	nterv	iews.		
Speaking - se	everal ways of introducing oneself at several situations, introducing	g of	hers	at se	veral		
situations, inv	iting people for several occasions, describing people and their plac	es. F	Readi	ng -	short		
comprehensio	n passages - making inferences, critical analysis, Writing - comple	ting	the i	ncom	plete		
sentences - de	eveloping hints from the given information. Grammar - Wh-Ouesti	ons a	and Y	Yes o	r No		
questions - P	arts of speech. Vocabulary development - prefixes - suffixes - ar	ticles	5 - C	ounta	ble /		
uncountable n	ouns.			0 001100			
UNIT II	1 - T - O				9		
Listening - cu	stomer care voice files short narratives - identifying problems and de	evelo	ning	telen	hone		
etiquettes Sp	eaking - speaking over skype/ whatsapp making business calls m	akin	y sel	f-reco	orded		
informative vi	deos inquiring about a concept/activity describing a concept/activity	I Re	adina	r = res	ading		
the headlines	on news magazines - slogans and taglines from advertisements. Wri	ting	- free	- writ	ing -		
writing - hea	dlines slogans and taglines individual inspirations Grammar- co	niun	rtion	s idi	oms		
phrases quote	s Vocabulary development - guessing the meanings of words in diffe	rent	conte	s, iui exte	oms,		
pinases, quote	s. vocabulary development guessing the meanings of words in diffe	iont	cont	JAID.			
UNIT III	I'V T				0		
Listening - C	ourtroom scenes from movies debates and talks from news char	nele	not	ec to	γ king		
Speaking - 1	anguage and tone for arguments discussion deliberation contem	nlati	n	vore	seing.		
opinions read	sting to different situations in an alien country Reading language		l in i	instru	ction		
manuals of h	ousehold appliances, cookery and other basic instructions. Writing		l III I Ierete	andin	a the		
structure of t	exts - use of reference words discourse markers, coherence rearr	- un angir	ng th		bled		
sentences Gr	ammar - adjectives - degrees of comparison framing direct and	indi	rect	auest	tions		
Vocabulary de	animal - adjectives - degrees of comparison, framing direct and	mui	ICCI	quest	.10115.		
	evelopment - concise approach, single word substitution.						
LINIT IV					0		
Listoning Sr	ports commontarios advartisaments with users' ariticisms: Speeking	for		ial co	7		
for promoting	a concept production and heraciping Reading review of a product	- 101	soc.		uses,		
or a system W	a concept, negotiating and bargaining, Reading - review of a product	ι, 1110 2002		move	Doct		
Present and Future Continuous - Past Present and Future: Vocabulary Development - synonyms							
riesent and r	phrasel vorba	piner	it - 8	synon	yms,		
antonyms and	pinasai veius.						
					0		
UNIIV					У		

Listening - video lectures, video demonstration of a concept; Speaking – presenting papers/concepts, delivering short speeches, discourses on health, suggesting natural home remedies, cleanliness, civic sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.

REFERENCES:

TOTAL: 45 PERIODS

- 1. Department of English, Anna University, Mindscapes : English for Technologists and Engineers. Orient Black Swan, Chennai, 2017.
- 2. Downes and Colm, "Cambridge English for Job-hunting", Cambridge University Press, New Delhi, 2008.
- 3. Murphy and Raymond, "Intermediate English Grammar with Answers", Cambridge University Press, 2000.
- 4. Thomson, A.J., "Practical English Grammar" Oxford, 1986.

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.
- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.
- 5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

Course	e Outcomes:	RBT*
Upon co	ompletion of the course, students will be able to:	Level
CO1	Acquire adequate vocabulary for effective communication	3
CO2	Listen to formal and informal communication and read articles and infer meanings	3
	from specific contexts from magazines and news papers.	
CO3	Participate effectively in informal/casual conversations; introduce themselves and	4
	their friends and express opinions in English.	
CO4	Comprehend conversations and short talks delivered in English.	6
CO5	Write short write-ups and personal letters and emails in English	6
*Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu	ate-5;
Create-	5	

COURSE ARTICULATION MATRIX

COs		POs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	-	-	-	-	-	-	-	-	-	3	-	I	-	-	
2.	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
3.	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
4.	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
5.	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
1- Weal	I- Weak; 2 - Moderate; 3 - Strong.														

MA 22151	APPLIED MATHEMATICS I	L	Т	Р	С			
WIA22131	(Common to all Branches except MR)	3	1	0	4			
COURSE OF	BJECTIVES:							
The Student s	hould be made to:							
1. Com	oute eigen values and eigen vectors and use in diagonalization and	d in cl	assify	ying	real			
quadi	atic forms.							
2. Study	differential calculus and its applications to rele	evant	En	gine	ering			
prob	lems.							
3. Comp	te derivatives using the chain rule or total differentials.							
4. Unde	rstand the rotation of two dimensional geometry using definite in	tegral	s.					
5. Acquaint with the Mathematical tools needed in evaluating multiple integrals and their								
usage		U						
UNIT 1	MATRICES				(9+3)			
Eigen values	and Figen vectors of a real matrix – Characteristic equation –	Pro	nertie	es of	Eigen			
values and	Eigen vectors – Statement and Applications of Cavley-H	[amilt	on 7	Theor	rem –			
Diagonalizatio	on of matrices– Reduction of a quadratic form into canonical	form	ı bv	orth	ogonal			
transformation	-Nature of quadratic forms.		5		- 8			
UNIT II	APPLICATION OF DIFFERENTIAL CALCULUS	/			(9+3)			
Curvature and	l radius of Curvature- Centre curvature - Circle of curvature -	Evolu	tes-	Enve	elopes-			
Evolute as En	velope of Normals.	12			_			
UNIT III	DIFFERENTIAL CALCULUS FOR SEVERAL VARIABL	ES			(9+3)			
Limits and Co	ontinuity - Partial derivatives - Total derivatives - Differentiation	n of ir	nplic	it fur	nctions			
– Jacobians an	nd properties- Taylor's series for functions of two variables - M	laxima	a and	Min	ima of			
functions of ty	vo variables –Lagrange's method of undetermined multipliers.	77						
UNIT IV	APPLICATION OF DEFINTE INTEGRALS	71			(9+3)			
Integration by	Parts-Bernoulli's formula for integration- Definite integrals and	l its P	roper	ties-	Solids			
of Revolution	- Disk Method- Washer Method- Rotation about both x and y axi	s and	Shell	meth	nod.			
UNIT V	MULTIPLE INTEGRALS	/	<u> </u>		(9+3)			
Double integr	als in Cartesian and polar coordinates – Change of order of integr	ration	- Ar	ea en	closed			
by plane curve	es - Change of variables in double integrals – Triple integrals – V	olume	e of s	olids.				
	<u>TOTAL (L: 45</u>	+ 1:1:	5): 6() PE	RIODS			
	AD: Verygging Hackart Knyygging Edward Namintan "A	duran	had	Enci	naanina			
I. Efwii	th th	avano	Jea	Engi	neering			
Mathe	matics", 10 Edition, John Wiley, (2015)	and -		_				
2. Grew	al .B.S, Grewal .J.S "Higher Engineering Mathematics",4	3 ¹⁰ E	d1t10	n, K	hanna			
Public	ations, Delhi, (2015).							
KEFERENC	ES: Devid Mariah Carrel #A Treat hash of Englanding Mathema	4:	NT:	41. E	1.4.			
I. Ball N	1. Ball N.P and Manish Goyal, "A Text book of Engineering Mathematics", Nineth Edition,							
2 Clue I	2 Glyn James "Advanced Modern Engineering Mathematics" 4 th Edition Dearson Education							
2. Giyii J	antes, Auvaneeu mouern Engineering mainematics, 4 Editio	n, rea	ai SOII	Eau	cation,			
(2016)		D 1 1	1.	C				
3. Raman	a B.V, "Higher Engineering Mathematics", Tata McGraw Hill	Publis	shing	Con	npany,			
New D	elhi, (2013).							

Web Link:

1. <u>https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf</u>

Course	Outcomes:	RBT*
Upon co	ompletion of the course, students will be able to:	Level
CO1	Solve the Eigen value problems in matrices.	3
CON	Apply the basic notion of calculus in Engineering problems and to tackle for	3
	different geometries.	
GOA	Perform calculus for more than one variable and its applications in Engineering	3
003	problems.	
CO4	Apply definite integrals for design of three dimensional components.	3
CO5	Evaluate multiple integral in Cartesian and polar coordinates.	3
*Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluat	te-5;
Create-6	5	

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO- 1	PSO- 2
CO1	3	3	3	3	12	1-1	-)	6-	11-	-	m	3	-	-
CO2	3	3	1-11	- 1-	9 ° -	1			/-	< <u>15</u>	m	3	-	-
CO3	3	3	3	3	-	-	1		0	1	118	3	-	-
CO4	3	3	-	5	1	-	+	5 - T	0	2/0	81	3	-	-
CO5	3	3	2	2	-	1	1	1	1	-	/-	3	-	-
1- W	eak; 2	- Mode	erate; 3	- Stron	g.	25	7		500	12				
					-	191	Ч	5	9					

DH22151	APPLIED PHYSICS	L	Τ	P	С	
11122131	(Common to AD, CS, EE, EC, IT)	3	0	0	3	
COURSE O	BJECTIVES:					
• To en	hance the fundamental knowledge in Physics and its applications	s relev	vant	to		
variou	s Streams of Engineering and Technology.					
UNIT 1	LASERS AND FIBER OPTICS				9	
Lasers: popul	ation of energy levels, Einstein's A and B coefficients derivation	n – re	sona	nt ca	vity,	
optical ampl	ification (qualitative) - Nd-YAG laser - CO2 Laser - E2	xceim	er I	Laser	· _	
Applications.	Fiber optics: principle, numerical aperture and acceptance angle	e - ty	pes o	of op	tical	
fibres (materi	al, refractive index, and mode) - losses associated with optical	fiber	s–Fi	ber o	optic	
communication	on - fibre optic sensors: pressure and displacement - Endoscope.					
UNIT 2	QUANTUM PHYSICS				9	
Black body ra	diation - Planck's theory (derivation)- deduction of Wien's and Ra	yleigl	n Jea	n's la	aw –	
Compton effect	ct: theory and experimental verification - wave particle duality - e	lectro	n dif	fracti	on –	
concept of w	ave function and its physical significance - Schrödinger's way	ve eq	uatio	n –	time	
independent an	nd time dependent wave equations - particle in a one-dimensional	- thre	e di	mens	ional	
potential box-	Fermi distribution function – Effect of temperature on Fermi Function	ı – De	nsity	of er	iergy	
states – carrier	concentration in metals.	<u> </u>				
		1				
UNIT 3	CRYSTAL PHYSICS	1			9	
Single crysta	lline, polycrystalline and amorphous materials – single crystal	s: uni	t cel	I, cr	ystal	
systems, Bra	vais lattices, directions and planes in a crystal, Miller ind	ices	- in	terpl	anar	
distances- co	ordination number and packing factor for SC, BCC, FCC, F	HCP a	and	Diam	lond	
structure (qu	alitative) - crystal imperfections: point defects, line defects	– Βι	irger	vec	tors,	
stacking fault	s	1				
		1				
UNIT 4	WAVES AND OSCILLATIONS	<u> </u>			9	
Travelling wa	aves, Wave equation for string ,Energy and momentum, Reson	ance	Supe	rpos	ition	
& Reflection	n, Standing waves, Harmonic oscillations, Damped harmoni	c mo	otion	- Fo	rced	
oscillations, a	amplitude resonance - Expression for Resonant frequency, El	ectric	al an	ialog	y of	
mechanical of	oscillations, Quality factor and sharpness of resonance, Ele	ctrica	l an	alogy	y of	
mechanical of	scillators				1	
UNIT 5	ELECTROMAGNETIC WAVES				9	
Maxwell's Ec	quations. Vector and Scalar Potentials. Plane waves in Dielectr	ric me	dia.	Poyr	ıting	
Theorem and	Poynting Vector Electromagnetic (EM) Energy Density. P	hysica	al Co	oncep	ot of	
Electromagnetic Field Energy Density, EM Wave Propagation in Unbounded Media , Plane EM						
waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves,						
refractive index and dielectric constant.						
	Total (L:	45): 4	45 PI	ERIC	ODS	
	· · · · · · · · · · · · · · · · · · ·					

TEXT BOOKS:

- 1. Gaur R.K., Gupta S.L, "Engineering Physics", Dhanput Publications, 2015.
- 2. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson, 2006.
- 3. Rajendran V, "Engineering Physics", Tata McGraw Hill, 2009.
- 4. Arumugam M, "Materials Science", Anuradha Publications, 2015.

REFERENCES:

- 1. David Halliday, Robert Resnick, Jearl Walker, "Principles of Physics", 10th Edition, Wiley, 2015.
- 2. Peter Atkins, Julio De Paula, "Physical Chemistry",10th Edition., Oxford University Press, 2014.
- 3. Arthur Beiser, Shobhit Mahajan, Rai Choudhury S,"Concepts of Modern Physics", 7th Edition, McGraw Hill Education, 2017.
- 4. Raghavan V, "Materials Science and Engineering", PHI Learning Pvt. Ltd., 2010

COUR	SE OUTCOMES:	RBT *
Upon s	successful completion of the course, students should be able to:	Level
CO 1	Develop an understanding about photonics and Fiber Optic communication	2
	system	
CO 2	Acquire the knowledge of Quantum mechanics	3
CO 3	Classify and demonstrate the fundamentals of crystals and their defects.	3
CO 4	Gain knowledge in waves and oscillations	2
CO 5	Enable to explore the theory of electromagnetic waves and its propagation	3
*Bloor	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E	valuate-
5. C.		

5; Create-6

COURSE ARTICULATION MATRIX:

COs			1.	0		Р	Os	12	. 1	6			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	-	-	6	2	2	-	1	2	Y	-	-	-	-	
2.	3	3	2	2	2	2	TD	10	as	1	-	2	-	-	
3.	3	-	-	-	-	-	10	-	-	1	-	-	-	-	
4.	3	-	2	-	-	-	-	-	-	1	-	-	-	-	
5.	3	3	2	2	2	-	-	-	-	1	-	2	-	-	
1- We	ak; 2 -	Moder	ate; 3 -	1- Weak; 2 - Moderate; 3 - Strong.											

CV22151	APPLIED CHEMISTRY	LTP	С					
C122151	(Common to AD, CS, EE, EC, IT)	3 0 0 3	3					
COURSE OBJ	ECTIVES:							
1. To make	the students conversant with basic electrochemistry and batteries.							
2. To devel	op an understanding of the laws of photochemistry and basics.							
3. To acqua	aint the students with the basics of nanomaterials, their properties and	uses.						
4. To acqui	ire the basic knowledge on sensors which are essential for the softwa	are engineer	rs					
for devel	lop new devices.							
5. To enabl	the students to understand the types of instruments for material analy	ysis and the	1r					
Working								
	ELECTDOCHEMISTDY	0						
UNIT I Electrodes and	alastrochemical colla clostrodo potential standard alastrodo pot	9 ontial aingl	10					
Electrodes and electrochemical cells – electrode potential, standard electrode potential, sin electrode potential and its determination, types of electrodes – calomel, quinhydrone and gl electrode. Nernst equation - Determination of pH of a solution by using quinhydrone and gl electrode. Electrochemical series and its applications. Batteries – Primary (dry cell) and second batteries (Lead – acid storage battery and Lithium ion battery) and next generation batteries								
UNIT II	PHOTOCHEMISTRY	9						
quenching of photochemistry.	fluorescence and its kinetics, Stern-Volmer relationship. App	blications o	n- of					
UNIT III	NANOCHEMISTRY	9						
Basics and sca molecules, nar nanomaterials, quantum confine	le of nanotechnology, different classes of nanomaterials, Distinct noparticles and bulk materials; size-dependent properties. S fabrication (lithography) and its applications – Basics of nanophed materials (surface plasmon resonance).	ion betwee ynthesis c notonics an	n of 1d					
UNIT IV	CHEMICAL SENSOR	9						
Sensors, sensor	science and technology, types of sensors. Chemical Sensors – charac	cteristics an	ıd					
elements. Electr	cochemical sensors – voltammetry, potentiometric sensors, amperome	etric sensors	s,					
polarization tech	nniques.							
UNIT V	INSTRUMENTATION TECHNIQUES	9						
Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental method - Electromagnetic radiation-UV-visible and IR spectroscopy: principles, instrumentation (Block diagram only) and applications. Separation techniques chromatography: Gas chromatography, liquid chromatography - importance of column technology (packing, capillaries), separation based on increasing number of factor (volatility, solubility, interactions with stationary phase, size)								
	TOTAL (L: 45): 45	PERIODS	5					

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010.
- 2. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 3. B.K.Sharma, "Instrumental Methods of Chemical Analysis", 28th Edition, Goel Publishing House, 2012.
- 4. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed.

REFERENCES:

- 1. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.
- 2. B.R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry" Vishal Publishing Company, 2008.
- 3. John Vetelino, Aravind Reghu, Introduction to Sensors, Taylor & Francis Group, CRC Press, 1st edition, 2010.
- 4. Peter Gründler, Chemical Sensors, An Introduction for Scientists and Engineers, Springer-Verlag Berlin Heidelberg 2007.

COUR Upon s	SE OUTCOMES: uccessful completion of the course, students should be able to:	RBT* Level
CO1	Identify electrochemical cells, corrosion and fundamental aspects of batteries.	2
CO2	Interpret the photochemical reactions and make use of spectroscopic techniques.	2
CO3	Realize the structures, properties and applications of nanoparticles.	2
CO4	Acquire the basic knowledge on chemical sensors to develop an interdisciplinary approach among the students which are essential for the software engineers.	2
CO5	Develop theoretical principles of UV-visible and IR spectroscopy and separation techniques.	3
*Bloon Create-	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create-	6	iluale-3,

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO- 1	PSO- 2
CO1	3	3	3	2	-	-	-	-	-	-	-	3	-	-
CO2	3	3	-	-	I	3	3	-	-	-	-	3	-	-
CO3	3	3	3	-	-	3	3	1	-	-	-	3	-	-
CO4	3	3	3	-	1	3	3	-	-	-	-	3	-	-
CO5	3	3	-	2	-	3	3	-	-	-	-	3	-	-
1 337	1 0	N / 1		C 4										

1- Weak; 2 - Moderate; 3 - Strong.

EE22152	BASIC ELECTRICAL ENGINEERING	L	T	P	C
		3	U	U	3
1 To int	DJECTIVES. roduce basics concepts of electric circuits				
1. 10 m 2. To im	part knowledge in types, construction and working of DC machines and	d			
2. TO III transfe	part knowledge in types, construction and working of DC machines and	u			
3. To stu	dy the working principles of AC machines				
4. To int	roduce the components of low voltage electrical installations and work	ing r	orinc	ciple	es
of Pov	ver converters.	01		r	
5. To stu	dy the different types of measuring instruments.				
UNIT I	BASIC CIRCUITS ANALYSIS				9
Ohm's Law -	- Kirchoff's laws - DC and AC Circuits - Resistors in series and par	alle	cir	cuit	s –
Mesh current	and node voltage method of analysis for D.C and A.C. circuits - Pha	sor	Diag	gran	n –
Power, Powe	r Factor and Energy. Network reduction: Voltage and current division	on ru	ıle, S	Star	to
delta conversi	ion.				
UNIT II	DC MACHINES AND TRANSFORMER				9
Introduction-	ideal and practical transformer, equivalent circuit, losses in transform	iers,	regu	ılati	on
and efficienc	y. Auto-transformer. Construction, working, torque-speed characteri	stic	and	spe	ed
control of sep	arately excited dc motor – Applications.				
	X X X X				
UNIT III	AC MACHINES				9
Overview of	three phase circuits, Generation of rotating magnetic fields, Construction	on an	id w	orki	ng
of a three-pha	ase induction motor, Significance of torque-slip Characteristic, Loss co	omp	onen	nts a	ınd
efficiency, Si	ngle-phase induction motor, Working of synchronous generators.				
		<u> </u>			
UNIT IV	ELECTRICAL INSTALLATIONS AND POWER CONVERTERS				9
Components	of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. T	ype	s of	Wi	res
and Cables,	Earthing. Types of Batteries, Important Characteristics for Batterie	es. E	lem	enta	ary
calculations	for energy consumption. DC-DC buck and boost converters, duty	rati	0 C	onti	ol.
Introduction t	o voltage source inverters.				
UNIT V	MEASURING INSTRUMENTS				9
Types of ins	truments, Construction and working principles of PMMC and mov	ving	iroi	n ty	/pe
voltmeters, a	mmeters and ohm meter. Measurement of frequency. Single phase	dyr	iamo	ome	ter
wattmeter, Us	se of shunts and multipliers (Simple numerical problems on shunts and	id m	ultip	oliei	rs).
Analog Energ	y meters, Smart digital Energy meter and Net meter.	151	OFP		DC
	IUIAL (L:45):	43]	ΓĽΚ	10	03

TEXT BOOKS:

- 1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 3rd edition 2010.
- 2. D.C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2009.
- 3. E. Hughes, "Electrical and Electronics Technology", 10th Edition, Pearson, 2010.

REFERENCES:

- 1. Vincent Deltoro, "Electrical Engineering Fundamentals", Second Edition, Prentice Hall India, 1989.
- 2. S.K.Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson India, 2011.
- 3. William Hayt and Jack E. Kemmerly, "Engineering circuit analysis", Mc Graw Hill Company, 6th edition, 2016.
- 4. Newnes Electrical Power Engineers handbook, II edition, Elsevier publications, 2005.

COLLE

COU	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Analyze DC and AC electrical circuits using Kirchoff's law.	4
CO2	Explain the working principle of electrical machines	4
CO3	Choose the appropriate electrical machines for various applications.	4
CO4	Understand the principles of electrical machines and power converters.	4
CO5	Explain the types and operating principle of measuring instruments.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ex	valuate-
5; Cre	ate-6	

COURSE ARTICULATION MATRIX:

COa	POs													PSOs	
COS	1	2	3	4	5	6	7	8	9	10	/11	12	13	14	
1.	3	3	3	3	3	-	2	-	1	1	-	-	3	3	
2.	3	3	-	-	190	17	TES	5	20	-	-	I	3	3	
3.	3	3	-	-	-	1	4.4	-	-	-	-	-	3	3	
4.	3	2	-	-	-	-	-	_	-	-	-	-	3	2	
5.	3	2	-	-	2	-	-	-	-	-	-	I	3	2	
1- Wea	ak; 2 -	Moder	ate; 3 -	Strong	5.										

IT22101	PROGRAMMING FOR PROBLEM SOLVING	L	Т	P	C
1144101	(Common to IT, AD, CS, EE, EC)	3	0	0	3
COURSE	OBJECTIVES:				
1. Lea	rn the organization of a digital computer.				
2. Lea	rn to think logically and write algorithms or draw flow charts for problem	ıs.			
3. Be e	exposed to the syntax of C.				
4. Be f	familiar with programming in C.				
5. Lea	rn to use arrays, strings, functions, pointers, structures and unions in C.				
UNIT 1	INTRODUCTION TO PROBLEM SOLVING				6
Simple m	odel of a Computer – Hardware – Software – Data Representation	, In	trodu	ictio	n to
Computer	Networks and Internet, Problem Solving Techniques - Bottom up desi	lgn a	nd t	op d	own
design - ar	oplications, Introduction to Algorithms and Flow Chart	U		1	
Suggested	Activities:				
Casestudy	- Understanding the analysis and design of the Student Management Sys	stem	(SM	[S).	
			X ¹	/ .	
UNIT 2	C PROGRAMMING BASICS				12
Introductio	on to 'C' programming – structure of a 'C' program – Conversion of su	mple	alor	orith	m to
program (Constants Variables – Data Types – Expressions using operators in 'C'	– M:	inagi	ing I	nnut
and Outpu	t operations – Decision Making and Branching – Looping statements	- 50	lvin	α sir	nnle
scientific a	and statistical problems	30)1 V 111	5 511	npic
Suggested	Activities				
Casestudy	: Dataset creation and Grade calculation in SMS				
Casestuay		-			T
LINIT 2	ADDAVS AND STDINCS				0
Arrow do	alaration initialization Multi dimensional arraya Strings: Strings va	Cha	rooto	* 0**	9
string oper	rations	Cha	acie	a an	ays,
Surgested	Activities Grade sheet generation in SMS				
Suggesteu	Activities - Orade sheet generation in SWIS				1
LINIT A	EUNCTIONS AND STRUCTURES				0
UNII 4 Need for	How dular and some fination of a second seco		1	Call	<u>9</u>
need for	Modular programming, Functions: definition, can, arguments, can b	y va	uue.	Call	l Dy
A move of	Recursion. structures and unions: Need, declaration, Accessing St	rucu	ire e	eieine	ents,
Arrays of	A stivities Dedesigning SMS in terms of medules				
Suggested	Activities: Redesigning Sivis in terms of modules				1
TINITE E	DOINTEDS AND FILE HANDLING IN C				0
	POINTERS AND FILE HANDLING IN C				9
Pointers: I	ntroduction, pointers to primitive datatypes, pointers to user defined data	type	s: ai	rays	and
structures,	array of pointers, Dynamic Memory Allocation. Files: Read/Write of	b11	nary	and	text
files. Prep	rocessor directives				
Suggested	Activities: Mange I/O in SMS using Files				
	TOTAL (L:4	5): 4	5 PI	E RI(JDS
TEXT BC	OKS:				
1. Pra	adip Dey, Manas Ghosh, "Programming in C", First Edition, Oxford Un	ivers	ity P	ress,	,
20	18.				
2. R 🤇	G Dromey, "How to Solve it using Computer", Pearson,2006				
	21				

REFERENCES:

- 1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, PearsonEducation, 2015.
- 2. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.
- 3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Third Edition, Tata McGraw Hill, 2010
- 4. Reema Thareja, "Programming in C", 2nd ed., Oxford University Press, 2016

COUR	SE OUTCOMES:	RBT *
T	Upon successful completion of the course, students should be able to:	Level
CO1	Identify input and output from the real word problem scenarios.	3
CO2	Represent the design flow using Flow-charts and application logic using pseudo code.	3
CO3	Apply appropriate programming constructs to implement a given design using C.	3
CO4	Debug and customize an existing software developed in C.	5
CO5	Develop a modularised software application In C for the given user requirements	6
*Bloon	i's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-	4;
Evaluat	e-5; Create-6	

COURSE ARTICULATION MATRIX:

COs		17		2.20	11	1	POs	11-					PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	3			-/	-	-	2	3	11	<i>n</i> -/	2	2	2
2.	1	3	2-1	-	-	1		2	3	1-3	7	2	2	2
3.	1	1	3	2	1	-4	21-17	2	3	2	1-	2	2	2
4.	1	- 3	3	2	1	-	10.50	2	3	01	(2	2	2
5.	1	-	3	2	1	1	2	2	3	-/		2	3	3
1- We	ak; 2 -	Moder	ate; 3 -	Strong	2			120	20	/				
				1	161	7 τ	R	60	/					

0

4.1

	C1 PHYSICS LABORATORY L	Т	P
f 1144J	(Common to all Branches except BT) 0	0	2
COURS	E OBJECTIVES:		
• T	o introduce different experiments to test basic understanding of physics con-	cepts	appli
ir	optics, thermal physics and properties of matter.		
LIST OI	EXPERIMENTS: (Any EIGHT Experiments)		
1. a) Det	ermination of Wavelength, and particle size using Laser.		
b) De	ermination of acceptance angle in an optical fiber.		
2. Deterr	nination of velocity of sound and compressibility of liquid – Ultrasonic Inter	fero	meter
3. Deterr	nination of wavelength of mercury spectrum – spectrometer grating.		
4. Deterr	nination of thermal conductivity of a bad conductor – Lee's Disc method.		
5. Deterr	nination of Young's modulus by Non uniform bending method.		
6. Deterr	nination of specific resistance of a given coil of wire - Carey Foster's Bridge	e.	
7. Deterr	nination of Rigidity modulus of a given wire -Torsional Pendulum		
8. Energ	y band gap of a Semiconductor		
9. Deterr	nine the Hysteresis loss of a given Specimen		
10. Calil	ration of Voltmeter & Ammeter using potentiometer.		
	T (2 T 2)	20 D	
	Total (P:30):	30 P	ERIC
REFER	Total (P:30):	<u>30 P</u>	ERIC
REFER 1. "]	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty membe	30 P ers, 2	ERIC 2018.
REFER 1. "]	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member	30 P ers, 2	ERIC 2018.
REFER	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member SE OUTCOMES:	<u>30 P</u> ers, 2	ERIC 2018. RBT
REFER	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member SE OUTCOMES: Upon successful completion of the course, students should be able to:	30 P ers, 2	ERIC 2018. RBT Leve
REFER 1. "] COURS CO 1	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member SE OUTCOMES: Upon successful completion of the course, students should be able to: Analyze the physical principle involved in the various instruments; also relate the principle to new application.	30 P ers, 2	ERI(2018. RBT Leve 4
REFERI 1. " COURS CO 1 CO 2	ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member SE OUTCOMES: Upon successful completion of the course, students should be able to: Analyze the physical principle involved in the various instruments; also relate the principle to new application. Comprehend the Experiments in the areas of optics, mechanics and thermal physic to nurture the concepts in all branches of Engineering.	30 P ers, 2	ERIC 2018. RBT Leve 4 3
REFER 1. "] COURS CO 1 CO 2 CO 3	Total (P:30): ENCE: Physics Laboratory practical manual", 1 st Revised Edition by Faculty member SE OUTCOMES: Upon successful completion of the course, students should be able to: Analyze the physical principle involved in the various instruments; also relate the principle to new application. Comprehend the Experiments in the areas of optics, mechanics and thermal physic to nurture the concepts in all branches of Engineering. Apply the basic concepts of Physical Science to think innovatively and also improve the creative skills that are essential for engineering.	30 P ers, 2	ERIC 2018. RBT Leve 4 3 3

 qualitatively
 qualitatively

 CO 5
 Extend the scope of an investigation whether or not results come out as expected
 3

 *Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4;
 Evaluate-5; Create-6

COURSE ARTICULATION MATRIX

COs		POs											PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	2	-	-	-	3	1	-	2	-	-
2.	3	3	-	3	-	2	-	-	3	1	-	2	-	-
3.	3	3	2	3	2	2	-	-	3	1	-	2	-	-
4.	3	3	-	3	-	-	-	-	3	1	-	2	-	-
5.	3	3	-	3	2	-	-	-	3	1	-	2	-	-
1- Wea	1- Weak; 2 - Moderate; 3 - Strong.													

ME22161	BASIC CIVIL AND MECHANICAL ENGINEERING	L	Τ	P	C						
WIE22101	LABORATORY (Common to CE, EE, EC)	0	0	2	1						
COURSE OI	BJECTIVES:										
1. To pro	wide an exposure and hands on experience to the students on various civi	il an	d me	echar	nical						
engine	engineering processes.										
LIST OF EXPERIMENTS											
1- Carpe	ntry – Preparation of Cross half lap joint and Tee joint using power tools.										
2- Plumb	ing – Basic pipe line connection used in houses with PVC pipes, valve	es, ta	aps,	coup	olings,						
unions	, reducers, elbows.		1	1	U ,						
3- Weldi	ng - Butt joint and lap joint using Electric Arc welding.										
4- Machi	ning – Turning and facing using Centre Lathe.										
5- Sheet	metal work – Making of a cylinder using GI sheet and finishing using riv	ets.									
6- Fitting	– Preparation of metal pieces by grinding and filing to maintain flat side	es at	righ	t ang	les						
7- Drillir	g and Tapping – Drilling of holes precisely and making internal threa	ids t	у Т	appii	ng for						
variou	s sizes.		•		U						
8- Castin	g – Mould preparation using simple solid pattern and casting.										
9- Auton	nation – Basic pneumatic circuit using single and double acting cylinder.										
10-3D pi	inting –Demonstration of printing of simple solids using Additive	Mai	nufa	cturii	ng/3D						
printir	g. / 9 / / / / / / / / / / / / / / /				-						
	TOT	AL:	30 1	PER	IODS						
TEXT BOO	KS:										
1. Jeyach	andran K., Natarajan S. & Balasubramanian S., "A Primer on Eng	ginee	ering	Pra	ctices						
Labor	atory", Anuradha Publications, 2007.										
2. Jeyapo	oovan T., Saravanapandian M. & Pranitha S., "Engineering Practices La	ab N	/Ianu	al",	Vikas						
Publis	hing House Pvt.Ltd, 2006.										
3. Bawa	H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Lim	ited	, 200)7.							
4. Ian G	ibson, David W Rosen, Brent Stucker., "Additive Manufacturing Te	chn	olog	ies:	Rapid						
Protot	vning to Direct Digital Manufacturing", Springer, 2010		U		•						

- Prototyping to Direct Digital Manufacturing", Springer, 2010.
 5. Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th edition, 2009.
 6. Civil & Mechanical engineering practices lab manual, SVCE, 2022.

OUTCOMES:

Û	UTCOMES:	
CO	CO statements	RBT* level
CO1	Students will be able to <i>Prepare</i> various joints used for assembling wooden parts.	3
CO2	Students will be able to <i>Make</i> required pipeline connection by selecting the suitable components	3
CO3	Students will be able to <i>Fabricate</i> components by various manufacturing processes.	3
CO4	Students will be able to <i>Understand</i> the principles of low-cost automation using pneumatic circuits.	2
CO5	Students will be able to <i>Understand</i> the principle of additive manufacturing/3D printing	2
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	8-6	

COURSE ARTICULATION MATRIX

		POs									PSO			
COs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	I	I
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	1	-	-	-	2	-	-	-	-	-	-	-	I	I
CO5	1	-	-	-	2	-	-	-	-	-	-	-	-	-
1- Weak; 2 - Moderate; 3 - Strong.														

	PROGRAMMING FOR PROBLEM SOLVING	L	Τ	P	С
IT22111	0	0	3	15	
	(Common to IT, AD, CS, EE, EC)	v	U	5	
COURSE	DBJECTIVES:				
• Bee	xposed to the syntax of C.				
• Bet	amiliar with programming in C.				
• Lean	n to use arrays, strings, functions, pointers, structures and unions in C	•			
	AERCISES				
1. Usag	ge of Basic Linux commands.				
2. C Pi	ogramming using Simple statements and expressions.				
3. Scie	ntific problem solving using decision making and looping.				
4. Sim	ple programming for one dimensional and two dimensional arrays.				
5. Solv	ing problems using Strings.				
6. C Pi	ogramming using Pointers.				
7. C Pi	ogramming using user defined functions (Pass by value and Pass by re	efere	nce)	•	
8. C P1	ogramming using Recursion.				
9. C Pi	ogramming using structures and union.				
10. C Pı	ogramming using enumerated data types.				
11. C Pı	ogramming using macros and storage classes.				
12. C Pı	ogramming using Files.	1			
13. Dev	elop modularized application for any one of the following scenarios.				
Scenarios:		1			
• Stud	ent Management System	1			
• Stoc	k Management System				
• Ban	king Application				
• Tick	et Reservation System				
	Total (P:4	5): 4	5 PI	ERI	ODS
Hardware/	Software Requirements (For a batch of 30 students)	- / -	-		
Computer w	vith Windows/Linux OS and C compiler -30 No.s				
TEXT BOO	DKS:				
1. Pradip	Dey, Manas Ghosh, "Programming in C", First Edition, Oxford Univ	versit	y Pr	ess,	
2018.					
2. Byron	S Gottfried, "Programming with C", Schaum's Outlines, Third Edition	n, Ta	ta M	cGra	iW
Hill, 20	010.				

COUR	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	LEVEL
CO1	Apply appropriate programming constructs to solve problems.	3
CO2	Design, implement, test and debug programs that use the basic features of C.	5
CO3	Design modularized applications in C to solve real world problems.	6
CO4	Use C pointers and dynamically allocated memory to solve complex problems	4
CO5	Apply file operations to develop solutions for real-world problems	3
*Bloon	1's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ex	valuate-5;
Create-	6	

COURSE ARTICULATION MATRIX:

COs		POs											PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1.	1	3	-	- 0	-	0-	00	- 2	3	1		2	2	2	1	
2.	1	3	-	-	3	-	-	2	3	1	-	2	2	2	1	
3.	1	-	3	2	N1	-	1.1	2	3	0	6-1	2	2	2	1	
4.	1	-	3	2	1	_13	22	2	3	-	1. J.	2	2	2	1	
5.	1	-	3	2	1		245	2	3	N.	10	2	3	3	1	

1- Weak; 2 - Moderate; 3 - Strong.

SEMESTER II

			· · · · · · · · · · · · · · · · · · ·		·						
	அறிவியல் மற்றும் தொழில்நுட்பத்தில் தமிழ்	L	Т	Р	С						
HS22251	Science and Technology in Ancient Tamil Society (Common to all branches)	2	0	0	2						
பாடத்தின்நோக்கங்கள் :											
 அறிவியலில் தமிழின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள். தொழில்நுட்பத்தில் தமிழ் பாரம்பரியத்தின் தாக்கம் பற்றி அறிந்து கொள்வார்கள். 											
Course Objective	s :										
1. They will know	about the use of Tamil in science.										
2. Learn about the impact of Tamil heritage on technology.											
அலகு 1	அறிவியல் தமிழ்				6						
கருவி உருவாக்கம்	் – ஆராய்ச்சி மேம்பாடு – கல்வி வளர்ச்சி – அறிவியல் தமிழ்	சொற்	கள் உரு	வாக்க	ف						
UNIT -1 SCIENT	TFIC TAMIL										
Tool Developmen	t - Research Development - Educational Development - Sc	ientific	Tamil	words	Creation.						
	127 8 1-1	0)									
	கொமில் நட்பக்கில் கமிம்	2	1		24						
		TT C									
சோழர்களின் பெ கோவில்கள் (மாம நாயக்கர் மஹால்,	ரியகோவில்கள் மற்றும் பிற வழிபாட்டுதலங்கள் – பல்ல ல்லபுரம்) - நாயக்கன் கால கோவில்கள் (மதுரை மீனாட்சி செட்டிநாட்டு வீடுகள்.	கட்டு வர்கள் அம்ம	பான் சிற் வன் கோ வன் கோ	்பங்கள பங்கள பில்),	ருடகள் – ர் மற்றும் திருமலை						
உற்பத்தி தொழி பற்றிய அறிவு – தெ	ல் நுட்பம் : கப்பல் கட்டும் கலை, உலோகவியல் ஆய்வுகள நால்பொருள் சான்றுகள் – சுட்டக் களிமண் மணிகள், சங்கு ட	ா், தங் மணிக	கம், த ள், எலுட	ாமிரம் ம்பு மன), இரும்பு னிகள்.						
விவசாயம் மற்று குமுழி தாம்பு ஆகி வடிவமைக்கப்பட்ட பிடித்தல், முத்து கு	ம் நீர்ப்பாசன தொழில்நுட்பம் : அணைகள், ஏரிகள், குள 1யவற்றின் முக்கியத்துவம் – கால்நடை பராமரிப்பு, கால்ந _ கிணறுகள், விவசாயம் மற்றும் வேளாண் செயலாக்கம் ளித்தல், சங்கு சேகரித்தல்.	ங்கள், நடைக ம – கட	மதகுக ளின் ப ல் பற்றி	ள், சே யன்பா ிய அற	ாழர் கால ாட்டிற்காக றிவு – மீன்						
தமிழ் கணினி: 	ਮறிவியல் தமிழ் வளர்ச்சி – தமிழ் கணினி, தமிழ் புத்தக ாலகம், தமிழ் மென்பொருள் உருவாக்கம் – தமிழ் மெய்	ங்களில நிகர் ,	ன் டிஜிப் அகாடப	ட்டல்மா பி – செ	பமாக்கல், சாற்குவை						
தமிழின் எதிர்காலமும் தகவல் தொழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழில்நுட்பமும் – கணினிக்கு தமிழ் கற்று கொடுத்தல் – தமிழ்மொழித் தொழில்நுட்பத்தில் வளங்கள்.											
UNIT -2 TAMIL IN TECHNOLOGY											
Design and Construction Technology : Building materials in Sangam age – Great temples of Cholas and other workship places – Sculptures and Temples of Pallavas (Mamallapuram) – Temples of Nayakas period (Madurai Meenakshi amman temple). Thirumalai Nayakar Mahal. Chetti Nadu Houses.											

Manufacturing Technology : Art of Ship building, Metallurgical studies, Knowledge about Gold, Copper, Iron – Archeological evidences – Terracotta beads, Shell beads, Bone beads.

Agriculture and Irrigation Technology: Dams, Tank, ponds, sluice, Significance of Kumuzhi Thoompu of Cholas period- Animal Husbandry, Wells designed for cattle use. Agriculture and Agro processing, - Knowledge about Sea – Fisheries, Pearl, Conche diving.

Tamil Computing : Development of Scientific Tamil – Tamil Computing, Digitization of Tamil books, Tamil Digital Library, Development of Tamil Softwares – Tamil virtual Academy – Sorkuvai project. Future of Tamil and Information Technology- Globalization and Information Technology-Teaching Tamil for Computer-Resources in Tamil Language Technology.

பாடநூல்கள்:

- 1. டாக்டர், வா.செ .குழந்தைசாமி (1985), "அறிவியல் தமிழ்" , பாரதி பதிப்பகம், 126/108, உஸ்மான் சாலை, தியாகராய நகர் , சென்னை 600017
- 2. சுப. திண்ணப்பன், (1995), "கணினியும் தமிழ் கற்பித்தலும்", புலமை வெளியீடு, 38-B மண்ணத்நதோட்டத் தெரு, ஆழ்வார்பேட், சென்னை 600018
- மு. பொன்னவைக்கோ, (2003), "வளர்தமிழில் அறிவியல் இணையத் தமிழ்", அனைத்திந்திய அறிவியல் தமிழ்க் கழகம், தஞ்சாவூர் 615 005.
- துரை. மணிகண்டன், (2008), "இணையமும் தமிழும்", நல்நிலம் பதிப்பகம், 7-3, சிமேட்லி சாலை, தியாகராய நகர், சென்னை 600 017.

பாடநெறி முடிவுகள் : படிப்பை வெற்றிகரமாக முடித்தவுடன், மாணவர்கள் பின்வருவனவற்றைச் செய்ய முடியும்.

COURSE OUTCOMES : On completion of the course, the student will be able to

பா .வெ . எண் CO No	பாடத்திட்டத்தின்வெளிப்பாடு Course Outcomes	RBT* level
1	அறிவியலில் தமிழ் மொழியின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள் They will know about the use of Tamil language in science	2
2	பல்வேறு தொழில்நுட்பத்தில் தமிழ்மொழியின் தாக்கம் பற்றி அறிந்து கொள்வார்கள் They will learn about the influence of Tamil language in various technologies	3
1- Weak	; 2 - Moderate; 3 - Strong.	

11522252	TECHNICAL ENGLISH	L	T P	' C
П <u>5</u> 22252	(Common to all branches)	3	0 0	3
COURSE OI	BJECTIVES:			
1. Enable	e learners to define and understand technical communication and scient	ific	writin	g
2. Expos	e learners to the technicalities of seminar presentation, group discussi	on,	and pr	iblic
speak	ting		-	
3. Devel	op learners' writing skills for scientific and documenting purposes			
4. Impro	ve learners' ability to draft correspondences for business purposes			
5. Cultiv	ate learners' ability to holistically understand the nuances of job i	nter	views	and
recru	iting process.			
UNIT I				9
Listening - A	V files pertaining to manufacturing processes of products, scientific of	locu	menta	ries:
Speaking - sv	lable division and word stress, intonation, sharing opinions; Reading	- ne	ws art	icles
related to sc	ience and technology: Writing - definitions, instruction, recommendation	enda	tion.	data
interpretation	resume: Grammar -tenses and their aspects, sentence connector	s –	disco	urse
markers, sequ	ential words, active and passive voice, subject-verb agreement.			
UNIT II	191			9
Listening - A	V pertaining to marketing strategies, peer reading and pronunciation.	Sper	aking_	turn
taking sharir	or opinions: conducting and attending a meeting understanding the	ne r	mance	s of
spoken com	nunication among internal audience and external audience. Readin	σ_	analy	tical
documents d	lescriptive documents: Writing - fliers brochures resume - letter	ofa a	nnlica	tion
checklists: Gr	ammar - modal verbs, clauses - types and uses, conditional clauses art	icles	ppnea	,
			<u>.</u>	
UNIT III				9
Listening - A	V related to how to use components scientific description Speaking	- sn	eaking	y for
motivation an	d initiation speaking at a seminar presentation: Reading - scientific jo	urne	ils par	pers:
Writing - Tec	chnical descriptions - process description, purpose and function. Power	rPoi	nt. Go	ogle
forms, user m	anuals: Grammar - phrasal verbs, prepositions, technical and scientific	affiz	xes.	- 0
	,			
UNIT IV				10
Listening - so	cientific debates, crisis management: Speaking - handling conflicts, s	neal	cino a	hout
the loss of l	benefits progress or decline of business identifying the connotat	ive	meani	ngs
Reading- doc	umented evidences of uses and functions of a product review of a product	duct	Writi	ng -
memos follo	w-un letters reports - proposal project progress reports sales repo	rts	renort	s on
industrial vis	its executive summary Grammar - reported speech and tag quest	ions	sent	ence
structure - coi	marative imperative cause and effect infinitive of result	10115	, 50110	ence
LINIT V				8
Listening - A	V of Group discussions papel discussions face to face interviews f	or r	ecruitr	nent
purposes: Spe	eaking - speaking at group discussions, interviewing a personality an	swei	ring at	the
interviews R	eading - WebPages of top notch engineering companies Writing - blo	ggin	σ_ e_m	ails
letter of com	plaint minutes of the meeting. Grammar - one word substitution colle	ocati	ons h	etter
word/sentence	e substitution (renhrasing the content/improvising ideas)	Jour	5115, 0	01101
word, sentence	TOTAL	45 1	PERIO	
	TOTAL.			
1		í –		

REFERENCES:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012.
- 2. Downes, Colm, Cambridge English for Job-hunting, Cambridge University Press, New Delhi. 2008.

3. Murphy, Raymond, Intermediate English Grammar with Answers, Cambridge University Press 2000.

- 4. Thomson, A.J., Practical English Grammar 1 & 2, Oxford, 1986.
- 5. Herbert A J, The Structure of Technical English, Longman, 1965.

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.

- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.

5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

COURS	E OUTCOMES:	RBT*
U	Jpon successful completion of the course, students should be able to:	Level
CO1.	Understand the nuances of technical communication and scientific writing	3
CO2.	Present papers and give seminars	6
CO3.	Discuss in groups and brainstorm	6
CO4.	Draft business correspondences and write for documenting purposes	6
CO5.	Face job interviews with confidence	6
*Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-	4;
Evaluate	-5: Create-6	

COURSE ARTICULATION MATRIX

COs	POs												PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
2.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
3.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
4.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
5.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
1- Wea	k; 2 - N	Modera	te; 3 - 3	Strong.										

N / A 000E1	APPLIED MATHEMATICS II	L	Т	P	С						
MA22251	(Common to all Branches except MR)	3	1	0	4						
COURSE O	BJECTIVES:										
The Student should be made to:											
1. Acquire the concepts of vector calculus needed for problems in all engineering disciplines and											
compute different types of integrals using Green's, Stokes' and Divergence theorems.											
2. Skilled at the techniques of solving ordinary differential equations that model engineering problems.											
3. Extend th	eir ability of using Laplace transforms to create a new domain in	whic	ch it	is ea	sier to						
handle the	problem that is being investigated.										
4. Explain g	eometry of a complex plane and state properties of analytic functio	ns.									
5. Understan	d the standard techniques of complex variable theory so as	to ar	ply	then	n with						
confidenc	e in application areas such as heat conduction, elasticity, fluid dy	ynam	ics a	nd f	low of						
electric cu	rrent.										
UNIT I	VECTOR CALCULUS				(9+3)						
Stokes'theore	em (excluding proofs) – Verification and application in evaluati rals.	ng li	ne, s	surfac	ce and						
		-									
UNIT II	ORDINARY DIFFERENTIAL EQUATIONS A APPLICATIONS	ND]	ITS	(9+3)						
Differential e	quations of first order – Equations of the first order and first degre	e – I	Linea	r equ	ations						
- Higher ord	er linear differential equations with constant coefficients - Me	thod	of v	ariat	ion of						
parameters -	Cauchy's and Legendre's linear equations - Simultaneous first or	rder 1	linea	r equ	ations						
with constant	coefficients - Applications of Linear differential equations - 0	Oscil	lator	y ele	ctrical						
circuit – Defle	ection of beams.										
	VODE THE ZOOV										
UNIT III	LAPLACE TRANSFORM				(9+3)						
Conditions fo	r existence - Transform of elementary functions - Transforms of u	nit st	ep fi	incti	on and						
impulse funct	ions – Basic properties – Shifting theorems - Transforms of deriva	tives	and	integ	rals of						
functions - De	erivatives and integrals of transforms - Initial and final value theory	rems	- Tr	ansf	orm of						
periodic funct	tions. Inverse Laplace transforms - Convolution theorem - Appli	catio	n to	solut	tion of						
linear ODE of second order with constant coefficients using Laplace transformation techniques.											

UNIT IV	ANALYTIC FUNCTIONS	(9+3)
Analytic func	tions - Necessary and sufficient conditions (Cauchy-Riemann equations) - Pro-	perties
of analytic f	unction - Harmonic conjugates - Construction of analytic functions - Con	formal

of analytic function - Harmonic conjugates - Construction of analytic functions - Conformal mapping – Mapping by functions W = Z + C, CZ, 1/Z, Z^2 – Joukowski's transformation- Bilinear transformation.

UNIT VCOMPLEX INTEGRATION(9+3)									
Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series expansions -									
Singular points - Residues - Cauchy's Residue theorem - Application of residue theorem for									
evaluation of real integrals – Use of circular contour and semi-circular contour.									
TOTAL (L:45+T:15): 60 PERIODS									
TEXT BOOKS:									
1. Erwin Kreyszing, Herbert Kreyszing, Edward Norminton, "Advanced Engineering									
Mathematics", 10 th Edition, John Wiley, (2015).									
2. Grewal .B.S, Grewal .J.S "Higher Engineering Mathematics",43 rd Edition, Khanna									
Publications, Delhi, (2015).									
REFERENCES:									
1. Dass, H.K., and Rajnish Verma, "Higher Engineering Mathematics", S.Chand Private Ltd.,									
2011.									
2. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company,									
New Delhi, (2013).									
3. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", 9 th edition, Laxmi									
Publications(p) Ltd., 2014.									
WEB LINK:									
1. <u>https://nptel.ac.in/courses/111/105/111105134/</u>									
2. <u>https://nptel.ac.in/courses/111/105/111105121/</u>									

COURSE	OUTCOMES:	RBT*				
U	pon successful completion of the course, students should be able to:	Level				
CO1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems.	3				
CO2	Solve first order linear, homogeneous differential equations and use series	3				
	solution method to solve second order differential equations.					
002	Determine the methods to solve differential equations using Laplace	3				
005	transforms and Inverse Laplace transforms.					
CO4	Explain Analytic functions and Categorize transformations.	3				
CO5	Perform Complex integration to evaluate real definite integralsusing	3				
CO5	Cauchy integral theorem and Cauchy's residue theorem.					
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev						
Create-6						

COURSE ARTICULATION MATRIX

COs		POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	2	2	-	-	-	-	-	-	-	3	-	-	
2.	3	3	3	3	-	-	-	-	-	-	-	3	-	-	
3.	3	3	3	3	-	-	-	-	-	-	-	3	-	-	
4.	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
5.	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
1- Wea	k; 2 - N	Aodera	te; 3 - S	Strong.											

PHYSICS OF MATERIALS L												
PH22252	(Common to EE and EC)	3	0 0	3								
COURSE O	BJECTIVES:	<u> </u>										
1. To un	1. To understand the physical properties of materials like electrical and thermal conductivity.											
2. To understand various types of semiconducting materials, their applications in the field of												
Engineering and understand the concept of Fermi energy.												
3. To understand the different types of dielectric materials and their applications in												
Engineering fields.												
4. To understand the phenomena of superconductor, properties and their applications and the												
different types of magnetic materials.												
5. Abilit	y to understand different types of Transistors and its characteristics and	to c	onstru	ct								
Basi	c Logic Gates and simplification of circuits using K-map.											
	COLLE											
UNIT I	CONDUCTING MATERIALS			9								
Introduction	- Classification of materials based on the electrical resistivity -	Clas	sical J	Free								
electron theor	ry – Electrical and thermal conductivity of metal (derivation) – Wiede	emar	$n - F_{i}$	ranz								
law – Lorent	z number – Drawbacks of Classical Free electron theory – Ouantum	Fre	e elec	tron								
theory – Fern	i distribution function – Effect of temperature of Fermi function – De	nsitv	of ene	ergy								
states (deriva	tion) – Carrier concentration in metals – Emission of electrons f	rom	meta	s -								
Thermionic e	mission – Photoelectric emission – Field emission	10111	motu									
		<u> </u>										
UNIT II	SEMICONDUCTING MATERIALS			9								
Introduction	- Classification of materials based on band theory (metals semic	ondi	ictors	and								
insulators)	Intrinsic and extrinsic semiconductors Carrier concentration	n in	intri	nsic								
amiconducto	(derivation) Effect of temperature on Fermi level Compound sor	nico	nduato	nsic								
Variation of	algertrial conductivity in intrinsic comiconductors with temperature		Pand	15 –								
determination	of intrinsic semiconductor (derivation and Experiment to determine	\mathbf{C} -	Dallu nd Goi	gap								
Hall affact (d	arivation and experiment) Tunnel diada. Schottky diada		lu Oaj	– (נ								
	envation and experiment). Funner diode, Schouky diode.	<u> </u>										
	DIELECTRIC BRODERTIES OF MATERIALS	<u> </u>		0								
UNIT III	to dialactric materials Dialactric constant Delarization of dialact	mia r	notoria	9								
Turned of Del	arization (Delarization) - Equation of internal fields in solid (One			us - no1								
Types of Pol	alization (Polarisability) - Equation of internal fields in solid (One-	DII	Diala	nai)								
(Derivation)	- Clausius – Mossour Relation for elemental delectric materials	-	Dielec	Junic								
Breakdown -	Frequency dependence of dielectric constant, Dielectric Losses	-	Impor	tant								
applications of	of dielectric material - Ferro and Piezo electricity (Qualitative).											
		<u> </u>		10								
UNITIV	MATERIALS AT LOW TEMPERATURE AND MAGNETIC			10								
	PROPERTIES											
Temperature	dependence of resistivity in superconducting materials - Meissner effe	ct –	Proper	rties								
of supercondu	uctors - Type I and Type II superconductors - BCS theory (Qualitat	ive)	– Low	/ Tc								
and High Tc	e (alloy) superconductors - Ceramic superconductors (oxide superconductors)	cond	uctors)) -								
LaBaCuO, Y	BaCuO, BiSrCaCuO - Josephson's effect (AC and DC) A	ppli	cation	s of								
Superconduct	ors-SQUIDS – CRYOTRON – MAG LEV.											
Dia, Para and	Ferro magnetic material - Domain theory for Ferro magnetic material	s - P	henom	iena								
of Hysteresis	and its applications - Magnetic Semiconductor- Ferrites and its structur	es.										

UNIT V	FUNDAMENTALS OF ELECTRONIC SCIENCE	8							
JFET-Drain and Transfer Characteristics- Electronic Transistor(SET), Spintronics-Electronic									
devices vs Spintronic Devices-Design of Basic Logic gates using transistor, Karnaugh map SoP									
and PoS forms.									
	TOTAL:	45 PERIODS							
TEXT BOO	KS:								
1. Arum	ugam M, "Materials Science", Anuradha Publications, 2015.								
2. Rajen	dran V, "Engineering Physics", Tata McGraw Hill, 2015.								
3. Suresl	n R, Jayakumar V, "Materials Science", Lakshmi Publications 2003.								
4. Palani	samy P.K, "Materials Science", SciTech publications, 2015.								
5. V.K. I	Mehta, Rohit Mehta, Principles of Electronics", 2020								
6. M. M	orris Mano, "Digital Design", 3rd edition, Pearson Education, 2014.								
REFERENC	ES:								
1 0									

- 1. Gaur R.K , Gupta S.L, "Engineering Physics", Dhanpat Publications, 2015.
- 2. Avadhnaulu M.N., Kshirsagar P.G, "A Textbook of Engineering Physics", S. Chand, 2006.
- 3. Kittel C, "Introduction to Solid State Physics", 7th Edition, Wiley Eastern Ltd, 2004.
- 4. Azaroff L.V, Brophy J.J., "Electronic Processes In Materials", McGraw Hill., 1963.
- 5. A.B. Gupta, Nurul Islam, "Solid State Physics and Electronics", 2017.
- 6. John F. Wakerley, "Digital Design-Principle & practice", 3rd edition, , Pearson, 2008.

COUR	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	Level
CO 1	Comprehend the behavior of electrons in solids.	2
CO 2	Demonstrate an understanding of various properties of Semiconducting materials and their internal structure	3
CO 3	Analyse the properties of dielectric materials and apply them in various fields.	3
CO 4	Summarize basics of magnetism and superconductivity. Explore a few of their technological applications.	2
CO 5	Develop an understanding the Fundamentals of Electronic Science and its applications.	3
*Bloon	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-5;
Create-	-6	

COURSE ARTICULATION MATRIX

COs		POs												SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	-	-	1	-	-	-	-	-	1	-	2	-	-
2.	3	-	-	-	-	-	-	-	-	1	-	2	-	-
3.	3	-	-	-	-	-	-	-	-	1	-	2	-	-
4.	3	2	2	1	2	-	-	-	2	1	-	2	-	-
5.	3	2	2	1	-	2	I	-	2	1	-	2	I	I
1- Wea	k; 2 - N	/lodera	te; 3 - S	Strong.										
EC22201	ELECTRON DEVICES	L 3	T 0	P 0	C 3									
---	---	---------------------------	---------------------------	-----------------	------------									
COURSE OF	BIECTIVES:	5	U	U	5									
1. To pro 2. To pro 3. To pro	ovide the necessary skill to understand the basics of semiconductor dio ovide the basics of bipolar junction transistors. ovide the basics of field effect transistors.	de.												
4. To pro 5. To pro	ovide comprehensive understanding of special semiconductor diodes. ovide comprehensive understanding of power and display devices.													
UNIT I	SEMICONDUCTOR DIODE				9									
PN junction of	diode. Current equations. Diffusion and drift current densities. forwa	rd a	and	reve	rse									
bias character	istics, Switching Characteristics, Diode as a Rectifier													
UNIT II	BIPOLAR JUNCTION TRANSISTOR				9									
NPN - PNP – CB, CC – BJ Gummel Poor	Junctions - Early effect - Current equations – Input and Output charac Γ as an amplifier, Hybrid - π model - h-parameter model, Ebers Moll M n-model, Multi Emitter transistor.	teris Iode	stics el-	of C	Ъ,									
UNIT III	FIELD EFFECT TRANSISTORS				9									
its significanc MOSFET, E- DUAL GATE	e – MOSFET - Characteristics - Threshold voltage - Channel length MOSFET- Current equation - Equivalent circuit model and its param MOSFET.	moc eter	lulat s, Fl	ion, INFE	D- ET,									
UNIT IV	SPECIAL SEMICONDUCTOR DEVICES				9									
Metal-Semico device, LASE	onductor Junction- MESFET - Zener diode - Varactor diode - Gallium R diode, LDR, PIN Diode, Point Contact Diode, IGBT.	Ars	enid	e										
					0									
UNIT V	POWER DEVICES AND DISPLAY DEVICES		Cala		9									
LCD, CCD.	TOTAL:	45	Sola		1, DS									
	The second second													
1. Donal Hill In 2. Adel S 6 th Edi 3. Rober Prentio 4. Dr. Sa	d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T ac., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11 th edition, 2013. njay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, ES:	Tata Apj y", 201	Mc plica Peau 2.	Grav utions	w s",									
 Jacob McGra Saliva Editio 	Millman & Christos C. Halkias, "Electronic Devices & Circuits", l aw Hill 2015. hanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and o n, Tata McGraw Hill, 2012.	Four	th E. uits"	Editio ', Th	on, ird									

COUI Upon	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level					
CO1 Gain knowledge of PN diodes.							
CO2	Analyze the characteristics of BJT and use it in designing simple circuits.	4					
CO3	Analyze the characteristics of FET and use it in designing simple circuits.	4					
CO4	Analyze the working principle of Special diodes and use it in designing simple circuits.	4					
CO5	Analyze the working principle of power and display devices and use it in designing simple circuits.	4					
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-					
5; Cre	ate-6						

125 240

COs	POs													SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	1-	2	2	1		1	1	1	2	-	3	3
2.	3	3	A	3	2	(4)`	1	-	1	61	-	3	3
3.	3	3	\leq	3	2	湖	<	0	百百	1	2	-	3	3
4.	3	2	Z	1	2	1-	-)h/	-	1	1	m	-	3	3
5.	3	2	141	17	2	-		-/	1.20	1	m	-	3	3
1- Wea	1- Weak; 2 - Moderate; 3 - Strong.													

tant

EC22202	CIRCUIT THEORY	L 3	Т 0	P 2	C 4
COURSE O	BJECTIVES:	U	v	-	-
1. To and	alyze electrical network with suitable network theorems.				
2. To cla	ssify and analyze series and parallel resonance and coupled circuit.				
3. To det	termine the transient response of RL, RC and RLC circuits for AC and	DC	inpu	ts.	
4. To inf	er the concept two-port networks.				
5. To ske	etch the network topology.				
UNIT I	NETWORK THEOREMS FOR DC & AC CIRCUITS				12
Thevenin The	em,	Max	imu	ım	
Power transfe	er Theorem - Analysis using Dependent Current sources and Voltage so	urce	s.		
	A A GETTELGE				
UNIT II	RESONANCE AND COUPLED CIRCUITS				9
Resonance: S	eries and parallel resonance - Frequency response - Quality factor and	nd B	and	wid	th-
Selectivity-Ba	asic filter design.				
Coupled Circ	cuits: Self and Mutual inductance - Dot rule-Coefficient of coup	oling	_]	Line	ear
Transformer -	- Ideal Transformer - Tuned circuits – Single tuned circuits.				
	IT IT ON ISI				
UNIT III	TRANSIENT ANALYSIS				9
Basic RL and	RC Circuits, The Source- Free RL Circuit, The Source-Free RC Circuits	rcuit	, The	e U	nit
Step Function	n, Transient response of RL, RC and RLC Circuits using Laplace tran	nsfo	rm f	or I	ЭС
and AC input					
UNIT IV	TWO PORT NETWORKS				6
Characterizati	ion of two port networks in terms of Z, Y, ABCD and h parameters. I	nter	conn	ecti	on
of two port ne	etwork, Symmetrical properties of T and π networks.				
		-			
UNIT V	NETWORK TOPOLOGY				9
Network term	ninology - Graph of a network - Trees and Co-Tree - Twigs and Lin	ks -	Inci	iden	ice
Matrix (A), I	Properties of Incidence Matrix (A) - Link Current and Tie-set Matr	ix (B) -	Ти	∕ig
Voltages and	Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis.				
	L:	4 5 I	PER	101	<u>)</u> S
Practical Exe	ercises:				
1. Verification	ns of KVL & KCL.				
2. Verification	ns of Thevenin & Norton's theorem.				
3. Verification	n of Superposition Theorem.				
4. Verification	n of maximum power transfer Theorem				
5. Determinat	tion of Resonance Frequency of Series & Parallel RLC Circuits.				
6. Transient a	nalysis of RL and RC circuits.				
/. Determinat	tion of \angle and Υ parameters for the two port network.				
		20.1	DEP		
			TER	101	<u>75</u> 75
	IOTAL	rek	101	12:	13

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS	:
	Quantity
Resistors, Capacitors, Inductors	Required
Bread Boards	15
CRO (30MHz)	5
Function Generators (3MHz)	5
Multimeter	5
Dual Regulated Power Supplies $(0 - 30)V$	10
Voltmeter and Ammeter	Required
TEXT BOOKS:	
 Hayt Jack Remmerly, Steven Durbin, "Engineering C education, 9th Edition, 2018. Joseph Edminister and Mahmood Nahvi, — Electric C <u>Tata McGraw Hill Publishing Company, New Delhi, Fift</u> REFERENCES: David Bell, "Fundamentals of Electric Circuits", Oxford 1 John O Mallay, Schaum's Outlines "Basic Circuit companies, 2nd Edition, 2011 Robert.L. Boylestead, "Introductory Circuit Analysis" Edition, 2014. Sudhakar, A., Shyammohan, S. P. "Circuits and Net Delhi, 2015. 	 Circuit Analysis", Mc Graw Hill Circuits, Schaum's Outline Series, h Edition Reprint 2016. University press, 7th Edition, 2009. Analysis", The Mc Graw Hill , Pearson Education India, 12th works"; Tata McGraw-Hill New
COURSE OUTCOMES: Upon successful completion of the course, students should be able	RBT* Leve
CO1 A le it il et al de la constant completion of the course, students should be able	
COI Apply suitable network theorems and analyze AC and D	C circuits. 3

CO1	Apply suitable network theorems and analyze AC and DC circuits.	3
CO2	Infer the phenomenon of series and parallel resonance in electrical circuits and understand the effect of magnetic coupling between windings.	2
CO3	Analyze the transient response for any RC, RL and RLC circuits.	4
CO4	Evaluate the two port network parameters.	5
CO5	Sketch the various network topologies.	4
*Bloom	a's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E	valuate-5;
Create-	6	

COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	-	3	3	-	-	-	-	-	-	-	3	3	
2.	3	3	-	3	3	-	-	-	-	-	-	-	3	3	
3.	3	3	-	2	3	-	-	-	-	-	-	-	3	3	
4.	3	3	-	2	2	-	-	-	-	-	-	-	3	3	
5.	3	3	-	1	-	-	-	-	-	-	-	-	3	3	
1- Wea	k; 2 - N	Modera	te; 3 - S	Strong.											

C	V00161	CHEMISTRY LABORATORY	L	Т	Р	С
C	1 22101	(Common to all Branches except AD, CS & IT)	0	0	2	1
CO	URSE OB.	IECTIVES				
The	objective	of the ChemistryLaboratory is to acquaint the students	with	the	e b	asic
pher	nomenon/co	oncepts of chemistry, the student face during course of their study in	n the i	indu	stry	and
Engi	ineering fie	ld.				
1	l. To appr	eciate the need and importance of water quality parameters for indus	trial a	and d	lome	estic
	use. 7 To gain	the knowledge on electrochemical instrumention techniques like po	otentia	aland	l cur	rent
-	measuri	ng used in electrochemistry applications	/tentia	iiuiit	i cui	Tent
	B. To impa	art knowledge on separation of componentsusing paper chromatogram	by.			
4	4. To enha	ince the thinking capability about polymer and properties like molecu	lar we	eight		
T TC'		EDIMENTS (Minimum 8 Experimente)				
	Dotormo	EXIMIENTS (Minimum o Experiments)				
- -	Determi	ination of strength of given hydrochloric acid using pH meter				
	2. Determi	ination of strength of acids in a mixture using conductivity mater				
-). Determin 1 Estimat	ion of iron content of the water sample using spectrophotometer (phe	nanth	rolir		
_	thiocvar	not of non-content of the water sample using spectrophotometer (pite	manun	nom	IC /	
4	5 Determi	ination of total temporary & permanent hardness of water by FDTA	Meth	od		
6	5 Estimat	ion of iron content of the given solution using potentiometer	WICth	ou.		
-	7 Determ ²	ination of alkalinity in water sample				
8	3. Determ	ination of Single electrode potential				
C). Separat	ion of components from a mixture of red and blue inks using Paper c	hroma	atogr	aphy	v.
1	0. Determ	ination of molecular weight of polymer by using Ostwald's/Ubbeloh	de vis	com	eter.	
		TO	TAL	: 15	Peri	iods
DEF	FPENCE	e. III fri				
1	Daniel R	B. Palleros "Experimental organic chemistry" John Wiley & Sons Inc.	New	Vor	·k 20	01
2	Furniss R	S Hannaford A I Smith P W G and Tatchel A R "Vogel's Textboo	k of r	ract	ical	·01.
2.	organic ch	emistry" I BS Singapore 1994	K OI P	nuci.	loai	
3	Jefferv G I	H Bassett I Mendham Land Denny yogel's R C. "Text book of au	antitat	ive	analy	vsis
5.	chemical a	nalysis" FLBS 5th Edn Longman Singapore publishers Singapore	1996	5 5	liidij	, 515
Δ	Kolthoff I	M Sandell F B et al "Quantitative chemical analysis" Mcmillan N	, 1990 Madra	,. 19	80	
	1101110111	YET TIT GO	<u>viuui</u> u	517	00	
	SE OUT	COMES			τ	
On the	successful	completion of the course, students will be able to				Leve
001	Distinguis	sh hard and soft water, solve the related numerical problems	on w	ater.		
COI	purificatio	on and its significance in industry and daily life.		,		4
	Interpret	the knowledge of instruments to measure potential and current	nt rel	lated		
02	parameter	S.				2

CO3 chromatography.CO4 Evaluate the molecular weight of polymer using Ostwald's/Ubbelohde viscometer.

CO3

*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

Demonstrate the basic principle for separation of components using paper

4

4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	-	-	-	3	3	3	1	-	1	2	-	-
CO2	3	2	1	-	-	3	3	3	-	-	-	-	-	-
CO3	3	-	-	-	-	3	3	-	-	-	-	2	-	-
CO4	3	-	-	1	-	3	3	3	-	-	-	-	-	-
1- W	1- Weak; 2 - Moderate; 3 - Strong.													

EC22211	TECHNICAL DRAWING LABORATORY	L 0	<u>Т</u> 0	P 2	C 1							
COURSE OBJEC	COURSE OBJECTIVES:											
1. To draw fr symbols.	we hand sketches of the schematic diagrams of electronic ci	rcuits	using	g stan	dard							
2. To prepare desired scal	the drawing from the rough sketches and/or enlarge/reduce the e.	given	draw	ing to	o the							
3. To draw the	3. To draw the cables and connectors using CAD tools.											
4. To draw exp	4. To draw exploded views of components & assemblies in preparation of service drawing.											
5. To construc	t and verify the electric circuits using simulation tools.											
LIST OF EXPER	IMENTS											
1. Drawing F	undamentals on Electronics											
(a) Hand dr	awing Symbols of all the electronic components.											
(b) Solderin	ng of resistive components.											
2. Drawing of	f standard symbols of basic electronic components using Auto	oCAD	Elec	trical	l							
(a) Resistor	s, Capacitors, Inductors, Potentiometer, Crystal, Switches and Tr	ransfo	rmers									
(b) Active I	Devices - AC and DC sources, PN diode, Zener Diode, Varactor	Diode	e, LEI	D, BJ	Γ,							
JFET, MO	SFET, UJT, SCR, DIAC, TRIAC											
(c) Telepho	ne components - Transmitter, Receiver, Filter, Hybrid Transform	ner										
(d) Logic G	ates – NOT, AND, OR, XOR, NAND, NOR											
3. Drawing ca	ables and connectors using AutoCAD Electrical											
4. Drawing E	lectric circuits:											
(a) Circuit	diagram of a Wein's bridge oscillator											
(b) Circuit	diagram of a Battery eliminator											
(c) Circuit	of Emergency light											
(d) Circuit	diagram of Voltage stabilizers											
(e) Circuit	diagram of Fan regulator											
5. Drawing of	f electronic components - 2D and 3D view											
6. Construction	on and Verification of Electric circuits using simulation tools											
	TO TO)TAL	: 30 F	PERI	ODS							
LIST OF EQUIPM	MENTS FOR A BATCH OF 30 STUDENTS:											
Description of Iter	ms		Qu	antit	y							
PC Desktop			-	10								
Soldering Iron with	accessories			10								
AutoCAD software				10								
TEXT BOOKS:												

- 1. Prof. Sham Tickoo, "AutoCAD Electrical 2020 for Electrical Control Designers", 11th Edition, Tickoo-CADCIM Series, ISBN: 978-1-64057-079-5.
- 2. Gaurav Verma, Matt Weber, "AutoCAD Electrical 2016 Black Book.

COUI Upon	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Perform free-hand sketching of electronic circuits.	3
CO2	Draw the complete circuit with the correct dimensions.	4
CO3	Demonstrate computer-aided drawing for fabricating electronic products.	4
CO4	Project the 2D and 3D views of electronic components.	3
CO5	Construct the electric circuit using SPICE simulator.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluat	.e-5;
Create	-6	

A COLLEGE

COURSE ARTICULATION MATRIX

COs			/	21	POs									PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	1	1.5	2	-	-	-	- 22	3	1	<-/	-	2	1		
2.	3	1	14	1-1	3	1	_	1	3	-	2	-	2	3		
3.	3	1	5	(- <i>9</i>	3	10	1	0-	3		G	-	2	3		
4.	3	1	31	$-\dot{h}_{c}$	3	1 F.,	1	0.0	3	25	11	-	2	3		
5.	3	1	1	- 3	3	1-2	1	-	3	-	\leq	-	2	3		
1- Wea	k: 2 - N	Modera	te: 3 - 9	Strong	1.1				/ 11	1.1	1 111	1				

team of

1- Weak; 2 - Moderate; 3 - Strong

IT'S STA

LABORATORY 0 0 3 1. COURSE OBJECTIVES 1. To be exposed to the characteristics of basic electronic devices. 2. To be exposed to study the behavior of various passive and active electronic components 3. To be familiar with the working of diodes, transistors and their applications. 4. To impart hands on experience on rudimentary engineering practices in Electrical Engineering 5. To understand the Concepts of Solar PV system 6. To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
 COURSE OBJECTIVES To be exposed to the characteristics of basic electronic devices. To be exposed to study the behavior of various passive and active electronic components To be familiar with the working of diodes, transistors and their applications. To impart hands on experience on rudimentary engineering practices in Electrical Engineering To understand the Concepts of Solar PV system To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
 To be exposed to the characteristics of basic electronic devices. To be exposed to study the behavior of various passive and active electronic components To be familiar with the working of diodes, transistors and their applications. To impart hands on experience on rudimentary engineering practices in Electrical Engineering To understand the Concepts of Solar PV system To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
 To be exposed to study the behavior of various passive and active electronic components To be familiar with the working of diodes, transistors and their applications. To impart hands on experience on rudimentary engineering practices in Electrical Engineering To understand the Concepts of Solar PV system To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
 To be familiar with the working of diodes, transistors and their applications. To impart hands on experience on rudimentary engineering practices in Electrical Engineering To understand the Concepts of Solar PV system To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
 4. To impart hands on experience on rudimentary engineering practices in Electrical Engineering 5. To understand the Concepts of Solar PV system 6. To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
 Engineering 5. To understand the Concepts of Solar PV system 6. To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
 5. To understand the Concepts of Solar PV system 6. To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
 6. To familiarize with the operation of DC machines, AC machines and Transformers equip with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
with experimental skills. LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
LIST OF EXPERIMENTS: ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
ELECTRON DEVICES 1. VI Characteristics of PN Diode and PN Diode as a Rectifier 2. Reverse Characteristics of Zener Diode and Zener Diode as a Regulator 3. Input-Output Characteristics of BIT in CE configuration
 VI Characteristics of PN Diode and PN Diode as a Rectifier Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
 Reverse Characteristics of Zener Diode and Zener Diode as a Regulator Input-Output Characteristics of BIT in CE configuration
3. Input-Output Characteristics of BIT in CE configuration
4. Drain and Transfer Characteristics of JFET
5. VI Characteristics of LED and Photo Diode/Photo Transistor
6. VI Characteristics of UJT and SCR
ELECTRICAL MACHINES
1. Residential house wiring using switches fuse indicator lamps and energy meter
2. Load test on single-phase transformer
3. Load test on DC shunt motor
4. Speed Control of DC shunt motor
5. Load test on three phase Induction motor
6. Load test on single phase Induction motor
7. Study of 1kWp Solar PV System with Net meter
TOTAL: 45 PERIOD
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRON DEVICES)
Ouantity
BC107, BC148, 2N2646, BFW10 Required
1N4007. Zener diodes Required
Bread Boards 15
CRO (30MHz) 5
Function Generators (3MHz) 5
Multimeter 5
Dual Regulated Power Supplies $(0 - 30)V$ 10
Voltmeter and Ammeter Required
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRICAL MACHINES)
Quantity
1. Assorted electrical components for house wiring 2 sets
2. 1Kw Solar PV system 1
3. DC Shunt Motor - 1.5kW, 220V, 9A, 1500RPM, 1
4. DC Shunt Motor with Loading Arrangement- 3.5kW, 220 Volts, 18.6
4. DC Shunt Motor with Loading Arrangement- 3.5kW, 220 Volts, 18.6 1 Amps, 1500 RPM

6. Three Phase Induction Motor with Loading Arrangement- 3.7kW, 415V,	1
7.8A, 1430 RPM	
7. Single Phase Induction Motor with Loading Arrangement-1.5kW,	1
230V,9.9A,1440rpm	
8. Single Phase Auto Transformer- 4KVA, 0-270V, 50Hz	2
9. Three Phase Auto Transformer - 12KVA, 0-415V, 50Hz	2
10. MC Voltmeter- (0-300)V	3
11. MC Ammeter- (0-10/20)A	2
12. MC Ammeter - (0-1/2)A	2
13. MI Voltmeter - (0-300/600)V	5
14. MI Voltmeter - (0-75/150)V	2
15. MI Ammeter - (0-10)A	5
16. UPF Wattmeter (300/600V, 5/10A)	4
17. Single Phase Resistive Loading Bank- 5 KW)	2
18. Rheostats - $50\Omega, 5A, 700\Omega, 1.5A, 1000\Omega, 1A$)	Each 2
19. Single phase Energy meter	1
20. Net meter	1
21. Fuse various ranges as per the requirement	Required
22. Wires As per the requirement	Required

TEXT BOOKS: (Electronics Part)

- 1. Jacob Millman & amp; Christos C. Halkias, "Electronic Devices & amp; Circuits", Fourth Edition, McGraw Hill, 2015.
- 2. Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Third Edition, Tata McGraw Hill, 2012.

TEXT BOOKS: (Electricals Part)

- 1. Arora, B.D, "HOUSE WIRING" R.B.Publishers (1999).
- 2. Uppal, S.L; Laroia, J.M "ELECTRICAL WIRING ESTIMATING AND COSTING "Khanna Publishers (2003).
- 3. Theraja, B.L; Theraja A.K, "A TEXTBOOK OF ELECTRICAL TECHNOLOGY VOLUME II: AC AND DC MACHINES "S.Chand publications,(2015).

-2

4. Rai G.D, "Non-conventional Energy Sources", Khanna Publishers (2014).

COUI	RSE OUTCOMES:	RBT *				
Upon successful completion of the course, students should be able to:						
CO1	Learn the characteristics of basic electronic devices.	2				
CO2	Construct, analyze and troubleshoot the designed circuits.	4				
CO3	Implement the various wiring methods.	4				
CO4	Analyze the behavior of DC machines, AC machines and Transformers.	4				
CO5	Evaluate the performance of Solar PV system.	4				
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-				
5; Cre	ate-6					

COs						Р	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	-	-	3	-	-	-	3	-	-	-	2	3
2.	3	2	-	-	3	-	-	-	3	-	-	-	2	3
3.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
4.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
5.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
1- Wea	k; 2 - N	Modera	te; 3 - 3	Strong										

SEMESTER III

MA22358 COURSE OBJ 1. To intro 2. To unde	TRANSFORMS AND RANDOM PROCESSES	LT	P	C
COURSE OBJ 1. To intro 2. To unde		3 1	0	4
1. To intro 2. To unde	IECTIVES:		v	•
2. To unde	duce Fourier series analysis this is central to many applications in end	vineerin	σ	
2. 10 und	erstand the basic concents of the Fourier transform and Z-transform t	echnia	165 2	and
1ts appli	cation in Engineering	coninqu	105 C	
3 To intr	oduce the effective mathematical tools for the solutions of parti	al diffe	erent	tial
equation	ns that model several physical processes	ui uiii	crem	iiui
4 To pro	vide the required Mathematical support in real life problems	and d	leve	lon
probabi	listic models. This can be used in several areas of science and er	ngineeri	ng.	То
acquire	skills in handling situations involving more than one random variable	and fu	nctio	ons
of rando	om variables.	und ru	neur	5115
5 To I	Inderstand and characterize phenomena which evolve with respe	ect to t	ime	in
Probabi	listic manner.			
Tiocuci				
UNIT I	FOURIER SERIES		9)+3
Dirichlet's con	ditions – General Fourier series – Odd and even functions – Half range	e sine s	eries	s —
Half range cosi	ne series –Parseval's identity – Harmonic Analysis	• 5111• 5		, ,
UNIT II	FOURIER AND Z -TRANSFORMS		g)+3
Fourier transfc	prm pair – Fourier sine and cosine transforms – Properties (with	بمر المحجم ما		
round unioro	in pair Tourier sine and cosine dansforms Troperties (with	пош п	root) _ [
Convolution th	eorem – Parseval's identity, Z- Transforms – Elementary properties	nout pi – Inve	roof) erse /) – Z -
Convolution th transform (usin	eorem – Parseval's identity. Z- Transforms – Elementary properties g partial fraction) – Convolution theorem – Solution of difference ed	– Inve – Inve	roof) erse 2 s usi) – Z - ing
Convolution th transform (usin Z - transform.	eorem – Parseval's identity. Z- Transforms – Elementary properties g partial fraction) – Convolution theorem – Solution of difference eo	– Inve – Inve quation	roof) erse Z s usi) – Z - ing
Convolution th transform (usin Z - transform.	eorem – Parseval's identity. Z- Transforms – Elementary properties ig partial fraction) – Convolution theorem – Solution of difference en	– Inve – Inve quation	roof) erse 2 s usi) – Z - ing
Convolution th transform (usin Z - transform. UNIT III	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference ed PARTIAL DIFFERENTIAL EQUATION	– Inve – Inve quation	roof) erse 2 s usi	$\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$
Convolution th transform (usin Z - transform. UNIT III Formation of pa	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard	d types	roof) erse 2 s us <u>9</u> of fi) – Z - ing)+ <u>3</u> irst
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference ed PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogo	d types	roof) erse 2 s usi g g of fi) - Z - ing $\overline{-}$
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference ex- PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogon ations of second and higher order with constant coefficients.	d types	s us <u>9</u> of fi par	- Z - ing +3 irst tial
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogrations of second and higher order with constant coefficients.	d types	roof) erse 2 s us: <u>9</u> of fi part) - Z - ing ing 0+3 irst tial
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV	eorem – Parseval's identity. Z- Transforms – Elementary properties og partial fraction) – Convolution theorem – Solution of difference ed PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogrations of second and higher order with constant coefficients. RANDOM VARIABLE	d types	s usi 9 of fi par	D = Z - ing D + 3 irst tial D + 3
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogenetics ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of	d types distribu	s usi 9 of fi part 9 tions	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} - \frac{1}{3}$
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co Marginal and c	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogenetics ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regression	d types d types distribu	s usi s usi <u>9</u> of fi part <u>9</u> tions	P = Z - ing ing P + 3 irst tial P + 3 s - tral
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem.	eorem – Parseval's identity. Z- Transforms – Elementary properties og partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogen ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regres	d types eneous distribu	s us: 9 of fi part 9 cent	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} + 3$ $\frac{1}{2} + 3$ $\frac{1}{3} + 3$ $\frac{1}{3} - \frac{1}{3}$
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem.	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homogrations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regres	d types eneous distribu	s us: 9 of fi part 9 cent) – Z - ing P+3 irst tial P+3 s – tral
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem.	eorem – Parseval's identity. Z- Transforms – Elementary properties ig partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homog ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint conditional distributions – Covariance – Correlation and Linear regres RANDOM PROCESS	d types eneous distribu	99 99 99 99 99 100 100 100 100 100 100 1	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{2} + \frac{3}{3}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} - \frac{1}{3}$ $\frac{1}$
Convolution th transform (usin Z - transform. UNIT III Formation of partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem. UNIT V Classification -	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homog- ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regres RANDOM PROCESS - Stationary process – Poisson process – Gaussian process - Random	d types eneous distribu ssion –	s us: 9 of fr part 9 1 1 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} - \frac{1}{3}$ $\frac{1}$
Convolution th transform (usin Z - transform. UNIT III Formation of partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem. UNIT V Classification - process - Auto	eorem – Parseval's identity. Z- Transforms – Elementary properties ag partial fraction) – Convolution theorem – Solution of difference en PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homog- ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regres RANDOM PROCESS - Stationary process – Poisson process – Gaussian process - Rand correlation functions.	d types eneous distribu ssion –	s usi 9 9 of fi part 9 tion: Cent 9 9	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} - \frac{1}{3}$ $\frac{1}$
Convolution th transform (usin Z - transform. UNIT III Formation of pa order partial d differential equ UNIT IV Discrete and co Marginal and c limit theorem. UNIT V Classification - process - Auto	eorem – Parseval's identity. Z- Transforms – Elementary properties ig partial fraction) – Convolution theorem – Solution of difference en- PARTIAL DIFFERENTIAL EQUATION artial differential equations – Singular integrals - Solutions of standard ifferential equations - Lagrange's linear equation - Linear homog- ations of second and higher order with constant coefficients. RANDOM VARIABLE ontinuous random variables – Moment generating functions. Joint of onditional distributions – Covariance – Correlation and Linear regres RANDOM PROCESS - Stationary process – Poisson process – Gaussian process - Rand correlation functions. TOTAL: (L:45 + T:15):	d types eneous distribu ssion – dom tei	9 9 of fi part 9 1 tion: Cent 9 legra	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{2} + \frac{3}{3}$ $\frac{1}{2} + \frac{3}{3}$ $\frac{1}{2} + \frac{3}{3}$ $\frac{1}{2} + \frac{3}{3}$
 To intro equation To proprobability acquire of rando To UNIT I 	oduce the effective mathematical tools for the solutions of parti is that model several physical processes. vide the required Mathematical support in real life problems listic models. This can be used in several areas of science and en skills in handling situations involving more than one random variable om variables. Jnderstand and characterize phenomena which evolve with respe listic manner. FOURIER SERIES	al diffe and c ngineeri and fu act to t	erent level ng. nctio ime	tial lop To ons in

- 1. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi 2012.
- 2. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd. 1998.
- 3. Ibe. O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian Reprint, 2007.
- 4. Peebles Jr. P.Z., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill Publishers, Fourth Edition, New Delhi, 2002.

REFERENCES:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10 th Edition, Wiley India, 2011.
- 2. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd , 2007
- 3. Veerarajan. T., "Transforms and Partial Differential Equations", Tata MGraw Hill Publishing Company Ltd., New Delhi, 2012
- 4. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.

Links:

- 1. https://nptel.ac.in/courses/111103021
- 2. http://bme.elektro.dtu.dk/31610/notes/RandomProcess_California.pdf
- 3. http://www.ifp.illinois.edu/~hajek/Papers/randomprocJuly14.pdf

COU	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series.	3
CO2	Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.	3
CO3	Express proficiency in handling higher order Partial differential equations	3
CO4	Reproduce and explain the basic concepts such as probability and random variable and identify the distribution. Acquire skills in handling situations involving more than one random variable	3
CO5	Apply the relationship within and between random processes	3
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Cre	ate-6	

*Cos						P	Os						PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	-	-	-	-	-	-	-	2	-	-
2.	3	3	3	3	-	-	-	-	-	-	-	-	2	2
3.	3	3	3	3	-	-	-	-	-	-	-	2	-	-
4.	3	3	-	-	-	-	-	-	-	-	-	2	2	2
5.	3	3	-	-	-	-	-	-	-	-	-	-	2	2
1-Wea	k; 2 - N	Aodera	te; 3 - S	Strong.										

EC22301	OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES	L	Τ	P	C
	S - 110 0 1 0 1	3	0	0	3
COURSE OB.	JECTIVES:				
1. To acqu	ire knowledge on core programming basics of C++ language.				
2. To poss	sess a fundamental understanding of an Object-Oriented Programm	ning	con	icep	ts.
3. To deep	pen the empirical knowledge on linear and non-linear data structure	es.			
4. To dev	elop logical thinking abilities to relate real world problems with	data	a str	ructu	ıre
concept	ts in an object-oriented style.				
5. To be fa	amiliar with different sorting and searching algorithms.				
UNIT I	DATA ABSTRACTION & OVERLOADING				9
Overview of C-	++ - Structures - Class Scope and Accessing Class Members - Refer	ence	e Va	ıriab	les
– Initialization	- Constructors - Destructors - Member Functions and Classes - Frie	end	Fun	ctio	n –
Dynamic Mem	ory Allocation - Static Class Members - Proxy Classes - Overloa	ding	g: Fi	uncti	ion
overloading and	l Operator Overloading.				
UNIT II	INHERITANCE & POLYMORPHISM				9
Base Classes a	nd Derived Classes - Protected Members - Casting Class pointers	s an	id N	1eml	ber
Functions – O	verriding - Public, Protected and Private - Inheritance - Types of	of I	nher	ritan	ce-
Constructors an	d Destructors in derived Classes - Implicit Derived - Composition	Vs. 1	Inhe	ritar	ice
- Virtual func	tions - This Pointer - Abstract Base Classes and Concrete Cla	sses	_	Virt	ual
Destructors – D	ynamic Binding				
UNIT III	LINEAR DATA STRUCTURES				9
Abstract Data	Types (ADTs) - List ADT - Array based linked list implementation	tion		Sing	gly
linked lists – D	oubly linked list - Polynomial Manipulation - Stack ADT – Evalua	ting	arit	thme	etic
expressions- Qu	eue ADT – Circular Queue implementation.				
	Call T Call				
UNIT IV	NON-LINEAR DATA STRUCTURES				9
Trees – Binary	Trees - Binary tree representation and traversals - The Search Tree	AD)T -	Bina	ary
Search Trees-	- Application of trees - Graph and its representations - Graph	1 Ti	ave	rsals	; —
Representation	of Graphs - Breadth-first search - Depth-first search- Dijkstra's	s sh	orte	st p	ath
algorithm.	441				
UNIT V	SORTING AND SEARCHING				9
Insertion sort -	Shell sort - Selection Sort - Bubble sort - Merge sort - Quick sort	- Ra	ıdix	Sor	t -
Searching: Line	ear search – Binary Search.				
	TOTAL:	<u>45 I</u>	PEF	lOI	DS
TEXT BOOK	S:				
1. Deitel and D	eitel, "C++, How To Program", Tenth Edition, Pearson Education	, 20	17.		
2. Mark Allen	Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edi	tion	, Pe	arso	n
Education, 2	017.				

REFERENCES:

- 1. Bjarne Stroustrup, "The C++ programming language", Fourth Edition, Addison Wesley, 2018.
- 2. Bhushan Trivedi, "Programming with ANSI C++, A Step-By-Step approach", Oxford University Press, 2012.
- 3. Goodrich, Michael T., Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", Second Edition, Wiley. 2011.
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2009.

COU	RSE OUTCOMES:	RBT				
Upon successful completion of the course, students should be able to:						
CO1	Read, Write and Execute simple C++ programs.	2				
CO2	Choose appropriate object-oriented programming principles and propose novel solution to solve computational problem.	3				
CO3	Understand the core data structures like lists, stack and queue using C++.	2				
CO4	Design and implement non-linear data structures using C++ programs.	3				
CO5	Discuss different sorting and searching techniques to organizing the large amount of data.	3				
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-				
5; Cre	ate-6					

COURSE ARTICULATION MATRIX

*COs		1	1	1	1.11	P	Os	-	1	. /	201		PS	SOs
	1	2	3	4	5	6	7	8	9	10	<u>_11/</u>	12	13	14
1.	3	3	1-0	1-1	1	-	E.	-	2	3		3	-	3
2.	3	3	2	01	1	- 10	1		3	-	-	3	3	3
3.	3	2	2	0	2	-	K	~	2	3	-	3	3	-
4.	3	2	-	-	19	17	TET	5	200	/-	-	3	-	3
5.	3	3	-	-	-	1	4.4	-	-	3	-	3	2	3
1- Weal	k; 2 - N	Aodera	te; 3 - S	Strong.		100								

U/Um

EC22302	DIGITAL SYSTEM DESIGN	L	T 0	P 0	C 3
COURSE OB	IECTIVES	3	U	U	3
1. To und	erstand Boolean algebra and illustrate boolean expression simplificati	on us	sing		
Karnau	gh ma	on ac	,		
2. Design	combinational circuits using logic gates.				
3. Describ	be latches, flip flops, registers and counters.				
4. Investig	gate and design synchronous and asynchronous sequential circuits.				
5. Examir	he the applications of digital circuits.				
UNIT I	DIGITAL FUNDAMENTALS				7
A review of B	oolean algebra and minimization using Boolean postulates-minterms	and	max	terr	ns,
SOP, POS- M	inimization of Boolean expression using Karnaugh's map: 3 variabl	es, 4	var	iab	les
and 5 variables	s-Don't care combinations-Implementation of Logic Functions using	gates	s, N/	AN	D–
NOR impleme	ntation	-			
UNIT II	COMBINATIONAL CIRCUIT DESIGN				9
Arithmetic ope	erations: Half adder, full adder, ripple carry adder, lookahead adde	r, BC	CD a	add	er-
subtractor-bina	ry multiplier-Barrel shifter-Selection logic: multiplexer, demultipl	exer.	, de	cod	er,
encoder, priori	ty encoder.				
	The states in the				
UNIT III	SEQUENTIAL CIRCUIT DESIGN				9
Latches and F	lip flops: SR, JK, T, D and Master slave flipflop, excitation tables	and	exci	itati	on
equations,reali	zation of one flip flop using other flip flops-Counters: Syn	chro	nou	s a	nd
asynchronous	counters- Shift registers-Types, Universal shift registers.				
UNIT IV	FINITE STATE MACHINE: SYNCHRONOUS AND ASYNCHRONOUS				10
FSM-Mealy n	achine, Moore machine-state machine analysis, state diagram, sta	te as	ssigr	nme	nt,
state minimiza	tion-Asynchronous logic design- Hazards-types and design of haza	rd fr	ee c	ircu	iit,
cycles and race	e conditions- race free assignment.				
	00				
UNIT V	APPLICATIONS OF DIGITAL CIRCUITS				10
Design of seq	uence detector, code converters and comparator-design of Serial a	dder	-des	ign	of
digital circuits	using PLA, PAL, ROMs			U	
Case study-AL	U, MAC and pipelined adder.				
	TOTAL:	45 F	PER	IO	DS
TEXT BOOK	S:	•			
1. Morris	Mano M and Michael D. Ciletti, Digital Design, Pearson, Fifth Editio	n, 20)15		
2. S. Lee,	"Digital Circuits and Logic Design," 1st Ed., Prentice Hall India, 200	8.			
3. D. P. I	Leach, A.P. Malvino and G. Saha, "Digital Principles and Applicat	tions,	," 8	th E	d.,

McGraw Hill Education, 2014.

REFERENCES:

- 1. Charles H. Roth and Larry M. Hanny, Fundamentals of Logic Design, Cengage learning, Sixth Edition, 2013
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, Digital Integrated circuits: A design perspective, Pearson, Second Edition, 2016.
- 3. Kenneth L. Short, VHDL for Engineers, Prentice Hall, 2009.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011

COUI Upon	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Examine different methods used for simplification of Boolean expressions.	2
CO2	Design combinational logic circuits using logic gates.	3
CO3	Design sequential logic circuits using flipflops.	3
CO4	Investigate and design synchronous and asynchronous sequential circuits.	4
CO5	Apply the digital circuits for solving real world problems and implement the logic function using different types of PLD.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Cre	ate-6	

*COs		0	12	61	100	P	Os		-400	15	2/		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	-	<u>- 1</u>	-	-	4	Ś	-	1	-	2	2	-
2.	3	2	3	3	2	-	-	2	10	/	-	2	3	2
3.	3	2	3	3	2	44	R	2	~	° -	-	2	3	2
4.	3	2	3	3	2	-	2	-	- ⁻	-	-	2	3	2
5.	3	3	3	3	2	1	2	2	-	-	-	3	3	2
1- Wea	k; 2 - N	Aodera	te; 3 - 3	Strong.										

ELECTROMAGNETIC FIELDS AND WAVES

L	Τ	Р	С
3	0	0	3

9

9

COURSE OBJECTIVES:

EC22303

- 1. To introduce students with different coordinate systems and to understand the Theorem, Laws, Principle and their related problems over Static Electric Fields.
- 2. To learn the basic laws in Static Magnetic Field and able to find various parameters with the related problems.
- 3. To know how the Electric Field is applied in Dielectrics with various equations and applications and to understand how the Magnetic Field works with Ferromagnetic Materials.
- 4. To analyze how the Time is Varying in both Electric and Magnetic Fields with various derivation.
- 5. To understand and analyze the Electromagnetic Field distribution which forms the basis for advanced subjects related to Electromagnetic Field.

UNIT I STATIC ELECTRIC FIELD

Review of Co-ordinate System-Introduction to line, Surface and Volume Integrals-Meaning of Stokes theorem and Divergence theorem.

Coulomb's Law and Electric field Intensity-Principle of Superposition-Electric field due to discrete charges-Electric field due to continuous charge distribution-Electric field due to charges distributed uniformly on an infinite and finite line-Electric Field on the axis of a uniformly charged circular disc-Electric Field due to an infinite uniformly charged sheet. Electric Flux Density-Gauss Law and its applications.

UNIT II STATIC MAGNETIC FIELD

The Biot-Savart Law-Magnetic Field intensity due to a finite and infinite wire carrying a current I-Magnetic field intensity on the axis of a circular and rectangular loop carrying a current I-Ampere's circuital law-Force on a wire carrying a current I placed in a magnetic field-Torque on a loop carrying a current I

UNIT III	ELECTRIC AND MAGNETIC FIELDS IN MATERIALS	9
Poisson's and Boundary con	I Laplace's equation-Capacitance of various geometries using Lapla additions for electric fields-Point form of ohm's law-Continuity equation	ce's equation- for current.
Inductance of permeability-	of loops and solenoids-Energy density in magnetic fields-magn Magnetic boundary conditions.	etization and
	TIME VADVINC ELECTRIC AND MACNETIC ELEI DO	0
UNITIV	TIME VARYING ELECTRIC AND MAGNETIC FIELDS	9
Maxwell's Ec	juation from Ampere's Law, Faraday's Law and Gauss Law in both p	oint form and
Intergral form	and Time Varying Potentials.	

UNIT V **ELECTROMAGNETIC WAVES** 9 Poynting Vector-Instantaneous Average and Complex Poynting Vector-Wave Equation-Uniform plane waves-Maxwell's equation in Phasor form-Plane waves in free space and in a homogeneous

material-Skin	effect.	
	TOTAL:	45 PERIODS

- 1. David K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Delhi, 2004.
- 2. John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", McGraw Hill Book Co,2005.
- 3. W H.Hayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill, 7th Edition 2007.
- 4. M.N.O.Sadiku and S.V. Kulkarni, Principles of electromagnetics, 6th ed., Oxford(Asian Edition), 2015

REFERENCES:

- 1. E.C. Jordan & K.G.Balmain "Electromagnetic Waves and Radiating Systems." Prentice Hall of India 2nd edition 2003.
- 2. Narayana Rao. N: "Engineering Electromagnetics" 4th edition, Prentice Hall of India, New Delhi, 2006.
- 3. Electromagnetics Joseph Edminister Schaum's Outline Series, TMH

COU	RSE OUTCOMES:	RBT *
Upon	successful completion of the course, students should be able to:	Level
CO1	Apply the fundamentals of different coordinate systems to relate the electromagnetic concepts in Engineering.	3
CO2	Evaluate the physical quantities of electromagnetic fields in different media.	4
CO3	Analyze the boundary conditions for different media and to design the storage devices.	3
CO4	Justify concepts of electromagnetic waves means of transporting energy in dielectric medium.	4
CO5	Analyze the concept of Plane waves in homogeneous medium.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

*COs		POs										PS	SOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	-	1	2	45	-16	/	2	-	2	3	-
2.	3	3	3	-	-	2		-		2	-	2	3	-
3.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
4.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
5.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
1- Wea	ak; 2 -	Moder	ate; 3 -	Strong	5.									

EC22304	ELECTRONIC CIRCUITS	L 7	T P 0 0	C 3
COURSE O	BJECTIVES:		0 0	
1. To l	earn about biasing of BJT and FET circuits.			
2. To u	inderstand the design and working principle of BJT and FET.			
3. To u	inderstand the small signal analysis of BJT and FET.			
4. To s	tudy about feedback amplifiers.			
5. To u	inderstand the analysis and design of power amplifier and tuned amplif	ier.		
UNIT I	TRANSISTOR BIASING			9
BJT Biasing	Circuits - Types, Q Point, Bias Stability, Stability factors- Concept of	of DC	and	AC
load lines, Fix	king of operating point. Biasing methods for JFET and MOSFET.			
	COLLES			
UNIT II	BJT AMPLIFIERS			7
Transistor an	plifying action – small signal analysis of CE amplifier – AC load	line –	- Vol	tage
swing limita	tions. Darlington amplifier, Cascaded stages - Cascode amplifier	- F	reque	ency
response of C	E amplifier. Bandwidth of Single Stage and Multistage Amplifiers.		-	•
	1.21			
UNIT III	JFET and MOSFET Amplifiers			9
Small signal	analysis of MOSFET and JFET- Common Source amplifiers-	Voltag	ge sv	ving
limitations- S	ource follower and Common gate amplifiers and BIMOS amplifiers.	L.	-	U
UNIT IV	FEEDBACK AMPLIFIERS AND OSCILLATORS			10
Advantages o	f negative feedback – Voltage / Current Series, Shunt feedback ampl	ifiers-	- Post	itive
feedback – C	onditions for oscillations, Phase shift, Wien bridge, Hartley, Colpitt	t's and	d Cry	/stal
oscillators.				
UNIT V	POWER AMPLIFIERS AND TUNED AMPLIFIERS			10
Power amplif	iers- Types. Analysis and Types of Class A, Class B, Class AB. Sma	ll sig	nal tu	ined
amplifiers –	Analysis of capacitor coupled single tuned amplifier – double tune	ed an	nplifi	er –
Stagger tuned	amplifiers Stability of tuned amplifiers – Neutralization – Hazeltine	neut	raliza	tion
method.	Opt me tao			
	TOTAL:	45 PI	ERI(DDS
TEXT BOO	KS:			
1. David	A. Bell, Solid state Pulse Circuits, PHI, 4 th Edition 2007.			
2. Robert	L Boylestead and Louis Nashelsky, "Electronic Devices and circuit the	eory",	Pear	son,
Tenth e	edition 2009.			
3. Sedra a	and Smith, "Micro Electronic Circuits"; Sixth Edition, Oxford University	ty Pre	ess, 20)11.
REFERENC	ES:			
1. Millma	n and Halkias. C., Integrated Electronics, TMH, 2007.			
2. S.Saliv	ahanan, N. Suresh Kumar and A. Vallava Raj, "Electronic Devices and	l circu	uits",	

- S.Salivananan, N. Suresh Kumar and A. Valiava Raj, Electronic Devices and circuits, TMH, 2nd Edition 2008.
 Spencer R. R. and M. S. Ghausi, Introduction to Electronic Circuit Design, Pearson, 2003,
 Schilling and Belove, Electronic Circuits, 3rd Edition, TMH, 2002.

4
r
4
4
4
4
ıluate-
ılu

COLLEGE

COURSE ARTICULATION MATRIX

*COs			1	NY	/	P	Os	221	1	0.			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	1.9	3	3			-222	1-0	1	1-1	2	3	3
2.	3	3	3	3	3	-	-	-	3.5	-	2	2	3	3
3.	3	3	3	3	3	10	1	0-	11-2	-)	0	2	3	3
4.	3	2	31	3	3	1 F.,	1	1	1.00	20	-	2	3	3
5.	3	2	1	3	5 (11-2	2	-	L-fil-	<u> </u>	\leq	2	3	2
$1 W_{oo}$	1-2 N	Andera	to: 3 (Strong			- JA &				1 177			

1- Weak; 2 - Moderate; 3 - Strong.

EC22305	SIGNALS AND SYSTEMS	L	T	' P	C				
COURSE O	BJECTIVES:								
1. To u	nderstand the fundamentals of signals & systems								
2. To an	alyze continuous time signals in Fourier and Laplace domain								
3. To ar	nalyze discrete time signals in Fourier and Z domain								
4. To st	udy the characteristics of continuous time systems								
5. To st	udy the characteristics of discrete time systems								
UNIT I	FUNDAMENTALS OF SIGNALS AND SYSTEMS				9				
Signals: Cont	inuous time and Discrete time - Elementary signals - Basic operations of	on si	gn	als-					
Signal proper	ties – Periodicity, Deterministic and Stochastic, Energy & Power								
Systems: Con	ntinuous time and Discrete time - System properties – Linearity:	addi	itiv	/ity	and				
homogeneity,	Time-invariance, Causality, Stability, Invertibility.								
UNIT II	ANALYSIS OF CONTINUOUS TIME SIGNALS				9				
Continuous T	ime Fourier Transform (CTFT) - Periodic and Aperiodic signals - Co	nve	rg	ence	of				
CTFT - Prop	perties: Linearity, Symmetry, Time shifting, Time scaling, Parseva	al's	th	eore	em,				
Convolution.					,				
Laplace Tran	sform - Unilateral and Bilateral Laplace Transform - Region of C	onv	erg	genc	e -				
Properties: Li	inearity, Symmetry, Time shifting, Time scaling, Initial and Final va	lue	th	eore	m,				
Convolution,	Inverse Laplace Transform.								
UNIT III	LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS				9				
Differential E	quation - Impulse response - Convolution integrals and its properties	- A	na	lysis	of				
systems using	Fourier and Laplace transforms: Stability and Causality - Frequer	ncy	re	spon	se,				
Impulse respo	onse and Transfer function of LTI systems.	•							
UNIT IV	ANALYSIS OF DISCRETE TIME SIGNALS				9				
Sampling and Discrete Time shifting, Freq Z -Transform	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Synuency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time	ng: nme nme	ali try rsa	iasin ′, Ti al, T	g - me fime				
scaling, Time	e shifting, Differentiation, Convolution – Inverse Z - transform -	Re	ela	tion	ship				
between DTF	T and Z transform				-				
UNIT V	LINEAR SHIFT INVARIANT DISCRETE TIME SYSTEMS				9				
Difference eq	uation – Convolution sum and its properties - Interconnection of L	SI S	ys	tem	3 —				
Analysis of l	LSI systems using DTFT and Z transform: Stability and Causality	- F	re	quer	icy				
response, Imp	ulse response and Transfer function of LSI systems								
	TOTAL: 4	5 P	El	XIO	DS				

- 1. Alan V Oppenheim, Alan S Wilsky, and S Hamid Nawab, "Signals and Systems", Pearson, 2013.
- 2. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

REFERENCES:

- 1. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2008
- 2. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2012.
- 3. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2014.

COLLA

4. Simon Haykin, Barry Van Veen, "Signals and Systems", Wiley, 2003

COUL	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Categorize signals and systems based on their properties.	3
CO2	Analyze the characteristics of continuous time signals using Fourier and Laplace transform.	4
CO3	Characterize the Linear Time Invariant systems in time and frequency domain.	3
CO4	Analyze the characteristics of discrete time signals using Fourier transform and Z transform.	4
CO5	Characterize the Linear Shift Invariant systems in time and frequency domain.	3
* Bloo 5: Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

COURSE ARTICULATION MATRIX

*COs	POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	71	1	10	2	/-	-	1	3	3
2.	3	3	3	3	3	1	4-(1	1	2	-	-	1	3	3
3.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
4.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
5.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
1- Weak	1- Weak; 2 - Moderate; 3 - Strong.													

12

EC22311	ANALOG AND DIGITAL CIRCUITS LABORATORY	L	<u>Т</u> 0	<u>Р</u> 3	C 15			
COURSE OBJEC	TIVES:	U	U	5	1.5			
Analog:								
1. To study the	e frequency response characteristics of BJT and FET amplifiers							
2. To learn the characteristics of IGBT and its application								
3. To design low and high frequency oscillators								
4. To simulate various analog circuits using SPICE								
Digital:								
5. To study the fundamentals of combinational and sequential circuits								
6. To design, i	mplement and verify the functionality of various digital circuits							
LIST OF EXPERI	MENTS							
ANALOG CIRCU	ITS COLLEGE VA							
1. Frequency r	esponse of CE and CS amplifier							
2. Frequency r	esponse of series/shunt feedback amplifier							
3. Design of si	ngle tuned amplifier							
4. Design of lo	w and high frequency oscillator							
5. Design an a	pplication using IGB1							
	The dency response of CE and CS amplifier using SPICE	-						
DIGITAL CIRCU	115							
1. Implementa 2. Implementa	tion of desimal adder							
2. Implementa 3. Implementa	tion of logic design using multiplexer/decoder							
J. Inplementa A Data transfe	r using shift register							
5 Design of co	i using sinit register							
6. Design of se	equence detector							
CHALLENCINC	EXPERIMENTS (Any one)							
1 Blinking I F	D using active and passive components							
2 Design of B	uzzer using Counter							
3. Automatic N	Night Light using LDR							
4. Simple Wate	er level indicator using active and passive components							
	TC	TAL	: 45 F	FRI	ODS			
	41 41 4			2111	020			
LIST OF FOLIP	AENTS FOR A BATCH OF 30 STUDENTS:							
Description of Iten			Ou	antit	v			
CRO (Min 30MHz))		<u> </u>	15	J			
Signal Generator /F	function Generators (2 MHz)			15				
Dual Regulated Pov	ver Supply $(0 - 30V)$			15				
Digital Multimeter			5					
LCR Meter 5								
Standalone desktops PC 10								
SPICE Circuit Simulation Software 15								
IC Trainer Kit	IC Trainer Kit 15							
Bread Boards				25				
ICs 7400/ 7402 / 74	04 / 7486 / 7408 / 7432 / 7483 / 74150 /74151 / 74147 / 7445 /		25	Each	1			

7476/7491/ 555 / 7494 / 7447 / 74180 / 7485 / 7473 / 74138 / 7411 / 7474	

- 1. Robert L Boylestad, Louis Nashelsky, Lab Manual to accompany "Electronic Devices and Circuit Theory", 11th Edition, Pearson Education, 2012
- M. Morris Mano, Michael D. Ciletti, "Digital Design", Global Edition, Pearson Higher Education & Professional Group, 2018

COURSE OUTCOMES:						
Upon	successful completion of the course, students should be able to:	Level				
CO1	Design and analyze the frequency response characteristics and bandwidth of various amplifiers using BJT & FET and using simulation tool	4				
CO2	Analyze the characteristics of tuned amplifiers and IGBT	4				
CO3	Design low and high frequency oscillators	4				
CO4	Design, implement and verify the functionality of combinational digital circuits	4				
CO5	Design, implement and verify the functionality of sequential digital circuits	4				
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eval 5; Create-6						

COs	5				POs								PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	3	3	3	1	1		-	-/	B	2	3	3	
2.	3	3	3	3	3	1	1	1	<u> </u>	1	5/	2	3	3	
3.	3	3	3	3	3	1	1	1	-	10	1	2	3	3	
4.	3	3	3	3	3	10		1	/	1-1	/-	2	3	3	
5.	3	3	3	3	3			1	2	1	-	2	3	3	
1- Wea	k; 2 - N	Aodera	te; 3 - 9	Strong.	19	T	TD	57	au	/					
1 Wea	K, 2 1	noucra	ic, 5 i	Strong.			42	1 4	-						

EC22312	OBJECT ORIENTED PROGRAMMING AND DATA	L	Т	Р	С			
EC22312	STRUCTURES	0	0	3	1.5			
COURSE OBJEC	TIVES:							
The students should	The students should be made:							
1. To be familiar with good programming design methods, particularly in Bottom- up design.								
2. To understa	nd Object-oriented methodology.							
3. To develop	C++ programs for data structures and its applications.	mtad a	4-1-					
4. To relate rea	a different sorting and sourching techniques	ented s	style.					
LIST OF FXPFR	MENTS							
$\frac{1}{1} \text{Write } C + + 1$	Programs for							
i. White Criri	Prime number generation							
ii	Factorial with and without recursion							
iii.	Bank account using Constructor and destructor.							
iv.	Static data member and member function.							
v.	Friend Function.							
vi.	Area and of a circle, square, rectangle and triangle using func	ction of	overlo	ading				
vii.	Operator Overloading							
viii.	Inheritance – Single, Multiple, Multilevel, Hybrid and Hierar	chical	l					
ix.	Virtual Function	()						
2. Array implei	nentation of List ADT.							
3. Linked list in	nplementation.							
4. Doubly Link	ed list implementation.							
5. Application	of List - Polynomial Manipulation							
6. Stack ADT -	Array and linked list implementations.							
7. Application	of Stack:							
i	. Evaluation of Arithmetic Expressions							
ii	. Converting Decimal to Binary							
8. Queue ADT	 Array and linked list implementations. 							
9. Binary Searc	h Tree with Tree traversal Techniques – Preorder, Post-order an	d In-c	order.					
10.Graphs - Bre	adth-first search and Depth-first search.							
11.Sorting – Ins	ertion, Merge and Quick sort.							
12.Searching –	Linear and Binary Search.							
	TO	TAL	: 45 I	PERI	ODS			
LIST OF FOUIP	TENTS FOR A BATCH OF 30 STUDENTS.							

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:	
Description of Items	Quantity
Standalone desktops with C++ compiler	30

- 1. Deitel and Deitel, "C++, How To Program", Tenth Edition, Pearson Education, 2017.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edition, Pearson Education, 2017.

COURSE OUTCOMES:						
Upon successful completion of the course, students should be able to:						
CO1	Create C++ programs to implement Classes & Objects, friend function, constructors & destructors.	2				
CO2	Design and implement various forms of inheritance and polymorphism	3				
CO3	3 Deploy various data structure concepts like linked lists, stacks, queues, trees and graphs using C++ program.					
CO4	Analyze real world problems and possess novel solutions to it in an object- oriented style	3				
CO5	Use different sorting and searching algorithms.	2				
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev						
5; Cre	ate-6					

 C () []	-
	- · · · ·
	50
-	-1-1-

COs	POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	2	-	-			2	3	1-1	3	-	3
2.	3	3	3	1-1	1.9	1	-	1	3	-	2	3	3	3
3.	3	3	3	(- 9	100	10	2	0-	2	3	0	3	3	-
4.	3	2	31	$-\lambda_{c}$	-	1 F.,	1) (1.50	25	-	2	-	3
5.	2	2	5	- 9	5-	1-2	1	-	-	3	\leq	-	2	3
1- Wea	k: 2 - N	Modera	te: 3 - 9	Strong	10.11		- /0.6		/ 11	1.12	1 111	1		

1- Weak; 2 - Moderate; 3 - Strong.

SEMESTER IV										
FC22401	ANALOG INTEGRATED CIRCUITS AND ITS	L	Т	P	С					
EC22401	APPLICATIONS	3	0	0	3					
COURSE OI	BJECTIVES:									
1. To int	roduce the basic building blocks of linear integrated circuits									
2. To con	nstruct the linear and non-linear applications of operational amplifiers									
3. To int	3. To introduce the various data converters and its working principles.									
4. To int	4. To introduce the theory and applications of analog multipliers and PLL.									
5. To stu	dy various special function ICs									
UNIT I	BASICS OF OPERATIONAL AMPLIFIERS				9					
General operation	ational amplifier stages -BJT Differential amplifier analysis-Concep	t of	CM	RR	. —					
methods to in	nprove CMRR- Wilson Current source-IC 741-Ideal Operational Amp	lifie	r - D	C a	nd					
AC performan	nce characteristics, Open and Closed loop configurations of Op-amp-I	nvei	rting,	No)n-					
inverting and	Differential amplifiers-Voltage Follower.									
UNIT II	APPLICATIONS OF OPERATIONAL AMPLIFIERS				9					
Linear Circu	its: Adder and Subtractor, Differentiator, Integrator, Voltage to Cur	rent	conv	vert	er,					
Instrumentatio	on amplifier, Nonlinear Circuits: Sine wave Oscillators, Active filt	ers-l	LPF,	HF	ΥF,					
BPF, Compar	ator, Multivibrators, Schmitt trigger, Precision rectifier, Log and Antile	og a	mplif	iers	s.					
, _	IN PROVINCE		1							
UNIT III	ANALOG TO DIGITAL AND DIGITAL TO ANALOG				9					
CONVERTERS										
Sample and h	old circuit. Types of D/A converter-Weighted Resistor.R-2R Curren	t dr	iven	DA	C.					
A/D converte	r - Flash, Single slope, Dual slope, Successive approximation.				,					
UNIT IV	ANALOG MULTIPLIER AND PLL				9					
Gilbert Multi	plier cell - Variable transconductance technique analog multiplier	ICs	and	th	eir					
applications	Voltage Controlled Oscillator Operation of the basic PLI. Closed lo	ion	analy	sis	of					
PLL Monoli	thic PLL IC 565 Applications of PLL-Frequency synthesizing AM	dete	oction	ינט ז F	M					
detection and	ESK demodulation	uett	cuoi	1, 1	1,1					
					9					
LINIT V	SPECIAL FUNCTION ICS									
555 Timer V	oltage regulators - linear and switched mode types. Switched capacito	r fil	tor S	ME	20					
features of T	DS40200 TDS40210 buck and boost converters. Frequency to Volts		conw	arta	D,					
ICI 8038 fu	nction generator Isolation Amplifiars Audio Amplifiar Video am	nlif	iore	Fik	15, 10r					
option ICa and	1 Onto couplors	ipm	iers,	TIU						
optics ics and		<u>15</u>	DFD		ng					
	IUIAL:	+5]	ſĽŇ		50					
	78.									
	AD: y Choudhmy, Shail Jain, "Lingge Integrated Cinquits", Newy App Internet		1 D	T≁	4					
1. D.KOY	Choudiny, Shah Jah, Linear Integrated Circuits, New Age Internation	ona	i rvt	. Lt	u.,					
2018,	FILLI EQUUOII. France "Decise with Operational Assolitions and Assola I. () ()	:	:+~''	⊿th						
2. Sergio	r Tate McCrow Hill 2016	ircu	its'',	4						
Editio	Edition, Tata McGraw-Hill, 2016.									

REFERENCES:

- 1. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001.
- 2. Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.
- 3. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 5th Edition, 2009.
- 4. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.
- 5. .Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2015.
- 6. William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 4th Edition, 2001.
- 7. S. Salivahanan, V S Kanchana Baskaran, "Linear Integrated Circuits", second edition, McGraw-Hill education India pvt ltd., 2015.

COU	RSE OUTCOMES:	RBT*				
Upon	Upon successful completion of the course, students should be able to:					
CO1	Infer the DC and AC characteristics of operational amplifiers and its effect on output and their compensation techniques.	2				
CO2	Elucidate and analyze the linear and non-linear applications of an opamp.	4				
CO3	Classify and comprehend the working principle of data converters.	4				
CO4	Illustrate the function of application specific ICs such as Analog multiplier, PLL and its application in communication.	2				
CO5	Explain the working of multivibrators using IC 555, the special function ICs such as Voltage regulators, buck-boost converters, A/V amplifiers etc.	3				
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-				
5. Cre	ate-6					

*COs				1 00	20	Р	Os	_	2	0/			PS	5Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	1		2	2	R	-6	/	-	-	3	3	2
2.	3	2	1	-	2	3		1	-	-	-	3	3	2
3.	3	2	1	-	2	2	-	-	-	-	-	3	3	2
4.	3	2	1	-	2	2	-	-	-	-	-	3	3	2
5.	3	3	3	-	2	3	-	-	-	-	-	3	3	2
1- Weal	k; 2 - N	Aodera	te; 3 - S	Strong.										

EC22402	LINEAR CONTROL SYSTEMS	L	T	P	C						
		3	0	0	3						
	1. To introduce the elements of control system and its representations										
 To analyze the time response and stability of systems 											
3. To learn various frequency response plots											
4 To study the state variable representation of systems											
5. To de	sign various types of compensators										
UNIT I	SYSTEM COMPONENTS AND THEIR REPRESENTATION				9						
Control Syste	m: Terminology and Basic Structure -Feed forward and Feedback co	ontro	ol the	eory	y -						
Modeling of E	Electrical and Mechanical Systems: Block diagram models-Signal flow g	aphs	s mo	dels	s						
Introduction to	o multivariable control system										
	C011F										
UNIT II	TIME RESPONSE AND STABILITY ANALYSIS				11						
Time response	e: Transient and Steady state response - Impulse and Step response analy	vsis o	of fir	st a	ınd						
second order	systems - Steady state errors - Concepts of stability-Routh stability crit	erior	1- Re	elati	ive						
Stability - R	oot Locus Technique- Guidelines for sketching root locus - P, PI,	PD	and	1 P	ΊD						
Controllers: cl	naracteristics and applications										
	FREQUENCY RESPONSE AND STABILITY ANALYSIS				<u>9</u>						
Frequency res	ponse: Closed loop – Frequency response of second order system - Fre	quen	cy d	om	aın						
specifications	- Bode plot- Polar plot - Stability analysis -Nyquist stability criterion										
	CONTROL OVOTEM ANALVOIC LICING OTATE VADIADI E				0						
UNITIV	METHODS				ð						
State variable	e representation: state equations - Conversion of state variable mod	els f	to tr	ans	fer						
functions and	vice versa - Solution of state equations - Concepts of Controllability and	Obse	ervat	oilit	y						
	12/2 2 22/2/				2						
UNIT V	COMPENSATORS				8						
Compensators	- Effect of adding poles and zeros – Design of cascade lag, lead	1 an	d la	g-le	ead						
compensators	using Bode plot			0							
	TOTAL:	45]	PER	IO	DS						
TEXT BOOK	XS:										
1. Nagara	ath I.J. and Gopal M., "Control Systems Engineering", New Age Internation	onal									
Publis	hers, 2017										
2. Norma	n S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015										
3. Benjar	nin C. Kuo, "Automatic Control systems", Wiley, 2014										
REFERENC	ES:										
1. M. Go	pal, "Control Systems, Principles and Design", 4 th Edition, Tata McGraw	Hill	, Ne	W							
	2012. hotto sharra "Control System Engineering" 21d Edition Degreen 2012										
2. S.K.D	ngligengryg I onirol Nyslem Endingering X* Edulon Doroon of X										
3 Richard	allacharya, Control System Engineering, 5 ⁻² Edition, Pearson, 2015.	1 20	12								
3. Richard	attacharya, Control System Engineering, 5 ⁻² Edition, Pearson, 2015. C. Dorf and Robert H. Bishop, "Modern Control Systems", Prentice Ha ta "Modern Control Engineering" 5 th edition PHI 2012	1, 20	12.								

COUI	RSE OUTCOMES:	RBT				
Upon	Upon successful completion of the course, students should be able to:					
CO1	Compute the transfer function of different physical systems	3				
CO2	Compute the time response and analyze the stability using various techniques.	3				
CO3	Illustrate the frequency response characteristics of open loop and closed loop systems.	4				
CO4	Illustrate the state space model of a physical system	4				
CO5	Design compensators to satisfy the desired specifications of control systems	3				
* Bloo Evalua	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze- ate-5; Create-6	4;				

*COs			1.	2	1000	P	Os		1	N			PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	2	2	2	5	- 2	-	- 0	1-3	1	51	3	3	3
2.	3	2	2	2	3	1	-	1	N	-	6	3	3	3
3.	3	2	≤ 2	2	3	(4	7	1		-	6)	3	3	3
4.	3	2	2	2	[- 30		0	125	80- J.	2	3	3	3
5.	3	2	2	2	3	1-	14	-7		-	ĪTT	3	3	3
1- Wea	k· 2 - N	/Iodera	te: 3 - 9	Strong	65 04		100		1.0	200		1		

tant of

125 0 PT

EC22408	MACHINE LEARNING: THEORY AND PRACTICES	L	Т	P	С				
		3	0	2	4				
COURSE OBJECTIVES:									
1. To lea	rn the basic concepts of machine learning.								
2. To lea	rn and build supervised learning models.								
3. To lea	rn and build unsupervised learning models.								
4. To eva	aluate the algorithms based on corresponding metrics identified								
5. To ana	alyse the machine learning experiments	<u> </u>							
UNITI	INTRODUCTION TO MACHINE LEARNING				8				
Review of Lin	near Algebra for machine learning; Introduction and motivation for ma	chine	e le	earni	ng;				
Examples of	machine learning applications, Vapnik-Chervonenkis (VC) dimensional	sion,	P	roba	bly				
Approximatel	y Correct (PAC) learning, Hypothesis spaces, Inductive bias, Gener	aliza	tio	n, B	ias				
variance trade	e-off.								
		<u> </u>			10				
UNITI	SUPERVISED LEARNING				10				
Probabilistic Bayes, Maxin	discriminative model - Logistic regression, Probabilistic generative r num margin classifier – Support vector machine, Decision Tree, Rando	node m Fe	el - ore	- Na sts	ive				
UNIT III	ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING				9				
Combining m boosting, stac	ultiple learners: Model combination schemes, Voting, Ensemble Learn king, Unsupervised learning: K-means, Instance Based Learning: KNN	ing - I, Ga	- ba ius	aggir sian	ıg,				
mixture mode	els and Expectation maximization.								
UNIT IV	NEURAL NETWORKS				9				
Multilayer pe stochastic gra saturation (a normalization	Multilayer perceptron, activation functions, network training – gradient descent optimization – stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization, regularization, dropout.								
UNIT V	DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS				9				
Guidelines for bootstrapping comparing tw	r machine learning experiments, Cross Validation (CV) and resampling , measuring classifier performance, assessing a single classification alg o classification algorithms – t test, McNemar's test. K-fold CV paired	; – K orith t test	K-fo nm	old C and	V,				
	L:	45 I	PE	RIO	DS				

Practical Exercises:

- 1. Write a python program to import and export data using Pandas library functions and data Visualization Techniques. (3 hours)
- 2. Demonstrate various data pre-processing techniques for a given dataset. (2 hours)
- 3. Implement Simple and Multiple Linear Regression Models(2 hours)
- 4. Develop Decision Tree Classification model for a given dataset and use it to classify a new sample. (2 hours)
- 5. Implement Naïve Bayes Classification in Python. (2 hours)
- 6. Implement Random forest ensemble method on a given dataset. (2 hours)
- 7. Build KNN Classification model for a given dataset. (2 hours)
- 8. Implement classification using SVM. (2 hours)
- 9. Implement classification using Multilayer perceptron(2 hours)
- 10. Implement of ADAM optimiser from scratch (2 hours)
- 11. Evaluating ML algorithm with balanced and unbalanced datasets Comparison of Machine Learning algorithms. (3 hours)
- 12. Performance analysis of specific datasets (mini project) (6 hours)

P: 30 PERIODS TOTAL PERIODS: 75

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

	Quantity
1. Processors: Intel Atom® processor or Intel® Core [™] i3 processor.	15 Nos.
Disk space: 1 GB. Operating systems: Windows 7/10	<u> </u>
2. Python versions: 3.6.X. with Anaconda 2020.07	15 Nos.
	77

TEXT BOOKS:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
- 2. Stephen Marsland, "Machine Learning: An Algorithmic Perspective, "Second Edition", CRC Press, 2014

REFERENCES:

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 2. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 3. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", Second Edition, MIT Press, 2012, 2018.
- 4. 4. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016
- 5. Sebastain Raschka, Vahid Mirjalili, "Python Machine Learning", Packt publishing, 3rd Edition, 2019.

COURSE OUTCOMES:						
Upon successful completion of the course, students should be able to:						
CO1	Explain the basic concepts of machine learning.	2				
CO2	Construct supervised learning models.	3				
CO3	Construct unsupervised learning algorithms.	3				
CO4	Evaluate and compare different models	4				
CO5	CO5 Evaluate the machine learning experiments 4					
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-						
5; Cre	ate-6					

5; Create-6

COURSE ARTICULATION MATRIX

*COs						P	Os		_				PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	-		Ac	1	1	1	3	3
2.	3	3	3	3	3	2		-	1	0	1	1	3	3
3.	3	3	3	3	3	2		34	-	3	1	1	3	3
4.	3	3	2	2	2	2	, Ha	- 1 C	1-	1.	$\langle 1 \rangle$	1	3	1
5.	3	2	2	2	3	2	-	-	3.5	1	21	1	3	3
1- Weal	k; 2 - N	Modera	te; 3 - S	Strong.	÷.	10	2	10	110	1	0			

FC22400	MICROCONTROLLER SYSTEMS: THEORY AND	L T P C							
EC22409	PRACTICES	3 0 2 4							
COURSE OI	BJECTIVES:	· · ·							
1. To under	stand the fundamentals of PIC 16f84A and Atmega microcontrollers.								
2. To develop Programme using Embedded 'C' and introduced to the 'C' Data types.									
3. To intro	duce the concepts of timer/counters, Serial ports and interrupts using I	PIC and SPI, I ² C							
LCD and	l Keyboard using Atmega.								
4. To devel	op Programme codes for interfacing keyboard/display,motor and sens	or using PIC and							
Atmega.									
5. To Inter	face sensors, motors, relays, and various input/output devices and pr	ogramming with							
PIC16f8	4A and Atmega microcontrollers.								
UNIT I	INTRODUCTION TO PIC MICROCONTROLLER								
Architecture-	16F84/16F877, Register File Structure, Addressing Modes, Asse	mbly Language							
Programming	-Arithmetic and Logical Instructions, Branch, Call and Time Delay Lo	op, PIC I/O Por							
Programming	121								
UNITI	PIC PROGRAMMING IN C								
Data types ar	nd time delays in C-I/O Programming-Logical Operations-Data Seria	lization-Program							
ROM allocati	on -Data RAM allocation.								
	PIC PERIPHERALS AND INTERFACING								
Timer Progra	amming, Serial Port Programming, Interrupt Programming, LCD	and Keyboard							
Interfacing, A	DC, DAC and Sensor Interfacing, Motor Control.								
	INTRODUCTION TO ATMEL AND MICROCONTROLLED								
UNIT IV	INTRODUCTION TO ATMEL AVR MICROCONTROLLER	Serve Delay Loog							
AVR Archite	clure, Registers and Data Memory, Instruction Set-Branch, Call and I	ime Delay Loop							
Datatypes and	r directives, Faraner 1/0 Fort, Flogramming in C								
LINIT V	AVD DEDIDHED AL INTEDEACINC	T							
Timor/countor	AVKIERIIIERALINIERFACING	a and DC Moto							
rimer/counter	is, Analog Interface, SF1, I C, LCD and Reyboard, F whi Flogrammin	ig and DC Moto							
	141 421 45								
Practical Ev	areises.	$\mathbf{L} \cdot 4 5 1 \mathbf{E} \mathbf{K} 1 0 \mathbf{D} 0$							
1 Verifi	cation of Logic Gates (OR $\Delta ND \& NOT$) LED interfacing using PIC1	6f8/1 A							
2 Interfa	ucing PWM to control the brightness of LED using PIC16f84A	.010-171.							
3 LCD	interfacing using PIC16f84A								
4. Steppe	er Motor Interfacing using PIC16f84A								
5. Temp	erature sensor Interfacing using PIC16f84A								
6. Verifi	cation of Logic Gates (XOR. NAND & NOR). LED interfacing using	ATMEGA.							
7. Interfa	cing DC motor to control the RPM of Motor using ATMEGA.								
8. LCD a	and Keyboard Interfacing using ATMEGA.								
9. Servo	Motor Interfacing using ATMEGA.								
10. Ultras	onic sensor Interfacing using ATMEGA.								
11. Applic	cation Development using PIC/ATMEGA.								
P: 30 PERIODS TOTAL PERIODS: 75

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:	
	Quantity
PIC Universal Programmer and IC	15 nos
ATMEGA Programmer and IC	15 nos
LCD	10 nos
Ultrasonic Sensor	10 nos
DC motors and DC motor Drivers	10 nos
Stepper motors and drivers	10 nos
Temperature sensor and Interface	10 nos
LED	30 nos
1 K Ω and 10 K Ω	40 nos
Crystal Oscillator16 MHz	40 nos
Capacitor 22pf	40 nos
Matrix Keypad	10 nos
	1

TEXT BOOKS:

- 1. Muhammad Ali Mazidi, Rolin D.Mckinlay, Danny Causey, "PIC Microcontroller and Embedded Systems Using ASM & C for PIC18", Pearson Education International, Edition 2008.
- 2. Muhammad Ali Mazidi,Sepehr Naimi, Sarmad Naimi, "The AVR Microcontroller and Embedded systems Using Assembly and C", Pearson Education International, Edition 2017
- 3. Richard H.Barnett, Sarah Cox, Larry O'Cull, "Embedded C programming and the Atmel AVR", Cengage Learning India Private Limited, January 2007.

REFERENCES:

- 5. Peatman, J.B., "Design with PIC Micro Controllers "Pearson Education, 3rd Edition, 2004.
- 6. Tim Wilmshurst, "Designing Embedded Systems with PIC Microcontrollers Principles and Applications", Newnes Publication, 2007
- 7. John Iovine, 'PIC Microcontroller Project Book ', McGraw Hill 2000
- 8. Julio Sanchez Maria P. Canton, "Microcontroller Programming: The microchip PIC", CRC Press, Taylor & Francis Group, 2007

4-(1

COUI	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Identify and understand function of different blocks of PIC and Atmega microcontroller.	3
CO2	Develop programs for data transfer, arithmetic, logical and I/O port operations for PIC16 using "C"	4
CO3	Develop programs for Serial port, Timers, Interrupts and various Interfacing devices with PIC16f84A and Atmega Microcontrollers.	4
CO4	Develop program codes with PIC16f84A and Atmega for specific application.	4
CO5	Measure the performance of A/D and D/A.	3
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

*COs			1	0	1.	P	Os		1	0	5		PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	2	3	3	3	E.	9 - <u>3</u> '	÷.	1	1	1	-	3	3	
2.	3	3	3	3	3	- 3	197 7 - 19		3	1	0-1	-	3	3	
3.	3	3	3	3	3	/	-	-	3	-	6	-	3	3	
4.	3	3		3	3	19	1	0-/	3	- 1	0	V-	3	3	
5.	3	2	3	3	3	Tair	1-	-	1	2 -	-	-	3	3	

1- Weak; 2 - Moderate; 3 - Strong

		L	Т	Р	С				
EC22403	DISCRETE TIME SIGNAL PROCESSING	3	0	0	3				
COURSE O	BJECTIVES:		4						
1. To lea	rn Discrete Fourier Transform, properties of DFT and FFT.								
2. To kn	ow the characteristics and design of FIR filter.								
3. To dea	sign a IIR filters to filter undesired signals.								
4. To un	derstand Finite word length effects.								
5. To stu	dy the concept of Digital Signal Processors and various applications of	Dig	ital	Sig	nal				
Proces	ssing.								
UNIT I	DISCRETE FOURIER TRANSFORM				9				
DSP advanta	ges - Introduction to DFT - Properties of DFT - Circular Convolut	ion	- Fi	lteri	ng				
methods base	d on DFT – FFT Algorithms – Decimation-in-Time (DIT), Decimation	n-in-	Frec	luer	icy				
(DIF).	COLLEO								
	a P GE								
UNIT II	DESIGN OF FIR FILTER				9				
filters) using Window), Ne phase and Lir	filters) using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Need for choice of window- Realization structures of FIR Filter - Transversal, Polyphase and Linear phase structures.								
UNIT III	DESIGN OF IIR FILTER				9				
Characteristic analog filters transformatio	es of Analog filters – Butterworth filters, Chebyshev Type I filters. Trans into equivalent digital filters using Impulse invariant method n method - Realization structures for IIR filters – direct, cascade, parall	nsfo and el fo	rmat 1 B orms	tion ilin 5.	of ear				
UNITIV	FINITE WORD LENGTH EFFECTS				9				
Fixed point a Rounding err – Round-off Principle of s	and floating point number representations – ADC – Quantization- Toors - Quantization noise – coefficient quantization error – Product quancise power - limit cycle oscillations due to product round off and over caling.	run Intiz erflo	cation ation w en	on a n er rror	nd ror s –				
UNIT V	APPLICATIONS OF DIGITAL SIGNAL PROCESSING				9				
Digital Signa Multirate Sig factor, Applic	1 Processors-Fixed and floating point; Basic Architectural features, I nal Processing- Decimation, Interpolation, Sampling rate conversion rations of DSP to Image and Speech signal processing.	ntro by	duct a ra	tion atio	to nal				
	TOTAL:	45]	PER		DS				

TEXT BOOKS:

- 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.
- 2. B. Venkataramani and M. Bhaskar, —Digital Signal Processors Architecture, Programming and Applications Tata McGraw Hill Publishing Company Limited. New Delhi, 2003.
- Rafael C.Gonzalez & Richard E.Woods Digital Image Processing Pearson Education- 4/e – Reprint 2018
- 4. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education India, 2008.

REFERENCES:

- 1. Alan V. Oppenheim and Ronald W. Schafer, "Discrete-Time Signal Processing" 3rd edition, 2010, Prentice Hall, Upper Saddle River, NJ.
- 2. Sanjit Mitra, "Digital Signal Processing", 4th edition, 2011, McGraw-Hill, New York, NY.
- 3. DSP Processor and Fundamentals: Architecture and Features. Phil Lapsley, JBier, Amit Sohan, Edward A Lee; Wiley IEEE Press;2009
- 4. Weltch , T.B., Wright, C.H.G. and Morrow, G.M., "Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs.", 2nd Ed., CRC Press, 2011.
- 5. Rabiner, L.R. and Schafer, R.W., "Digital Processing of Speech Signals", Pearson Education, 2003.

COU	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Analyze the frequency spectrum of Discrete time signal using Discrete Fourier Transform and Fast Fourier Transform.	4
CO2	Interpret the characteristics of FIR filters and articulate the design of Finite Impulse Response filters for filtering undesired signals.	3
CO3	Observe the IIR filter characteristics and design IIR filters according to the user specifications.	3
CO4	Assess the word length effects in signal processing systems.	4
CO5	Explore the architecture of Digital Signal Processor and inspect the various applications of Digital Signal Processing.	3
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Cre	ate-6	

COURSE ARTICULATION MATRIX

*COs						Р	Os						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	3	3	3	2	-	-	-	-	1	1	3	3
2.	3	3	3	3	3	2	-	-	-	-	1	1	3	3
3.	3	3	3	3	3	2	-	-	-	-	1	1	3	3
4.	3	3	2	2	2	2	-	-	-	-	1	1	3	1
5.	3	2	2	2	3	2	-	-	-	-	1	1	3	3
1- Weal	k; 2 - N	/loderat	te; 3 - S	Strong.										

GE22451	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY (Common to all Branches)	L 2	T	P	C						
		3	U	U	3						
1. To in empha	atroduce the basic concepts of environment, ecosystems and bic basic the biodiversity of India and its conservation.	odive	ersity	y a	nd						
2. To in enviro	npart knowledge on the causes, effects and control or prevention on mental pollution.	me	asu	res	of						
3. To str	udy and understand the various types of renewable sources of energy ations	ergy	and	l th	eir						
 4. To familiarize the concept of sustainable development goals, economic and social aspects of sustainability, recognize and analyze climate changes, and environmental management challenges. 5. To improduce and embrance sustainability provides the day of the sustainability of the sustainability. 											
5. To inculcate and embrace sustainability practices, develop a broader understanding of green materials and energy cycles, and analyze the role of sustainable urbanization.											
UNIT I	ENVIRONMENT AND BIODIVERSITY				9						
Definition, sc Energy flow Biodiversity- mega-diversit habitat loss, I India –conser	Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– food chains, food webs and ecological pyramids, ecological succession. Biodiversity- types- genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: fragmentation and habitat loss, poaching of wildlife, human-wildlife conflicts – endangered and endemic species of India, conservation of biodiversity. In situ and or situ										
UNIT II	ENVIRONMENTAL POLLUTION				9						
Definition, ca thermal pollu and fauna. I wastes (Nucl pollution. management categorization	auses, effects and preventive measures of air, water and soil pollution tion - causes, effects and control measures. Light and noise pollution - Nuclear pollution- Sources, effects and control measures. Disposal ear hazards). Pollution case studies. Role of an individual in the Solid, hazardous and E-waste management. Occupational health system (OHASMS). Environmental protection, Environmental pr n of spices according to IUCN.	n. M effe of r prev n a otec	larir ct or adio venti nd ction	ne a n flo acti ion safe ac	nd ora ve of ety ets,						
	्य परा कर										
UNIT III	RENEWABLE SOURCES OF ENERGY				9						
Energy resources management establishing hydrogen energy plants of geot	arces: Growing energy needs, Nonrenewable resources – types, and conservation - New energy sources, Need of new sources - geo renewable energy sources, different types new energy sources. A ergy, ocean energy resources, Tidal energy conversion. Concept, orig hermal energy. Role of an individual in conservation of energy.	use sui ppli gin a	s. E tabi catic and	Ener lity ons pow	gy of of /er						
UNIT IV	SUSTAINABILITY AND MANAGEMENT				9						
Development sustainability Sustainable I chemistry, C solutions-case	, GDP, Sustainability- concept, needs and challenges-economic, social -from unsustainability to sustainability-millennium development goals, Development Goals-targets, indicators and intervention areas - Princ limate change- Global, Regional and local environmental issues e studies - Role of non-governmental organization, Concept of carbon	and and iples and cred	aspe prot of pc dit, c	ects toco gre ossit	of ols, en ole on						
	77										

footprint - Environmental management in industry - A case study,

UNIT VSUSTAINABILITY PRACTICES9Zero waste and R concept, circular economy, ISO 18000 series, material life cycle assessment,
environmental impact assessment. Wasteland reclamation, Sustainable habitat: green buildings,
green materials, energy efficiency and energy audit, sustainable transports. Energy cycles, carbon
cycle, emission and sequestration, Green engineering: sustainable urbanization- socio-economical
and technological change. Rainwater harvesting, watershed management, environmental ethics:
Issues and possible solutions.9

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7th Edition, New Age International Publishers, 2022.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Pearson. 2011.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, CL Engineering, 2015.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 3rdedition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 3rd edition, 2021.

COUI	RSE OUTCOMES:	RBT *
Upon	successful completion of the course, students should be able to:	Level
CO1	Explain the fundamental role of ecosystems and biodiversity and discuss the importance of their conservation.	2
CO2	Describe the different types of pollution, their effects and strategies to minimize or eliminate pollution.	2
CO3	Identify the need of renewable and non-renewable resources and describe energy management measures to preserve them for future generations.	2
CO4	Explain the various goals of sustainable development applicable for suitable technological advancement and societal development.	2
CO5	Demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.	2
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

*COs	POs										PS	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	-0	F	7 - 0	6	3	3	2	2	2	6	1	-	-
2.	3	-/	21	-	· •	3	3	2	<u></u>	2	6)	2	-	-
3.	3	-	≤ 1	- 52	[3	3	1	125	2	5	1	-	-
4.	3	-	7	-2	2	3	3	3		2	177	2	-	-
5.	3	-	iu l	-57	S-1	3	3	3	1.5	2	10	2	-	-
1- Weak	τ· 2 _ Ν	Inders	ate 3_	Strong				1			1			

tant

ong weak; 2 1 wouerau

FC22411	ANALOG INTEGRATED CIRCUITS AND SIMULATION	L	Т	P	C
	LABORATORY	0	0	3	1.5
COURSE OBJE	CCTIVES:				
1. To expo	se the students to linear and integrated circuits				
2. To unde	rstand the basics of linear integrated circuits and available ICs				
3. To unde	rstand characteristics of operational amplifier.				
4. To apply	v operational amplifiers in linear and nonlinear applications.				
5. To acqu	re the basic knowledge of special function IC.				
6. To use a	ny simulation software for circuit design				
LIST OF EXPE	RIMENTS				
1. Design of	of inverting and non-inverting amplifier using Op-amp.				
2. Design of	of integrator and differentiator using Op-amp.				
3. Design of	of instrumentation amplifier using Op-amp.				
4. Design of	of active low-pass, high-pass and Narrow band-pass filters using C	p-amp			
5. Design of	of Astable and Monostable multivibrators using Op-amp.				
6. Design of	of Schmitt Trigger using Op-amp.				
7. Design of	of Wein Bridge and Colpitt's Oscillator Using Op-amp.				
8. Applicat	ions of NE555 Timer.				
9. PLL cha	racteristics and its use as Frequency Multiplier.				
10. DC pow	er supply design using LM317 and LM723.	1			
11. Simulati	on of experiments 3,4,5,6 using any simulation software.				
		OTAL	: 45 I	PERI	ODS
	7 70 1 7 1 - 5				
LIST OF EQUI	PMENTS FOR A BATCH OF 30 STUDENTS:				
Description of I	tems		Qu	antit	у
CRO (Min 30MI	Hz) 7	/	15	5 Nos.	
Signal Generator	/Function Generators (2 MHz)		15	5 Nos.	
Dual Regulated I	Power Supplies ($0 - 30V$)		15	5 Nos.	
Digital Multimet	er		15	5 Nos.	
IC tester			5	Nos.	
Standalone deskt	ops PC		15	5 Nos.	
Circuit Simulation	n Software: (any public domain or commercial software)		15	5 Nos.	
Components and	Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diod	es,			
Bread Boards, Tr	ansformers, wires, Power transistors, Potentiometer, LEDs.				
Op-Amps uA741	, LM 301, LM311, LM 324, LM317, LM723, 7805,				
7812, 2N3524, 2	N3525, 2N3391, AD 633, LM 555, LM 565				
TEXT BOOKS:					
1. D.Roy Cl	oudhry, Shail Jain, "Linear Integrated Circuits", New Age International	ational	Pvt. l	Ltd.,	
2018, Fif	h Edition.				
2. Sergio Fr	anco, "Design with Operational Amplifiers and Analog Integrated	Circu	its", 4	th Edi	tion,
Tata McC	braw-Hill, 2016.				
3. Ramakan	t A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice 1	Hall / H	Pearso	n	

-

COUI	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Develop a various linear and nonlinear applications using Operational Amplifier.	4
CO2	Construct Astable and Monostable Multivibrator using NE555 Timer.	4
CO3	Examine the Characteristics and applications of PLL.	3
CO4	Design DC Power supply using LM317 and LM723.	4
CO5	Simulate and validate the results of various operational amplifier applications using any simulation software.	3
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Cre	ate-6	

COs				1	aP	P	Os		Ar	1			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1.	3	3	3	2	-	-	14	N.	-	X	-	3	3	2	
2.	3	3	3	2	-	-	180		4 T	-	~	3	3	2	
3.	3	3	3	3	8.	- 3	-	3-1	1-1	1	51	3	3	2	
4.	3	3	3	2	1	2	2	1	10	-	0	3	3	2	
5.	3	3	≤ 3	2	3	(47) `	1	-	-	61	3	3	3	
1- Wea	k; 2 - N	Aodera	te: 3 - S	Strong.	. /	11		0	1 14	S. 1. 1.	2				

E (22412	DISCRETE TIME SIGNAL PROCESSING	L	Т	Р	С					
EC22412	LABORATORY	0	0	3	1.5					
COURSE OBJECTIVES:										
1. To implement DFT and FFT.										
2. To implement Linear and Circular Convolution.										
3. To design a FIR filter using windowing method.										
4. To design a	IIR filter.									
5. To study the architecture of DSP processor.										
LIST OF EXPERIMENTS										
Experiments using	g MATLAB									
1. Generation	of elementary Discrete-Time sequences									
2. Study of pro	2. Study of properties of LTI systems using Simulink									
3. Linear and	Circular convolution, Cross correlation of two sequences									
4. Discrete Fo	urier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT)							
5. Radix-2 FF	Γ algorithms - Decimation in Time / Decimation in Frequency		, 							
6. Spectral est	imation through DTFT and DFT									
7. Design of d	igital Butterworth and Chebyshev IIR filter									
8. Design of F	IR filter (LPF/HPF/BPF/BSF) and demonstrates the filtering ope	eration	ı							
9. Processing	of an image : Representation, Histogram plot, Image filtering	1								
	IN THE ALK IS	1								
Experiments using	g DSP processor	1								
1. Study of arc	chitecture of Digital Signal Processor	1								
2. MAC applie	. MAC application in LTI systems.									
3. Generation	of various signals	1								
4. Design of F	. Design of FIR filter									
5. Implementa	tion of Up-sampling and Down-sampling	/								
Mini Project (Any	one)									
1. Noise cance	llation of audio signal									
2. Disease det	ection based on EEG/ECG									
3. Simple Ima	ge processing Technique									
	N TELL GM Z TO	TAL	45 T	DEDI	005					
	41 421 4 10	IAL	45 1	ENI	303					
LIST OF FOUID	IENTS FOD A DATCH OF 20 STUDENTS.									
Description of Iter	MENTS FOR A DATCH OF 30 STUDENTS:		0	ontit	.					
Description of Iter		Qu	15	у						
(Kit / Add on Cord			15							
MATI AD with Sir	1	5 1 10	oncoc							
NIAILAD WILLI SIL	1	5 LIC	enses							
Software in deskto	<i>J</i> SYSICIIIS									
TEVT DOOVC.										
1 John C. Dr.	pakiek Dimitrie G. Manalakie "Digital Signal Dragossing Drin	ainlas	A1~	rithe	n P					
1. Julii U. Pro	s" Fourth Edition Dearson Education / Drantica Uall 2007	cipies	, Aig	JIIIII	15 Q					
Application	s, routin Buttion, reason Butcation / Flenuce Hall, 2007.									

2. B. Venkataramani and M. Bhaskar, —Digital Signal Processors – Architecture, Programming and Applications – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003.

- 3. Rafael C.Gonzalez & Richard E.Woods Digital Image Processing Pearson Education- 4/e Reprint 2018
- 4. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education India, 2008.

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:						
CO1	Simulate standard signals.	3				
CO2	Demonstrate the applications of FFT in signal processing	3				
CO3	Design digital filters.	3				
CO4	Demonstrate their abilities towards DSP processor based implementation of DSP systems	3				
CO5	Implement signal processing applications in image and speech signal.	3				
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-						
5; Create-6						

COs	X			. 6	POs					5 2				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	1	3	2	2	3	1	10	1	1.10	·	12	-	1	1	
2.	3	3	1	2	3	2	-	1	2	-	12	/	3	3	
3.	3	3	1	2	3	2	2	1	2	-/	1.8	/ -	3	3	
4.	3	3	1	2	3	2	+	8-1	1	1	2-/	-	2	2	
5.	2	3	2	2	3	3	2	<u>8</u> -	2	(9)	1	-	3	3	
1- Weak; 2 - Moderate; 3 - Strong.															

ISD.

2941