

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

B.Tech., Chemical Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022

CHOICE BASED CREDIT SYSTEM

Curriculum Revision No:	00	Board of Studies recommendation date :	19.09.2023	Academic Council Approved date:	18.10.2023
	01.				
	02.				
Salient Points of the revision	03.				
	04.				
	05.				

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

REGULATIONS 2022

B.Tech., CHEMICAL ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Equip students with the necessary skills and knowledge to prosper in their career in Chemical Engineering and related domains.

PEO 2: Encourage students to Pursue advanced learning and engage in research with internationally acclaimed institutions and foster professional growth.

PEO 3: Empower students with leadership qualities to succeed in diversified fields with ethical administrative acumen and adapt to the rapid technological advancements and innovations.

PROGRAM OUTCOMES (PO's)

PO GRADUATE ATTRIBUTES

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design / development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Apply the knowledge of science and mathematics in the field of various transport processes to accomplish the contemporary needs of chemical and allied industries.

2. Execute the chemical engineering principles and modern engineering tools to conduct experiments or design a system for developing quality chemical processes by considering the cost, safety and environmental aspects.

PEO's – PO's & PSO's MAPPING:

	P	EOs	
PO's	Ι	II	III
1.	3	3	2
2.	3	3	3
3.	3	3	3
4.	3	3	2
5.	3	3	2
6.	2	3	3
7.	2	2	3
8.	2	1	2
9.	2	2	1
10.	1	2	1
11.	3	2	2
12.	1	1	2
13.	3	3	2
14.	2	2	3

1- Slight (Low), 2- Moderate (Medium), 3- Substantial (High)

SRI VENKATESWARA COLLEGE OF ENGINEERING

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM

B.Tech., CHEMICAL ENGINEERING

CURRICULUM AND SYLLABI FOR SEMESTERS I TO IV

SEMESTER I

SL.NO	COURSE CODE	SECOURSE TITLECATEPERIOEGORYWE						Total Hour	Pre - requisit	Positio n
				L	Т	Р	C	s	e	
1	IP22151	Induction Program								
THEOR	RY SUBJEC'	ТЅ								
2	HS22152	Communicative English (Common to all Branches)	HS	3	0	0	3	45		F
3	MA22151	Applied Mathematics I (Common to all Branches except MR)	BS	3	1	0	4	60		F
4	PH22153	Technical Physics (Common to BT and CH)	BS	3	0	0	3	45		F
5	CY22153	Technical Chemistry (Common to BT and CH& CE)	BS	3	0	0	3	45		F
6	ME22152	Basic Mechanical Engineering (Common to BT and CH)	ES	3	0	0	3	45		F
7	ME22151	Engineering Graphics (Common to BT and CH)	ES	2	0	2	3	60		F
8	HS22151	Tamil language and Heritage of Ancient Tamil Society (Common to all Branches)	MC	1	0	0	1	15		F
PRACT	ICAL SUBJ	ECTS								
9	CY22161	Chemistry Laboratory (Common to all Branches)	BS	0	0	2	1	30		F
10	ME22162	Basic Mechanical Laboratory (Common to BT and CH)	BS	0	0	2	1	30		F
		ΤΟ΄	ľAL				22			

SEMESTER II

SL.NO	COURS E CODE	COURSE TITLE	CATE	P	PERIC W	DDS PI EEK	ER	Total Hours	Pre -	Positio
•	LCODE		JORI	L	Т	Р	С		e	
THEOR	XY SUBJEC	CTS								
1	HS22252	Technical English (Common to all Branches)	HS	3	0	0	3	45		F
2	MA22251	Applied Mathematics II (Common to all Branches except MR)	BS	3	1	0	4	60		F
3	EE22251	BasicElectricalandElectronicsEngineeringforChemical Engineers	ES	3	0	0	3	45		F
4	IT22251	Computer Programming andPractice(Common toAE/BT/CE/CH/ME)	ES	2	0	2	3	60		F
5	CH22201	Introduction to Chemical Engineering	PC	3	0	0	3	45		F
6	HS22251	Science and Technology in Ancient Tamil Society (Common to all branches)	MC	2	0	0	2	30		F
PRACT	ICAL SUB	JECTS								
7	EE22111	BasicElectricalandElectronicsEngineeringLaboratory(Common to allBranches)	ES	0	0	2	1	30		F
8	PH22161	Physics Laboratory (Common to all Branches)	BS	0	0	2	1	30		F
		ΤΟ	TAL				20			

SEMESTER III

SL.NO	COURSE	COURSE TITLE	CATE PERIODS PER GORY WEEK						Pre - requisite	Positio n
•	CODE		JONI	L	Т	Р	С	Hou rs	requisite	
THEOR	RY SUBJEC	TS								
1	MA22351	IA22351Applied Mathematics III (Common to BT, CH, CE, EE, EC and ME)BS310					4	60		F
2	CH22301	Chemical Process Calculations	PC	2	1	0	3	45		F
3	CH22302	Momentum Transfer	PC	PC 2 1			3	45		F
4	CH22303	Chemical Engineering Thermodynamics I	PC	3	0	0	3	45		F
5	CH22304	Mechanical Operations	PC	2	1	0	3	45		F
6	CH22305	Mechanics of Solids for Chemical Engineering	PC	2	1	0	3	45		F
PRACT	TCAL SUB	IECTS								
7	CH22311	Environmental Engineering Laboratory	PC	0	0	4	2	60		F
8	CH22312	Technical Analysis Laboratory	BS	0	0	4	2	60		F

SEMESTER IV

SL.NO	COURS E CODE	COURSE TITLE	CATE GORY	P	PERIC W)DS PI EEK	ER	Tota l	Pre - requisite	Positio n
•			JOHI	L	Т	Р	С	Hou rs	requisite	
THEOF	RY SUBJE(CTS								
1	MA22452	Numerical Methods (Common to CH and EE)	BS	3	1	0	4	60		F
2	CH22408	Chemical Engineering Thermodynamics II: Theory and Practice	PC	2	0	2	3	60		F
3	CH22401	Heat Transfer	PC	2	1	0	3	45		М
4	CH22402	Mass Transfer I	PC	2	1	0	3	45		F
5	CH22403	Chemical Reaction Engineering I	PC	2	1	0	3	45		F
6	CH22404	Instrumental Methods of Analysis	PC	3	0	0	3	45		М
7	GE22451	Environmental Science and Sustainability (Common to all branches)	MC	3	0	0	3	45		F
PRACTI	CAL SUBJ	ECTS								
8	CH22411	Momentum Transfer Laboratory	PC	0	0	4	2	60		F
9	CH22412	Mechanical Operations Laboratory	PC	0	0	4	2	60		F
		ТО	TAL				25			

SEMESTER I

HS22152	COMMUNICATIVE ENGLISH	L	T	Р	C					
		3	0	0	3					
COURSE OBJECTI1.Enable learner2.Train learners3.Instil confiden4.Develop learne5.Enhance learne6.Improve learnepurposes.UNIT IListening - short videseveral occasions,inferences, critical aninformation.Grammaprefixes - suffixes - ar	VES: s to interact fluently on everyday social contexts. to engage in conversations in an academic/scholarly setting. ce in learners to overcome public speaking barriers. ers' ability to take notes and in the process, improve their listening ers' reading skill through reading text passages for comprehension ers' skills to write on topics of general interest and drafting corro o clips - conversational scenes form movies, celebrities' speeches lucing oneself at several situations, introducing others at several si , describing people and their places. Reading - short comprehen alysis. Writing - completing the incomplete sentences - developi r - Wh-Questions and Yes or No questions - Parts of speech. Vo ticles - countable / uncountable nouns.	s skills and co esponde /interv tuations sion pa ng hint ocabular	ntemp ences : iews. s, invit ssage: s from y dev	lation. for get Speak ing pe s - ma the g elopm	neral 9 ing - cople iking given ent -					
UNIT II					9					
Listening - customer care voice files, short narratives - identifying problems and developing telephone etiquettes. Speaking - speaking over skype/ whatsapp, making business calls, making self-recorded informative videos, inquiring about a concept/activity, describing a concept/activity. Reading - reading the headlines on news magazines - slogans and taglines from advertisements. Writing - free writing - writing - headlines, slogans and taglines individual inspirations. Grammar- conjunctions, idioms, phrases, quotes. Vocabulary development - guessing the meanings of words in different contexts.										
UNIT III					9					
Listening - courtroom language and tone for different situations in cookery and other ba discourse markers- comparison, framing substitution.	n scenes from movies, debates and talks from news channels, for arguments, discussion, deliberation, contemplation, expressing an alien country. Reading - language used in instruction manuals of sic instructions. Writing- understanding the structure of texts - coherence, rearranging the jumbled sentences. Grammar - a direct and indirect questions. Vocabulary development - concise	notes ta ng opini of house use of djective e appro	aking. ions, a ehold a referen es - (ach, s	Speak reactin applian nce we legree ingle v	cing- ig to nces, ords, s of word					
UNIT IV					9					
Listening - Sports commentaries, advertisements with users' criticisms; Speaking - for social causes, for promoting a concept, negotiating and bargaining; Reading - review of a product, movie, movement or a system; Writing - writing for advertisements, selling a product; Grammar – Tenses - Simple Past, Present and Future, Continuous - Past, Present and Future; Vocabulary Development - synonyms, antonyms and phrasal verbs.										
UNIT V					9					
Listening - video lectu short speeches, disc responsibilities; Read enquiry/observation a collocations.	Listening - video lectures, video demonstration of a concept; Speaking – presenting papers/concepts, delivering short speeches, discourses on health, suggesting natural home remedies, cleanliness, civic sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.									
	TOTAL: 45 PERIODS									

1. Department of English, Anna University, Mindscapes: English for Technologists and Engineers. Orient Black Swan, Chennai, 2017.

2. Downes and Colm,; Cambridge English for Job-hunting Cambridge University Press, New Delhi, 2008.

3. Murphy and Raymond, Intermediate English Grammar with Answers Cambridge University

4. Press, 2000. Thomson, A.J., Practical English Grammar 1& 2, Oxford, 1986.

Websites

1. http://www.usingenglish.com

- 2. <u>http://www.uefap.com3</u>
- 3. https://owl.english.purdue.edu/owl/
- $4.\ \underline{www.learnenglishfeelgood.com/esl-printables-worksheets.html}$

Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.
- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.
- 5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

OUTC	OME	S													
Upon su	uccess	sful con	npletio	n of the	e course	e, the st	tudents	should	be able	e to					
SL.NC)						STAT	EMEN'	Г					L	RBT EVEL
CO1	A	cquire	adequa	te voca	bulary	for eff	ective c	commur	nication	1					3
CO2	L st	isten to pecific o	forma context	l and in s from	nformal magazi	commines an	unicati d news	on and papers.	read ar	ticles a	nd infe	r meani	ings from	m	3
CO3	P fr	articipa iends a	te effec nd exp	ctively ress op	in infoi inions i	rmal/ca in Engl	sual co ish.	nversat	ions; ir	troduce	thems	elves a	nd their		4
CO4	C	ompreh	nend co	onversa	tions ar	nd shor	t talks o	delivere	d in Er	ıglish.					6
CO5	W	Write short write-ups and personal letters and emails in English											6		
COUR	SE A	RTICU	JLATI	ON M.	ATRIX	<u> </u>								i	
CO								PO's	5						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.										3			3		
2.										3			3		
3.															
4.										3			3		
5.															

MA22151	APPLIED MATHEMATICS I L T P C												
	(Common to all Branches except MR)	3	1	0	4								
COURSE OBJE	ECTIVES:												
The Student shou1.Computeforms.2.2.Study dif3.Compute4.Understand5.Acquaint	Id be made to: Eigen values and Eigen vectors and use in diagonalization and in cla ferential calculus and its applications to relevant Engineering problem derivatives using the chain rule or total differentials. Ind the rotation of two dimensional geometry using definite integrals. with the Mathematical tools needed in evaluating multiple integrals a	ssifyin ns . and the	ng real	quadra ge.	ıtic								
UNIT I	. MATRICES			1	2								
Eigen values and Eigen vectors of a real matrix – Characteristic equation –Properties of Eigen values and Eigen vectors – Statement and Applications of Cayley-Hamilton Theorem – Diagonalization of matrices– Reduction of a quadratic form into canonical form by orthogonal transformation-Nature of quadratic forms													
UNIT II	APPLICATION OF DIFFERENTIAL CALCULUS			1	2								
Curvature and radius of Curvature– Centre curvature – Circle of curvature –Evolutes– Envelopes- Evolute as Envelope of Normals													
UNIT III	DIFFERENTIAL CALCULUS FOR SEVERAL VARIABLES			1	2								
Limits and Con Jacobians and pr of two variables	tinuity - Partial derivatives – Total derivatives – Differentiation operties– Taylor's series for functions of two variables – Maxima a – Lagrange's method of undetermined multipliers.	of im and Mi	plicit inima (functio of func	ons – ctions								
UNIT IV	APPLICATION OF DEFINTE INTEGRALS			1	2								
Integration by Pa Revolution- Disk	rts-Bernoulli's formula for integration- Definite integrals and its Pro- Method- Washer Method- Rotation about both x and y axis and She	perties ll meth	- Solic nod	ls of									
UNIT V	MULTIPLE INTEGRALS			1	2								
Double integrals curves - Change	in Cartesian and polar coordinates – Change of order of integratio of variables in double integrals – Triple integrals – Volume of solids	n – A	rea en	closed	by plane								
		T	OTAL	: 60 P	ERIODS								
TEXT BOOKS:													
 Erwin Kr Edition, John Wi Grewal B Delhi, (2015). 	eyszing, Herbert Kreyszing, Edward Norminton, "Advanced Enginee ley, (2015) 3.S, Grewal .J.S "Higher Engineering Mathematics",43 rd Edition, Kha	ering N anna P	/lathem Publica	natics" tions,	, 10								
REFERENCES	:												
 Bali N.P and Pvt.Ltd.,(2014). Glyn James 	Manish Goyal, "A Text book of Engineering Mathematics", Nineths, "Advanced ModernEngineering Mathematics", 4 th Edition, Pearson	Editio Educa	n, Lax ation,(2	mi Pul 2016).	olications								

3. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).

Web Link:

https://home.iitk.ac.in/~peeyush/102A/Lecture-

notes.pdfhttps://www.sydney.edu.au/content/dam/students/documents/mathematics-learning-

entre/ integration-definite-integral.pdf

OUTCOMES

Upon successful completion of the course, students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Solve the Eigen value problems in matrices.	3
CO2	Apply the basic notion of calculus in Engineering problems and to tackle for different geometries	3
CO3	Perform calculus for more than one variable and its applications in Engineering problems	3
CO4	Apply definite integrals for design of three dimensional components	3
CO5	Evaluate multiple integral in Cartesian and polar coordinates	3

СО		PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3	3	3								3	3		
2.	3	3										3	3		
3.	3	3	3	3								3	3		
4.	3	3										3	3		
5.	3	3	2	2								3	3		

PH22153	TECHNICAL PHYSICS	L	Т	Р	С
	(Common to BT and CH)	3	0	0	3

COURSE OBJECTIVES:

To enhance the fundamental knowledge in Physics and its applications relevant to various Streams of Engineering and Technology.

UNIT I	LASERS AND FIBER OPTICS	9										
Lasers: population of amplification (qualita optics: principle, nur and mode) – losses as displacement- Endoso	of energy levels, Einstein's A and B coefficients derivation – resona ative) – Nd-YAG laser – CO_2 Laser – Dye lasers, Exceimer Lasers – Appendix aperture and acceptance angle - types of optical fibres (material associated with optical fibers–Fiber optic communication- fibre optic sense cope.	nt cavity, optical oplications. Fiber , refractive index, sors: pressure and										
UNIT II	QUANTUM PHYSICS	9										
Black body radiation – Planck's theory (derivation)- deduction of Wien's and Rayleigh Jean's law – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent wave equations – Finite potential wells particle in a one-dimensional - three dimensional potential box– Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.												
UNIT III	CRYSTAL PHYSICS	9										
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – interplanar distances- coordination number and packing factor for SC, BCC, FCC, HCP and diamond structure (qualitative) - crystal imperfections: point defects, line defects – Burger vectors, stacking faults.												
UNIT IV	NEW ENGINEERING MATERIALS	9										
Metallic glasses: prep properties of NiTi all deposition – Applicat	paration, properties and applications. Shape memory alloys (SMA): Char- oy, application, Nanomaterials– Preparation -pulsed laser deposition – ch tions –Classification of Biomaterials and its applications	acteristics, nemical vapor										
UNIT V	PHYSICS OF SOUND	9										
Classification of Sour method – Absorption remedies. Production of ultrasor Testing – Pulse echo applications – Sonog	nd- decibel- Weber–Fechner law – Sabine's formula- derivation using gr Coefficient and its determination –factors affecting Acoustics of buildin nics by magnetostriction and piezoelectric methods - Acoustic grating –N system through transmission and reflection modes - A,B and C –scan dis ram.	owth and decay gs and their Non Destructive splays, Medical										
	ΤΟΤΑ	L: 45 PERIODS										
TEXT BOOKS:												
1. Gaur R.K. and	d Gupta S.L, "Engineering Physics", Dhanput Publications, 2015.											
2. Shatendra Sha	arma and Jyotsna Sharma, "Engineering Physics", Pearson, 2006.											
3. Rajendran V,	"Engineering Physics", Tata McGraw Hill, 2009.											
4. Arumugam M	I, "Materials Science", Anuradha Publications, 2015.											

5. Elementary Bio physics - An Introduction – P K Srivasthava, Narosa Pub.-2005

REFERENCES:

1. David Halliday, Robert Resnick, Jearl Walker, "Principles of Physics", 10th Edition, Wiley, 2015.

2. Peter Atkins and Julio De Paula, "Physical Chemistry", 10th Edition., Oxford University Press, 2014

3. Arthur Beiser, Shobhit Mahajan and Rai Choudhury S, "Concepts of Modern Physics", 7th edition, McGraw Hill Education, 2017.

- 4. Raghavan V, "Materials Science and Engineering", PHI Learning Pvt. Ltd., 2010
- 5. Pandey B.K., Chaturvedi.S. "Engineering Physics", Cengage Learning India Pvt.Ltd, 2012

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Develop an understanding about photonics and Fiber Optic communication system	2
CO2	Acquire the knowledge of Quantum mechanics	3
CO3	Classify and demonstrate the fundamentals of crystals and their defects.	3
CO4	Acquire the knowledge of New Engineering Materials	2
CO5	Enable to explore how sound is produced and propagates in material medium	3

CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3									1			3		
2.	3	2	2	2	3					1		2	3		
3.	3	2								1			3		
4.	3	2	2	2	3	2	2			1		2	3		
5.	3									1			3		

CY22153	TECHNICAL CHEMISTRY	L	Т	Р	С								
	(Common to BT, CH and CE)	3	0	0	3								
COURSE OBJECTI	VES:												
 To make the student conversant with the Electrodes, Corrosion and Protective coatings Photochemical process Synthesis and applications of nanoparticles Characteristics and analysis of water Materials like polymers, composites and binding materials 													
UNIT I	ELECTROCHEMISTRY			9									
Electrodes and electrochemical cells – electrode potential, standard electrode potential, single electrode potential and its determination, types of electrodes – calomel, quinhydrone and glass electrode. Nernst equation – determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Batteries – Primary (dry cell) and secondary batteries (Lead – acid storage battery and Lithium ion battery) and next generation batteries.													
UNIT II	PHOTOCHEMISTRY			9									
Laws of photochemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert Beer Law – determination iron by spectrophotometer. Quantum efficiency – Photo physical processes - internal conversion, inter-system crossing, fluorescence, phosphorescence and photo-sensitization-Quenching of fluorescence and its kinetics, Stern-Volmer relationship. Applications of photochemistry													
UNIT III	NANOCHEMISTRY			9									
Basics and scale of nanoparticles and b (lithography) and its a resonance).	nanotechnology, different classes of nanomaterials, Disti pulk materials; size-dependent properties. Synthesis of applications – Basics of nanophotonics and quantum confined	nction nanom materi	betwee aterial als (su	en mole s, fabri rface pl	ecules, cation asmon								
UNIT IV	WATER TECHNOLOGY			9									
Sources, impurities in characteristics – Hard Priming and Foamin treatment of water: treatment of water: Io by EDTA method, Al by Winkler's method	h water and their effects. WHO guideline and BIS guideline ness – Types of hardness – Disadvantages of hard water. Bo og, Caustic embrittlement and Boiler corrosion. Water so Carbonate conditioning, Phosphate conditioning and Calgo n exchange process. Domestic water treatment. Water analysi kalinity – determination by double indicator method, Determ and Determination of chloride by Mohr's method.	e for dr iler trou ftening on cond s: Hard ination	inking ubles: metho litionin ness – of diss	water. Scale, S ods - In ng - Ex determi solved o	Water ludge, nternal kternal nation oxygen								
UNIT V	MATERIALS CHEMISTRY			9									
Polymers: Introductio Conducting polymers Composites: Definition and ceramic matrix) a composites materials.	n – Monomers, functionality and its significance, Free radical – mechanism of conduction in polyacetylene and applications on, need for composites. Constitution – Matrix materials (Po nd Reinforcement (fiber, particulates, flakes and whiskers). Pr Hybrid composites, Binding materials and its applications	polymer olymer	rizatio matrix s and a	n mech , metal applicati	anism. matrix ons of								
		ТО	TAL:	45 PER	IODS								
TEXT BOOKS:													

2.S.S.Dara, "A Text Book of Engineering Chemistry", S.Chand& Co. Ltd., New Delhi, 12th Edition, 2016.

 B.R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry" Vishal Publishing Company, 2008.
 Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Identify electrochemical cells, corrosion and fundamental aspects of batteries	2
CO2	Interpret the photochemical reactions and make use of spectroscopic techniques	2
CO3	Realize the structures, properties and applications of nanoparticles.	2
CO4	Describe the hardness of water, the problems caused by the hard water and their removals methods.	4
CO5	Illustrate the significance of various materials like polymer, composites their composition, properties and applications.	2

CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3	3	2								3	3		
2.	3	3				3	3					3	3		
3.	3	3	3			3	3	3				3	3		
4.	3	3		2		3	3	3				3	3		
5.	3	3	3			3	3	3				3	3		

ME22152	BASIC MECHANICAL ENGINEERING	L	Т	Р	С
	(Common to BT, CH)	3	0	0	3
COURSE OBJECT	IVES:				<u> </u>
1. To teach the fund	amentals of various energy resources				
2. To impart the con	cepts in internal combustion Engines				
3. To make the stude	ents to understand the working principle of refrigeration and Air	condit	ioning	g syste	ms
4. To impart the var	ous engineering materials and their processing methods.		- C		
5. To give an aware	hese about the recent trends in Mechanical engineering				
UNIT I	ENERGY RESOURCES			10	
Classification of Ener	gy Resources - Non-renewable and renewable energy resources	. Nonr	enewa	ble en	ergy
resources – Steam po	wer plant. Nuclear power plant. Hydroelectric power plant. Ga	as Turb	ine po	ower n	lant.
Diesel Power plant	····· ································		F -	r r	
Renewable Energy re	sources – Solar Energy, Wind Energy, Bio energy, tidal energy.	fuel co	ells		
UNIT II	INTERNAL COMBUSTION ENGINES	·		9	
Classification, I.C. E	igines parts and their function, working of 2 Stroke and 4 stroke	e engin	es. Ba	sic ter	ms -
Indicated power, bra	the power frictional power, thermal efficiency, mechanic	cal eff	ïcienc	y (sii	nple
problems).	r r r r r r r r r r				Г
1 /					
UNIT III	REFRIGERATION AND AIR CONDITIONING			9	
Refrigeration: Types	of refrigerants and properties of good refrigerant, Refrigera	ting ef	fect a	nd un	it of
Refrigeration (defini	tion). Working principle of vapor Compression refrigeration	and v	apor	absor	otion
refrigeration (with a s	ketch). Applications areas of a refrigeration system. Basic Calc	ulation	s		
Air Conditioning:	Definition, Types, Room air-conditioning working princi	iple (v	with a	a ske	tch),
Applications. Calcula	tion of Tonnage requirement based on the room size				
UNIT IV	MATERIALS AND MANUFACTURING PROCESSES			10	
Engineering Material	s: Classification – Properties – Alloys and their applications		•		
Manufacturing Proce	sses - classification - Casting - Pattern, Core, Green sand Moul	ld prepa	aratior	ı,	
Investment casting					
Metal Joining Process	s - Arc welding and Gas welding process, Soldering and Brazin	g – intı	oduct	ion	
Metal forming Proces	s – Forging, rolling, Extrusion – introduction				
Metal Removal proce	ss – Lathe, Milling, Drilling				
UNIT V	RECENT TRENDS IN MECHANICAL ENGINEERING			7	
Hybrid and Electric v	ehicle – layout and Principle		•		
Additive Manufacturi	ng – Introduction and types				
Robotics – Introducti	on – Types of robot and applications				
]	ΓΟΤΑΙ	L: 45]	PERIO	ODS
TEXT BOOKS:					
1. Dr Sadhu Sing	gh, Elements of Mechanical Engineering, S. Chand Publishing,	2010			
2. Basant Agraw	al, C.M. Agrawal. Basic Mechanical Engineering, Wiley India	Pvt Ltd	l, 2008	3	
3. Pravin Kumar	, Basic Mechanical Engineering, 2 nd Edition Pearson India, 201	8			
4. R.K. Rajput, I	Basic Mechanical Engineering, Lakshmi Publications, 2007				
5. Nag. P.K. Ras	ic Mechanical Engineering. McGraw-Hill Education (India) Pv	t Limit	ed. 20	11	
	The file file and the file of	· Linnt			

Upon suc	cessful completion of the course, the students should be able to											
SL.NO	STATEMENT											
CO1	Understand the various energy resources and the principle of their operations	2										
CO2	CO2 Understand the principle of refrigeration and Air-conditioning											
CO3	Identify the types of IC engines and will calculate the various parameters	4										
CO4	Learn the various Engineering Materials and the manufacturing processes	2										
CO5	Know the recent trends in I.C. engines and manufacturing	2										
COUDS												
COURSI	2 ARTICULATION MATRIX											

CO								103							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	2												3		
2.	2												3		
3.	2												3		
4.	2												3		
5.	1												3		

ME22151	ENGINEERING GRAPHICS	L	Т	Р	С								
	(Common to BT, CH)	0	2	3									
COURSE OBJECT This course will intro form of simple geom	IVES: Induce the students to build their ability to read drawings and inte etries.	rpret th	e posi	tion a	nd								
UNIT 0	CONCEPTS AND CONVENTIONS AND GEOMETRIC CONSTRUCTION (NOT FOR EXAM)			2									
Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning													
UNIT I	CONICS, CYCLOIDAL CURVES AND INVOLUTES			10									
Geometric constructi and hyperbola by ecc of cycloid, epicycloid of involutes of square	on - Curves used in engineering practices: Conics - Construct centricity method - Drawing of tangents and normal to the abov d and hypocycloid- Drawing of tangents and normal to the abov e, pentagon and circle - Drawing of tangents and normal to the a	ion of e curve ve curv bove in	ellipse es - Co es. Co volute	e, para onstruc onstruc es.	bola xtion xtion								
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACES			12									
Orthographic projection – principles-Principalplanes - First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method.													
Projection of planes perpendicular to othe	s (polygonal and circular surfaces) inclined to one of the r by rotating object method.	princi	ipal p	lanes	and								
UNIT III	PROJECTION OF SOLIDS			12									
Projection of simple principal planes and cylinder with central one of the principal p	solids like prisms, pyramids, cylinder, cone when the axis is parallel to the other by rotating object method. Projections of he ly drilled hole or square through its ends by rotating line methol anes and parallel to the other.	incline ollow p od - az	ed to o rism a kis is i	one of and ho incline	the the to								
UNIT IV	BLOCK FLOW DIAGRAM USING CAD			12									
Introduction to Con commands (AutoCA)	nputer Aided Drafting hardware - Overview of application D) for simple shapes - Block flow diagrams - Dimensioning.	softwa	re -2I	D drat	fting								
UNIT V	ORTHOGRAPHIC AND ISOMETRIC VIEWS USING C.	AD		12									
Introduction to tolera basics - 3D to 2D cor	ance - Annotation in CAD - Isometric views - Orthographic nversion.	views	- 3D	Mode	lling								
	TOTAL: 60 (3	30 L +	30 P)I	PERIC	DDS								
TEXT BOOKS:													
 Bhatt N.D. a 2019. Dhananjay M 	nd Panchal V.M., "Engineering Drawing", Charotar Publishir I. Kulkarni, A.P. Rastogi, Ashoke K. Sarkar, "Engineering Gra	ng Hou phics v	se,53r vith A	d Edi utoCA	tion, AD",								
 PHI Learning Private 3. Venugopal K Limited, 6th edition, 2 	e Ltd., 2009. . and Prabhu Raja V., "Engineering Drawing +AutoCAD", New 2022	w Age	Intern	ationa	l (P)								

1. Dhananjay A Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw-Hill Publishing Company Limited., 2008

2. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.

- 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.
- 4. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.

WEB RESOURCES:

- 1. Block flow diagram https://media.ed.ac.uk/media/1_u4r3az7t
- 2. AutoCAD tutorials https://www.thesourcecad.com/autocad-tutorials/
- 3. https://nptel.ac.in/courses/112105294
- 4. <u>https://nptel.ac.in/courses/112103019</u>

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Construct conic sections and as per drawing standards.	3
CO2	<i>Obtain</i> orthographic projections of lines and plane surfaces and simple solids in various positions.	3
CO3	Obtain projections of simple and hollow solids.	3
CO4	<i>Employ</i> the CAD software for drafting and modelling of simple components	3
CO5	Construct 2D views from 3D models using CAD software.	3

CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.										1			3		
2.										2			3		
3.										2			3		
4.					2				1	3			3		
5.					2				1	3			3		

HS 22151	தமிழ் மொழியும் த	தமிழர்	மரபும்	L	Т	Р	С				
	Tamil Language and Herita	ge of Anci	ent Tamil Society								
	(Common to d	all branch	es)	1	0	0	1				
பாடத்தின்	நோக்கங்கள் :						<u></u>				
தமிழ் வாயிலாக வ	மொழியின் தோற்ற ழ்வியல் முறைக வை	ம் பற் ற்றியும்	றியும் , தில கற்றுக் ெ	ணை க(காள்வ	ரத்துச் ார்கள்	கள்					
இந்திய மற்றும் கொள்வார்கள்	தேசிய சுதந்திர இ ஹிழர்களின் மேலா ட.)யக்கத்த ாண்மை	டுல் தமிழர்கள முறைகளைபற்	ளின் றியும்	பங்க ச	ளிப்பு ஹ்றுக்					
அலகு <u>1</u>	தமிழுக்கும் தொழி தொடர்பு	ில்நுட்ப	கல்விக்கும்	୭୦	ភាំតា	3					
மொழி மற் குடும்பங்கள் செம்மொழி ஆகியோரின்	றும் பாரம்பரியம் – திராவிட மொட இலக்கியம் - உ.வே பங்களிப்பு - தொழி	்: றிகள் – ப் சுவா லநுட்ப	இந்தியாவில் தமிழ் ஒரு செ மிநாத ஐயர் கல்வியில்	உசே சம்மொ ., ஆற தமிழ்	ாள ழி – <u>ச</u> பமுக	மொழ் மிழில் நாவல	றக் ப லர்				
LANGUAGE AND HERITAGE: Language families in India – Dravidan Languages – Tamil as a Classical language – Classical Literature in Tamil – Contribution of U. Ve. Swaminathaiyar. Arumuka Navalar – Importance of Tamil language in technical education.											
அலகு 2	திணைகருத்துக்கள்					9					
திணைகருத்துக்கள் : - ஐந்து வகைதிலங்கள் , தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் , கடவுள்கள் , தொழில்கள் , வாழ்க்கைமுறை , பண் , கூத்து , உணவமுறை தொல்காப்பியம் மற்றும் சங்க இலக்கியங்களில் இருந்து அகம் மற்றும் புறம் கருத்து – தமிழ் அறம் கருத்து – சங்ககாலத்தில் கல்வி மற்றும் எழுத்தறிவு – பண்டைய நகரங்கள் மற்றும் சங்ககாலத்தில் து றைமுகங்கள் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி - சோழுவன்னர்களின் வெளிநாட்டு வெற்றிகள் Thinai concepts : -Five types of lands, animals, Gods, occupation, life styles, music, dance , food style, Flora and Fauna of Tamils - Agam and puram concept from Tholkappiyam and Sangam Literature – Aram concept of Tamil – Education and Literacy during Sangam Age – Ancient cities and Ports of Sangam Age – Export											
	கமிமரின் பாப	quest of C.	noias.			3					
இந்திய கலாச்சாரத்தி வாஞ்சிநாதன் வஉசிதம்பரப் பூலிதேவர் இலக்கியங்க வரை – அகந கருத்துகள் Contribution of Subramanya Bha Pillai, Dheeran Velunachiyar. M	தேசிய சுதந்திர ற்கு தமிழர்களின் , சுப்பிரமணிய பிள்ளை , தீரன் சீ திருப்பூர் குமரன் ளில் மேலாண்டைகரு ஹாறு, புறநானூறு , தி Tamils to Indian National F rathi, Vanchinathan, Subramar Chinnamalai, The Maruthu I nagement in tamil literature (F	க் சிவா சின்னமக , வீரமா த்த்துக்கவ ருக்குறவ reedom M hiya Siva, Pandiyar, From 500 I)யக்கம் ம ங்களிப்பு :- , வீரபாண்டிய லை மருது பான ங்கை வேலு நால ர் (கி. மு. ர் (கி. மு. ர் ஆகியவர Aovement and India Veerapandiya Kattal Puli Thevar, Tirup 3.C to 200 A.D) – A	ற்றும் சுப்ரமன ப ச ன்டிய ச்சியார் ⁵⁰⁰ மு ற்றில் n Cultur oomman, pur Kum gananoor	னிய தட்டடெ சகோத தல் கீ மேல e: Contr V O Cl aran, V u, Purana	இந்தி பாரத் ரம்மஞ தரர்கள் தரர்கள் தமிழ பி பி ாண்னை ributions ributions ributions ributions aanooru	ய ந் ர் 200 மக் s of uram ngai and				

TOTAL: 15 PERIODS

TEXT BOOKS:
1. பொன் முத்துகுமாரன் (2002), "தமிழ் மரபு", காந்தளகம் , 68, அண்ணா
சாலைசென்னை600 002
2. பி.டி. ஸ்ரீனிவாச ஐயங்கார் <i>(தமிழக்கமும் திறனாய்வும்)</i> புலவர்
கா. கோவிந்தன் (1988), "தமிழர் வரலாறு (முதல் பகுதி)", திருநெல்வேலி
தென்னிந்திய சைவசித்தாந்த நூற்பதிப்பு கழகம் , 154, TTK சாலை
சென்னை18.
3. டாக்டர் .கே.கே.பிள்ளை (2009), ''தமிழக வரலாறு மக்களும்
பண்பாடும் ்", உலக தமிழாராய்ச்சி நிறுவனம் ், தரமணி சென்னை 00113
4. முனைவர் ச இராஜேந்திரன் (2004), "தமிழில் சொல்லாக்கம் ",
தஞ்சாவூர் தமிழ் பல்கலைக்கழகம் வெளியீடு

OUTCOMES:

2.

3.

Upon successful completion of the course, the students should be able to							
SL.NO	STATEMENT						

SL.NO			STATEMENT									RI LEV	BT /EL		
CO1	ப ெ	ாண காள்	வர்க வார்	ள் த ரகள்	மிழ்(ரமாழ	ற்த்	தோ	ற்றம்	பற்றீ	ித்	தெரிந்	து	1	
	Students will learn about the origin of the Tamil language										-				
CO2	த பெ	மிழர்களின் வாழ்வியல் முறைகளைத் தெரிந்து கொள்வார்கள் . hey will know the ways of life of Tamils.									2	2			
CO3	த ப ப T	தமிழர்களின் சுதந்திர போராட்ட வீரர்களை பற்றியும் , மேலாண்மைகளைபற்றியும் தெரிந்து கொள்வார்கள் . They will know about the freedom fighters of Tamils and the management of Tamils									2	2			
COURSE ARTICULATION MATRIX															
CO		PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.			3		3	3	2		3			2			

CY22161		CHEMISTRY LABORATORY		L	Τ	Р	C			
				0	0	2	1			
COURSE OBJECT	TIVES:						<u> </u>			
The objective of the of chemistry, the stud	Chemistry La dent face dur	aboratory is to acquaint the students wing course of their study in the industri	vith the basic p ry and enginee	henom ring fie	enon/ eld.	conce	pts			
1. To appreciate	e the need and	d importance of water quality parameter	ters for industr	ial and	dome	estic us	se.			
2. To gain the k measuring used in ele	nowledge on ectrochemist	electrochemical instrumentation tech	niques like po	tential	and cu	irrent				
3. To impart kn	owledge on s	eparation of components using paper	chromatograp	hy.						
4. To enhance the	he thinking c	apability about polymer and propertie	es like molecul	ar weig	ght.					
	1	apr	0							
LIST OF EXPERIM	MENTS (Min	nimum 8 Experiments)	(x)							
1. Determinatio	on of DO cont	ent of water sample by Winkler's me	thod.							
2. Determinatio	Determination of strength of given hydrochloric acid using pH meter									
3. Determinatio	on of strength	of acids in a mixture using conductiv	ity meter	1						
4. Estimation of method)	f iron content	of the water sample using spectroph	otometer (pher	nanthro	oline/t	hiocya	nate			
5. Determinatio	on of total, ter	nporary & permanent hardness of wat	ter by EDTA N	Aethod	•					
6. Estimation of	f iron content	of the given solution using potention	neter.							
7. Determinatio	on of alkalinit	y in water sample.	101							
8. Determinatio	on of Single e	lectrode potential.	1							
9. Separation of	f components	from a mixture of red and blue inks u	using Paper chi	romato	graph	у.				
10. Determinatio	on of molecula	ar weight of polymer by using Ostwal	ld's/Ubbelohde	viscor	neter.					
			Г	OTAI	2:15	PERIC	ODS			
LIST OF EQUIPM	ENT FOR A	BATCH OF 30 STUDENTS:								
Common apparatus	s: Pipette, Bı	urette, conical flask, porcelain tile, o	dropper (each	30 No	s.)					
	1.	Iodine flask	30 Nos							
	2.pH meter5 Nos									
	3.	Conductivity meter	5 Nos							
	4.	Spectrophotometer	5 Nos							
	5.Oswald/UbbelohdeViscometer30 Nos									

1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York 2001.

2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel"s Textbook of practical organic Chemistry", LBS Singapore 1994.

3. Jeffery G.H., Bassett J., Mendham J.and Denny vogel"s R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.

4.	Kolthoff I.M., Sandell E.B. et	t al. "Quantita	ative chemical an	nalysis", Mcmillan,	Madras 1980.
----	--------------------------------	-----------------	-------------------	---------------------	--------------

OUTC	OMI	ES:													
Upon s	ucces	ssful con	npletio	n of the	course	e, the s	tudents	shoul	d be ab	le to					
SL.NC)					S	TATE	MENI	Г					L	RBT EVEL
CO1	I P	Distinguish hard and soft water, solve the related numerical problems on water, purification and its significance in industry and daily life.												:,	3
CO2	I P	Interpret the knowledge of instruments to measure potential and current related parameters											d	2	
CO3	I c	Demonstrate the basic principle for separation of components using paper chromatography											r	3	
CO4	Evaluate the molecular weight of polymer using Ostwald's/Ubbelohde viscometer.												3		
COUR	SE A	RTICU	JLATI	ON MA	ATRIX	K									
CO								PO's							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	2				3	3	3	1		1	2		3	
2.	3	2	1			3	3	3						3	
3.	3					3	3					2		3	1
4.	3			1 3 3 3 3 3							3				
5.	3	2				3	3	3	1		1	2		3	

ME22161	BASIC MECHANICAL ENGINEERING LABORATORY	L	Т	Р	C					
	(Common to AE, BT, CH)	0	0	2	1					
COURSE OBJ	ECTIVES:				<u> </u>					
To provide an exprocesses.	xposure and hands on experience to the students on various basic m	echan	ical E	nginee	ering					
LIST OF EXPE	CRIMENTS									
1. Welding	- Butt joint and lap joint using Electric Arc and Gas welding.									
2. Machinin	ng – Turning and facing using Centre Lathe.									
3. Sheet metal work – Making of a cylinder using GI sheet and finishing using rivets.										
4. Drilling and Tapping – Drilling of holes precisely and making internal threads by Tapping for										
various sizes.										
5. Casting -	- Mould preparation using simple solid pattern and casting.									
6. Plumbing	g – Making household pipeline PVC pipes, valves, taps, couplin	ngs, u	nions,	redu	cers,					
elbows.										
7. Fuel testi	ng – Determination of Flash point and Fire point of fuels.									
8. Refrigera	ation and Air Conditioning – Determination of Coefficient of P	erforn	nance	(COP) of					
refrigeration and	air conditioning systems.									
9. Automat	ion – Basic pneumatic circuit using single and double acting cylinder	•								
10. 3D printin	g –Demonstration of printing of simple solids using Additive Manufa	ucturin	g/3D	printir	ıg.					
	The second se		201		ODG					
		UIAI	<u>.: 30 1</u>	PERI	305					
TEXT BOOKS	:									
1. Jeyachan Laboratory", An	dran K., Natarajan S. & Balasubramanian S., "A Primer on a uradha Publications, 2007.	Engine	eering	Prac	tices					
2. Jeyapoov Publishing Hous	van T., Saravanapandian M. & Pranitha S., "Engineering Practices e Pvt.Ltd, 2006.	; Lab	Manu	al", V	'ikas					
3. Bawa H.	S., "Workshop Practice", Tata McGraw Hill Publishing Company Li	mited,	2007.							

4. Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017

5. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.

6. Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th edition, 2009.

7. Mechanical engineering practices lab manual, SVCE, 2022.

OUTCO	DMES:					
Upon su	ccessful completion of the course, the students should be able to					
SL.NO	SL.NO STATEMENT					
CO1	Fabricate components by various manufacturing processes.	3				
CO2	<i>Prepare</i> pipeline for a given application.	3				
CO3	<i>Evaluate</i> the ignition properties of fuels	5				
CO4	Determine the efficiency of refrigeration and air conditioning Systems	2				
CO5	<i>Understand</i> the principles of low-cost automation using pneumatic circuits.	2				
CO6	<i>Understand</i> the principle of additive manufacturing/3D printing	2				
	•	•				

СО	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	2													3	
2.	2													3	
3.	2													3	
4.	2													3	
5.	1				2									3	
6	1				2									3	

SEMESTER II

HS22152	TECHNICAL ENGLISH	L	Т	P	C
		3	0	0	3
COURSE OBJECT	IVES:				
 Enable learners to Expose learners to Develop learners' Improve learners' Cultivate learners' 	define and understand technical communication and scientific v the technicalities of seminar presentation, group discussion, an writing skills for scientific and documenting purposes. ability to draft correspondences for business purposes.	writing. d public and rec	c spea	king.	ess.
UNIT I				9	
Listening - AV files p syllable division and and technology; Writ tenses and their aspo voice, subject-verb ag	bertaining to manufacturing processes of products, scientific doo word stress, intonation, sharing opinions; Reading - news art ing - definitions, instruction, recommendation, data interpretati ects, sentence connectors – discourse markers, sequential wo greement.	cumenta ticles re on, resu rds, act	aries; elated ume; (tive an	Speak to sci Gramn nd pas	ing - ence nar - ssive
UNIT II				9	
Listening - AV perta sharing opinions; cor among internal audio Writing - fliers, broch and uses, conditional	ining to marketing strategies, peer reading and pronunciation; aducting and attending a meeting, understanding the nuances of ence and external audience; Reading - analytical documents, nures, resume - letter of application, checklists; Grammar - mod clauses, articles.	Speak spoken descrip al verbs	ing- tu comr tive d s, clau	urn tal nunica locum ses - t	ting, ition ents; ypes
UNIT III				9	
Listening - AV relate and initiation, speaki descriptions - proce Grammar - phrasal ve	d to how to use components, scientific description, Speaking - sing at a seminar presentation; Reading - scientific journals, paperss description, purpose and function, PowerPoint, Google erbs, prepositions, technical and scientific affixes.	speakin ers; Wr forms,	g for iting - user	motiva Techi man	tion nical uals;
UNIT IV				9	
Listening - scientific benefits, progress or evidences of uses ar reports - proposal, pr Grammar - reported effect, infinitive of re	debates, crisis management; Speaking - handling conflicts, spectode decline of business, identifying the connotative meanings, and functions of a product, review of a product, Writing - metroject, progress reports, sales reports, reports on industrial visit speech and tag questions, sentence structure - comparative, sult.	eaking a Readin emos, fo ts, exeo impera	about ng- de ollow- cutive ative,	the los ocume oup let summ cause	ss of nted ters, nary. and
UNIT V				9	
Listening - AV of G Speaking- speaking a WebPages of top not the meeting; Gramm the content/improvisi	roup discussions, panel discussions, face to face interviews fo at group discussions, interviewing a personality, answering at th ch engineering companies, Writing - blogging, e-mails, letter o ar - one word substitution, collocations, better word/sentence ng ideas).	r recrui le interv f comp substitu	tment views; laint, tion (purpo Readi minuto rephra	oses; ing - es of ising
	ŋ	ΓΟΤΑΙ	2: 45]	PERIC	ODS
REFERENCES:					
1. Department of E. Orient Blackswan, C.	nglish, Anna University. <i>Mindscapes: English for Technolog</i> hennai. 2012.	ists	and 1	Engine	ers.
2. Downes, Colm, C	ambridge English for Job-hunting, Cambridge University Press	, New	v Delh	i. 200	8.
3. Murphy, Raymon	d, Intermediate English Grammar with Answers, Cambridge Ur	iversity	y Press	s 2000	•
4. Thomson, A.J., P.	ractical English Grammar 1 & 2, Oxford, 1986.				

Websites

1. http://www.usingenglish.com

2. http://www.uefap.com3

3. https://owl.english.purdue.edu/owl/

4. <u>www.learnenglishfeelgood.com/esl-printables-worksheets.html</u>

Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.
- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.
- 5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Understand the nuances of technical communication and scientific writing	3
CO2	Present papers and give seminars	6
CO3	Discuss in groups and brainstorm	6
CO4	Draft business correspondences and write for documenting purposes	6
CO5	Face job interviews with confidence	6

CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.										3			3		
2.										3			3		
3.										3			3		
4.										3			3		
5.										3			3		

MA22251	A22251 APPLIED MATHEMATICS – II L T P C											
		(Common to all except Marine Engineering)	3	1	0	4						
COURSE OI	BJECT	IVES:										
The Student s	hould b	e made to:										
 Acqui compute diffe Skillee Skillee Extend Extend Explain Under in application 	re the erent typ d at the d their oblem the in geometric stand the areas s	concepts of vector calculus needed for problems in all engines of integrals using Green's, Stokes' and Divergence theorems techniques of solving ordinary differential equations that model ability of using Laplace transforms to create a new domain is nat is being investigated. The standard techniques of complex variable theory so as to apply uch as heat conduction, elasticity, fluid dynamics and flow of elements	neering engine n whic s. y them ectric c	discip ering h it is with c urrent	plines proble s easie confide	and ms. r to ence						
UNIT I	VE	CTOR CALCULUS			12	2						
Gradient, dive fields - Line Green's theo Verification a	ergence integral orem in and appl	and curl - Directional derivative - Vector identities – Irrotational over a plane curve – Surface integral - Area of a curved surfate a plane, Gauss divergence theorem and Stokes'theorem ication in evaluating line, surface and volume integrals.	al and s ace - V (exclu	oleno olume ding	idal ve integ proofs	ctor ral - s) –						
UNIT II	ORDI	NARY DIFFERENTIAL EQUATIONS AND ITS APPLICA	TION	S	12	2						
Differential e Higher order Cauchy's and coefficients – beams	quation linear o d Lege Applio	s of first order – Equations of the first order and first degree differential equations with constant coefficients - Method of vandre's linear equations - Simultaneous first order linear ec cations of Linear differential equations – Oscillatory electrical	e – Lir triation quation circuit	ear e of pa s with – De	quation rameter n cons flectio	ns – ers - stant n of						
UNIT III	LAPL	ACE TRANSFORM			12	2						
Conditions for impulse func- functions - De functions. Inv second order	or exist tions – erivativ verse La with co	ence - Transform of elementary functions - Transforms of Basic properties – Shifting theorems - Transforms of deriva es and integrals of transforms - Initial and final value theorems - aplace transforms - Convolution theorem – Application to solution instant coefficients using Laplace transformation techniques	unit ste atives - Trans ution o	ep fur and ir form (f linea	nction ntegral of peri ar OD	and s of odic E of						
UNIT IV	ANAI	AYTIC FUNCTIONS			12	2						
Analytic func analytic funct Mapping by f	tions - l ion - Ha unction	Necessary and sufficient conditions (Cauchy-Riemann equations armonic conjugates - Construction of analytic functions - Confor s W = Z + C, CZ, 1/Z, Z^2 – Joukowski's transformation- Bilinea	5) - Proj rmal ma ar transf	perties apping format	s of g – tion							
UNIT V	COM	PLEX INTEGRATION			12	2						
Cauchy's inte points - Resi integrals – Us	gral the dues - se of cir	corem - Cauchy's integral formula - Taylor's and Laurent's serie Cauchy's Residue theorem – Application of residue theorem cular contour and semi-circular contour	s expan for ev	nsions aluati	- Sing on of	ular real						
		1	TOTAI	.: 60 I	PERIC	DDS						
TEXT BOO	KS:											
 Erwin Edition, John Grewa Delhi, (2015) 	Kreysz Wiley, al .B.S,	ting, Herbert Kreyszing, Edward Norminton, "Advanced Engine (2015). Grewal .J.S "Higher Engineering Mathematics",43rd Edition,	ering N Khani	lather na Pul	natics' blicatio	',10 ons,						

1. Dass, H.K., and RajnishVerma, "Higher Engineering Mathematics", S.Chand Private Ltd., 2011.

2. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).

3. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", 9th edition, Laxmi Publications(p) Ltd., 2014.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems.	3
CO2	Solve first order linear, homogeneous differential equations and use series solution method to solve second order differential equations.	3
CO3	Determine the methods to solve differential equations using Laplace transforms and Inverse Laplace transforms	3
CO4	Explain Analytic functions and Categorize transformations	3
CO5	Perform Complex integration to evaluate real definite integrals using Cauchy integral theorem and Cauchy's residue theorem.	3

CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3			IF	1	0	1		-	in.	3	3	1	
2.	3	3	2		17	1		/ •	D	9		3	3	1	
3.	3	3	2		Ě	- 25	1.0	1	5			3	3	1	
4.	3	3			1U	5	2	1	1	\sim	1 -	3	3		
5.	3	3			17	1				/	-	3	3	1	

EE22251	BASIC ELECTRICAL AND ELECTRONICS	L	Т	Р	С
	ENGINEERING FOR CHEMICAL ENGINEERS	3	0	0	3
COURSE OBJEC	IVES:				
• To underste	and the basic concepts used in Electrical circuits and the principal	es of m	agurir	NG .	
instruments and sen	sors		2050111	Ig	
To introduc	the fundamentals of power semiconductors devices and its appreciation of the semiconductors devices and its appr	olication	s.		
• To study th	e different types of electrical machines and its starting methods.		~ .		
• To study ba	sics of Industrial Electrical Drives.				
• To impart l	knowledge of application of electrical drives using modern con	trol stra	tegy ir	n chen	nical
process industries			0,		
UNIT I	ELECTRICAL CIRCUITS & MEASURMENTS			9	
Ohm's Law – Kire	hoff's Laws – Steady State Solution of DCCircuits (Mesh c	urrent	nalvei	only) _
Introduction to AC	Circuits – Single Phase and Three Phase Balanced Circuits Prin	ciple of	measi	ireme	, nt -
Error Analysis, Stat	ic and dynamic characteristics of instruments – sensors – Temp	erature,	Pressi	ure, Fl	ow
and Level measurem	nent.	,		,	
UNIT II	SEMICONDUCTOR DEVICES			9	
DN Junction Diodo	and Zanar Diada Statia Characteristics SCR MOSEET	Stati	and	Swita	hina
PN Junction Diode	and Zener Diode - Static Characteristics, SCR, MOSFET	- Static	and Phase	Swite contro	hing
PN Junction Diode Characteristics, App Rectifiers, DC Chop	and Zener Diode - Static Characteristics, SCR, MOSFET plications of Power semiconductor devices - Uncontrolled Rec opers, Concept of PWM in MOSFET	- Static ctifiers,	and Phase	Swite contro	hing olled
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III	e and Zener Diode - Static Characteristics, SCR, MOSFET plications of Power semiconductor devices - Uncontrolled Rec opers, Concept of PWM in MOSFET ELECTRICAL MACHINES	- Static	and Phase	Switc contro 9	hing olled
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w	and Zener Diode - Static Characteristics, SCR, MOSFET plications of Power semiconductor devices - Uncontrolled Rec opers, Concept of PWM in MOSFET ELECTRICAL MACHINES	- Static	c and Phase	Switc contro 9 C Mo	hing olled
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w	e and Zener Diode - Static Characteristics, SCR, MOSFET olications of Power semiconductor devices - Uncontrolled Rec opers, Concept of PWM in MOSFET ELECTRICAL MACHINES Forking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St	- Static ctifiers, braking arting n	c and Phase	Switc contro 9 C Mo s.	hing olled tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV	and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Rec opers, Concept of PWM in MOSFET ELECTRICAL MACHINES rorking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES	- Static ctifiers, braking arting n	c and Phase g of D nethod	Switc contro 9 C Mo s. 9	hing olled tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES rorking of DC machines – types, Characteristics, Starting and brking of AC Induction motors – Slip-Torque Characteristics, Starting S	- Static ctifiers, braking arting n	c and Phase g of D nethod	Switc contro 9 C Mo s. 9	hing olled tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES rorking of DC machines – types, Characteristics, Starting and borking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES rypes of Electric Drives – Factors influencing the choice of electric devices – State Sta	- Static etifiers, braking arting n	c and Phase g of D nethod Irives	Switc contro 9 C Mo s. 9 - Hea	tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES rorking of DC machines – types, Characteristics, Starting and borking of AC Induction motors – Slip-Torque Characteristics, Starting and Distribution of Electric Drives – Factors influencing the choice of electrical drive systems – classes of duty - Maintenance of electrical drive systems – 	- Static ctifiers, braking arting n ectrical o Industr	c and Phase g of D nethod drives ial Ha	Switc contro 9 C Mo s. 9 – Hea izards	hing blled tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES torking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES types of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra 	- Static etifiers, braking arting n ectrical o Industr m	and Phase g of D nethod drives ial Ha	Switc contro 9 C Mo s. 9 – Hea zards 9	hing blled tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) 	- Static etifiers, braking arting n ectrical o Industr m	2 and Phase g of D nethod drives ial Ha	Switc contro 9 C Mo s. 9 – Hea izards 9	tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES rorking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol 	- Static etifiers, braking arting n ectrical o Industr m id state	c and Phase Phase g of D nethod drives tial Ha	Switc contro 9 C Mo s. 9 – Hea zards 9 contro	tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S AC Drive systems	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and brking of AC Induction motors – Slip-Torque Characteristics, Starting or King of Electric Drives – Factors influencing the choice of electric drive systems - classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol - Inverters, AC Voltage controllers, Slip power recovery schemetaria. 	- Static ctifiers, braking arting n ectrical o Industr m id state mes - B	e and Phase Phase g of D nethod drives rial Ha speed lock c	Switc contro 9 C Mo s. 9 – Hea zards 9 contro liagran	tors.
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S AC Drive systems different chemical p	 and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and brking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol - Inverters, AC Voltage controllers, Slip power recovery schemerocess units - Computer based control of DC and AC Drive system 	- Static etifiers, braking arting n ectrical o Industr m id state mes - B ems.	and Phase Phase g of D nethod drives rial Ha speed lock c	Switc contro 9 C Mo s. 9 – Hea zards 9 contro liagran	hing olled tors. ting and ol of n of
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S AC Drive systems different chemical p	and Zener Diode - Static Characteristics, SCR, MOSFET blications of Power semiconductor devices - Uncontrolled Recorders, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and brking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol - Inverters, AC Voltage controllers, Slip power recovery scher rocess units - Computer based control of DC and AC Drive system	- Static ctifiers, braking arting n ectrical o Industr m id state mes - B ems. TOTA	and Phase Phase g of D nethod drives tial Ha speed lock c	Switc contro 9 C Mo s. 9 – Hea zards 9 contro liagran	hing olled tors. ting and ol of n of DDS
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S AC Drive systems different chemical p	and Zener Diode - Static Characteristics, SCR, MOSFET Dilications of Power semiconductor devices - Uncontrolled Record opers, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol - Inverters, AC Voltage controllers, Slip power recovery scher rocess units - Computer based control of DC and AC Drive system	- Static ctifiers, braking arting n ectrical o Industr m id state mes - B ems. TOTA	and Phase Phase g of D nethod drives ial Ha speed lock c	Switc contro 9 C Mo s. 9 – Hea zards 9 contro liagran	tors. ting and bl of n of
PN Junction Diode Characteristics, App Rectifiers, DC Chop UNIT III Construction and w Construction and w UNIT IV Basic Elements – T and Cooling curves Safety Measures. UNIT V Conventional and S AC Drive systems different chemical p	and Zener Diode - Static Characteristics, SCR, MOSFET Dilications of Power semiconductor devices - Uncontrolled Record pers, Concept of PWM in MOSFET ELECTRICAL MACHINES orking of DC machines – types, Characteristics, Starting and orking of AC Induction motors – Slip-Torque Characteristics, St INDUSTRIAL ELECTRICAL DRIVES ypes of Electric Drives – Factors influencing the choice of ele – classes of duty - Maintenance of electrical drive systems - APPLICATION OF ELECTRIC DRIVES (Block Diagra Representation Only) olid State speed control of DC Motors - Conventional and Sol - Inverters, AC Voltage controllers, Slip power recovery scher rocess units - Computer based control of DC and AC Drive syst	- Static ctifiers, braking arting n ectrical o Industr m id state mes - B ems. TOTA	e and Phase g of D nethod drives tial Ha speed lock c	Switc contro 9 C Mo s. 9 – Hea zards 9 contro liagran	hing billed tors. ting and bl of n of DDS

- 2. Mittle V.N, Arvind Mittal "Basic Electrical Engineering", Tata McGraw Hill (India), Second Edition,2013
- 3. Gopal.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, 2001
- 4. Vedam Subrahmaniam, "Electric Drives (concepts and applications)", Tata McGraw-Hill, 2011
- 5. P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003

1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics Engineering", Tata McGraw Hill, 2013.

J.Nagrath and D.P. Kothari, "Basic Electrical Engineering", Tata McGraw Hill ((India), Third Edition, 2010.

3. M.H.Rashid, "Power Electronics: Circuits, Devices and Applications", Pearson Education, Third Edition, New Delhi, 2004.

- 4. Mehta V K, "Principles of Electronics", S.Chand& Company Ltd, 2010.
- 5. Pillai.S.K "A first course on Electric drives", Wiley Eastern Limited, 1998.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Apply basic electrical laws for the electrical circuits and understand sensors and measurement principles	3
CO2	Analyze the characteristics of various semiconductor devices and develop circuits for an application.	4
CO3	Analyze and select electrical machines for drive applications based oncharacteristics.	4
CO4	Identify the structure and types of Electrical drives for specificapplications.	3
CO5	Apply control methods for Electrical Machine andDrives in chemical process industries	3

СО	PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO -1	PSO-2
1.	3	3	3	3	1		1					3		
2.	3	3	3	3	1		1					3		
3.	3	3	3	2			1					3	2	
4.	3	3	2	2		2	2					3	3	2
5.	3	3	2	2			1					3	3	

IT22251	COMPUTER PROGRAMMING AND PRACTICE	L	Т	Р	С
	(Common to AE/BT/CV/CH)	2	0	2	3
COURSE OBJECT	IVES:				
To know the basics of	f algorithmic problem solving				
To learn programmin	g using a structured programming language.				
To implement progra	ms with basic features of C.				
UNIT I	FUNDAMENTALS OF COMPUTING			6 + 3	
Computing Devices	- Identification of Computational Problems - Algorithms	– Buil	ding	Block	s of
Algorithms - Pseudoo	codes and Flowcharts- Notion of memory, addresses, variables,	instruc	tions,	exect	ition
of instructions- Ope	erating system commands, file editing, compiling, linking,	execut	ing a	prog	ram.
Introduction to different	ent programming languages.				
Suggested Activities:					
Practical - Use of ope	rating system commands and file editing operations				
UNIT II	BASICS OF C			6 + 9	
Data types - constan	ts, variables - operators - expressions - basic input/output. Set	tatemer	nts an	d bloc	ks -
Selection - if-else cor	struct - iteration - while - for constructs.				
Suggested Activities					
Practical					
Demonstration of pro	grams using data types, operators and basic input/output.				
Demonstration of pro	grams using it else, else-if, switch.				
Demonstration of pro	grams using, while, for do-while, break, continue			(.(
UNII III	ARRAYS AND STRINGS			0+0	
Array, declaration, in	itialization. Multi dimensional arrays. Strings and character a	rrays, s	tring	operat	ions
on arrays					
Suggested Activities					
Practical					
Demonstration of pro	grams using arrays and operations on arrays				
Demonstration of pro	grams implementing string operations on arrays				
UNIT IV	FUNCTIONS AND STRUCTURES			6+6	
Eurotiona definition	call arguments call by value Call by reference Decurrice. Int	no du oti	onto	atmaata	1 00
Functions, definition,	can, arguments, can by value. Can by reference. Recursion, int	roducti	on to	structi	ires
and unions.					
Suggested Activities					
Practical					
Demonstration of pro	grams using functions.				
Demonstration of pro	grams using recursion				
Demonstration of pro	grams using Structures and Unions				
UNIT V	POINTERS AND FILE HANDLING IN C			6+6	
Introduction to Poin	ters- pointers to basic variables pointers and arrays Pointe	rs to s	tringe	Dvng	mic
Memory Allocation	Files binary text open read write random access close Pre	nrocess	or dir	octivo	
Successful A stimition	Thes - officially, text - open, read, write, random access, close. The	process	or un		5
Suggested Activities					
Practical					
Demonstration of pro	grams using pointers				
Demonstration of pro	grams using files				

TEXT BOOKS:

- 1. PradipDey, Manas Ghosh, "Programming in C", First Edition, Oxford University Press, 2018.
- 2. R G Dromey, "How to Solve it using Computer", Pearson, 2006.

REFERENCES:

1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2015.

- 2. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.
- 3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Third Edition, Tata McGrawHill, 2010
- 4. ReemaThareja, "Programming in C", 2nd ed., Oxford University Press, 2016

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1	Understand the model of a computer, software design methodologies, and represent	3
	solutions to computational problems as algorithms	
CO2	Analyze the problem scenarios and develop C programs using sequential, conditional,	4
	and iterative constructs	
CO3	Appraise problem scenarios and develop C programs using complex storage	4
CO4	Design modularized solutions for larger problems	2
UU4	Design modularized solutions for larger problems	3
CO5	Inspect the storage structure in a computer and design C programs to access	4

СО						PC)'s							
	1	2	3	4	5	6	7	8	9	10	11	12	PSO -1	PSO-2
1.	2	3	3	2	2	1	0	1	3	2	0	2	0	1
2.	2	3	2	2	2	1	0	1	3	2	0	2	0	1
3.	2	3	2	2	2	1	0	1	3	2	0	2	0	1
4.	3	3	2	2	2	1	0	1	3	2	0	2	0	1
5.	1	1	1	1	2	1	0	1	3	2	0	2	0	1

CH2220	1 INTRODUCTION TO CHEMICAL ENGINEER	RING	L	Т	P	С
			3	0	0	3
COURS	E OBJECTIVE:					
• Intro	duce and outline of the concepts of Chemical Engineering					
UNIT I	OVERVIEW OF CHEMICAL ENGINEERING					9
Historia	al overview of Chemical Engineering: Chemical Engineering in de	v to day lif	For Gro	otost o	hiove	monta
in the fi	eld of Chemical Engineering, Paradigm shifts in Chemical Engineering	y to day III ineering: (Doport	unities	and	Future
nrospects	s of Chemical Engineering	meening, (Jppon	unnues	and	I uture
UNIT II	BASICS OF CHEMICAL ENGINEERING					9
						-
Units an	d dimensions, Dimensional Analysis - Rayleigh's and Bucking	ham Pi m	ethods	, Gas o	calcul	ations,
First and	Second law of Thermodynamics, Chemical Kinetics – Reaction ra	ites and Re	eactor	types.		
UNIT II	I MOMENTUM TRANSFER					9
Introduct	tion: Nature of fluids, Concepts of Fluid flow, Properties of H	Juid Flow	, Pum	ps and	Mea	suring
devices -	-Variable and constant head meters.					
UNIT IV	HEAT TRANSFER					9
Modes of	f Heat Transfer: Conduction, Convection and Radiation, Heat Tra	nsfer Equi	pment	s - Hea	t Excl	hanger
and evap	orators.					
UNIT V	MASS TRANSFER					9
Diffusior	n - Absorption, Adsorption, Humidification and dehumidificat	ion, Mass	Trans	sfer Eq	luipm	ents –
Absorber	rs, strippers and Dryers.					
			ΤΟΤΑ	AL: 45	PER	IODS
TEXT B	SOOKS:					
1. Badge	er W.L. and Banchero J.T., "Introduction to Chemical Engineering	ng", 6 th Ec	lition,	TataM	cGrav	v Hill,
1997.						
2. Ghosa	I, S.K, Sanyal S.K. and Dutta.S, "Introduction to	Chemica	l En	gineeri	ng"	TMH
Publicati	lons, New Delhi, 1998.					
3. Dryde	n, C.E., "Outlines of Chemicals Technology", Edited and Revise	d by Gopa	ila Rad	o, M. a	nd M	.Sittig,
2nd Editi	ion, Affiliated East-West press, 1993.			th		
4. Rando	olph Norris Shreve, George T. Austin, "Shreve's Chemical Proce	ess Industr	1es", 5	editio	on, M	cGraw
Hill, 198	4.					
REFER	ENCES					
1. McCa	be, W.L., Smith, J. C. and Harriot, P. "Unit operations in Che	mical Eng	gineeri	ng", M	lcGrav	w Hill
Educa	tion, 7th Edition, 2017 ISBN-13: 978- 8184959635.					
2. Pushpa	avanam, S, "Introduction to Chemical Engineering", PHI Learn	ing Private	e Ltd,	New I	Delhi,	2012,
ISBN 13	: 978-8120345775.					
OUTCO	MES:					
Upon suc	ccessful completion of the course, the students should be able to					
SL.NO	STATEMENT				R LF	BT VFL
CO1.	Analyze the history and future prospects of Chemical Engineerin	<u> </u>				4
CO2.	Apply the basic Chemical Engineering Principles					3
CO3	Construct the Concents of Momentum Transfer					- 3
<u> </u>	Employed the Uset T f		стт ·			<u>ש</u> ס
	Explore the Heat Transfer concepts and understand the working p transfer equipments.	principle of	Heat			3
CO5	Explain the Mass Transfer operations and its role in Chemical pro-	cess indus	stries.			3

COUR	COURSE ARTICULATION MATRIX													
СО		POs										PS	SOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	2	2	1	1		1		2		1		2	2	2
2.	2	2	1	1		1		2		1		2	2	2
3.	3	2	2	2		2	1	2		1		3	3	3
4.	3	2	2	2		2	1	2		1		3	3	3
5.	3	2	2	2		2	1	2		1		3	3	3

HS22251	அறிவியல் மற்றும் தொழில்நுட்பத்தில் தமிழ்	L	Т	Р	С
	Science and Technology in Ancient Tamil Society				
	(Common to all branches)	2	0	0	2
பாடத்தின் நோக்கங்கள் :					
🛠 அறிவியலில் தமிழின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள் .					
் தொழில்நுட்பத்தில் தமிழ் பாரம்பரியத்தின் தாக்கம் பற்றி அறிந்து கொள்வார்கள் .					
UNIT I	அறிவியல்தமிழ்			5	
கருவி உருவாக்கம் – ஆராய்ச்சி மேம்பாடு – கல்வி வளர்ச்சி – அறிவியல்					
தமிழ்சொற்கள் உருவாக்கம் .					
Scientific Tamil : Tool Development - Research Development - Educational Development - Scientific Tamil					
words Creation.					
UNIT II	தொழில்நுட்பத்தில் தமிழ்			25	
வடிவமைப்பு மற்றும் கட்டுமான தொழில்நுட்பம் சங்ககாலத்தில்					
கட்டுமானப்	பொருட்கள் சோழர்களின் பெரியகோவி	ல்கள்	π	மற்ற	مارو
பிறவழிபாட்டு ததலங்கள் – பல்லவர்களின் சிற்பங்கள்				மற்றும்	
கோவில்கள் (மாமல்லபுரம்) - நாயக் கன் கால கோவில்கள் (மதுரை					
மீனாட்சி அம்மன் கோவில்), திருமலைநாயக்கர் மஹால் செட்டிநாட்டு வீடுகள் .					
Design and Construction Technology, Duilding motorials in Construction Const townlaw of Cl. 1 1 1					

Design and Construction Technology : Building materials in Sangam age – Great temples of Cholas and other workship places – Sculptures and Temples of Pallavas (Mamallapuram) – Temples of Nayakas period (Madurai Meenakshiamman temple), ThirumalaiNayakarMahal, Chetti Nadu Houses.

உற்பத்தி தொழில்நுட்பம் :கப்பல் கட்டும் கலைஉலோகவியல்ஆய்வுகள் , தங்கம் , தாமிரம் , இரும்பு பற்றிய அறிவு – தொல்பொருள் சான்றுகள் – சுட்டக் களிமண்மணிகள் , சங்குமணிகள் , எலும்புமணிகள் .

Manufacturing Technology : Art of Ship building, Metallurgical studies, Knowledge about Gold, Copper, Iron – Archeological evidences – Terracotta beads, Shell beads, Bone beads.

அணைகள் ஏரிகள் விவசாயம் மற்றும் நீர்ப்பாசன தொழில்நு ட்பம் குளங்கள் சோழர்கால ஆகியவற்றின் மதகுகள் , குமுழி தூம்பு முக்கியத்துவம் கால்நடை பராமரிப்பு கால்நடைகளின் கிணறுகள் . விவசாயம் பயன்பாட்டிற்காக வடிவமைக்கப்பட்ட மற்றும் வேளாண்செயலாக்கம் – கடல் பற்றிய அறிவு – மீன் பிடித்தல் , முத்து குளித்த ல் , சங்கு சேகரித்தல்

Agriculture and Irrigation Technology: Dams, Tank, ponds, sluice, Significance of KumuzhiThoompu of Cholas period- Animal Husbandry, Wells designed for cattle use. Agriculture and Agro processing, - Knowledge about Sea – Fisheries, Pearl, Conche diving. தமிழ்கணினி : அறிவியல் தமிழ் வளர்ச்சி – தமிழ் கணினி, தமிழ் மயமாக்கல் , தமிழ் புத்தகங்களின் டிஜிட்டல் டிஜிட்டல் நூலகம் , தமிழ் மென்பொருள் உருவாக்கம் – தமிழ் மெய்நிகர் அகாடமி – சொற்குவை திட்டம் Tamil Computing : Development of Scientific Tamil – Tamil Computing, Digitization of Tamil books, Tamil Digital Library, Development of Tamil Softwares – Tamil virtual Academy – Sorkuvai project. தமிழின் எதிர்காலமும் தகவல் தொழில்நுட்பமும் - உலகமயமாக்கலும் தொழில்நுட்பமும் – தகவல் கணினிக்கு தமிழ் கற் றுகொடுத்தல் தொழில்நுட்பத்தில் வளங்கள் . தமிழ்மொழித் Future of Tamil and Information Technology- Globalization and Information Technology-Teaching Tamil for Computer-Resources in Tamil Language Technology. TOTAL: 30 PERIODS TEXT BOOKS: (1985), " அறிவியல்தமிழ் டாக்டர் வாசெ .குழந்தைசாமி 1. பாரதிபதிப்பகம் , 126/108, உஸ்மான்சாலைதியாகராயநகர் . **சென்னை**600017 கற்பித்தலும் சுப திண்ணப்பன் , (1995), "கணினியும் தமிழ் பலமை வெளியீடு , 38–Bமண்ணத்நதோட்டத்தெரு , ஆழ்வார்பேட் , சென்னை 600018 பொன்னவைக்கோ (2003), "வளர்தமிழில் அறிவியல் 3. **(**ழ. இணையத்தமிழ்" , அனைத்திந்திய அறிவியல் தமிழ்க்கழகம் , தஞ்சாவூர் 615 005. **மணிகண்டன்** (2008), "இணையமும் தமிழும் " , நல்நிலம் 4. துரை . 7-3, சி மேட்லிசாலை, **தியாகராயநகர்**, **சென்னை**600 017 பதிப்பகம் **OUTCOMES:** Upon successful completion of the course, the students should be able to RBT SL.NO **STATEMENT** LEVEL அறிவியலில் தமிழ்மொழியின் CO1. பயன்பாடு 2 பற்றி தெரிந்து கொள்வார்கள் தொழில்நுட்பத்தில் பல்வேறு தமிழ்மொழியின் CO2. 2 பற்றி அறிந்து கொள்வார்கள் காக்கம் **COURSE ARTICULATION MATRIX** CO PO's 4 7 8 9 10 11 13 14 15 1 2 3 5 6 12 1. 2 2 2 2 2. 2 1 1 2 2 1 1 1 1 2
EE221	.11]	BASIC I	ELEO ENGIN	CTRIC NEERI	CAL A	ND EI ABOR	LECTI ATOF	RONIC RY	CS		L	Τ	P	C	
													0	0	2	1	
COUR	SE OI	BJECT	TIVES	:													
1.	To pro	ovide e	xposur	e to the	e stude	nts wit	h hand	s on ex	perien	ce in b	asic of	Electri	cal a	nd Ele	ectror	nics	
wiring	connec	ction a	nd mea	sureme	ents.												
2.	To int	roduce	the stu	idents t	to Elec	trical N	Machin	es and	basic l	aws of	Electri	cal Cir	cuits				
LIST (OF EX	PERI	MENT	' S		1.0.1											
1. Wir	ing – F	Residen	tial ho	use win	ing an	d Stair	case w	viring.	1.			1		c ,			
2. (a) A	AC An	alysis-	Measu	rement	t of ele	ctrical	quanti	ties-vo	oltage,	current	, power	r, and p	owe	facto	or usi	ng	
KLC.	dv of t	hree nh	1960 637	stem													
3 Ene	rov coi	ince pr	ion - N	leasure	ement a	and cor	mnariso	on of e	nerøv f	or inca	ndesce	nt lamı	o and	LED	lamr	, ,	
4. (a)	Identi	fication	n of cir	cuit co	mpone	nts (Re	esistor.	Capac	itor. D	iode ar	d BJT) and so	older	ng pr	actice	e.	
(b) Sig	nal Me	asuren	nent- N	leasure	ement of	of peak	to pea	k, RM	S, aver	age, pe	riod, fr	requence	cy of	signa	ls usi	ng CRO.	
5. (a) V	VI Cha	racteria	stics of	Solar	photov	oltaic	panel.			0 1			•	U		C	
(b) Des	sign of	Solar l	PV Arr	ay and	Batter	y sizin	g for R	lesiden	tial sol	ar PV s	system.						
6. Des	ign a 5	V/12V	Regul	ated Po	ower S	upply ı	using F	WR ar	d IC78	805/IC	7812.						
7. DC	Analys	sis-Ve	rificati	on of C)hm's]	Law ar	nd Kirc	hhoff's	s Laws	•							
8. Stuc	ly of T	ransfo	rmer ar	nd moto	or char	acteris	tics.					TOTAL OF DEDIODO					
													TO	FAL :	: 30 P	ERIODS	
REFE	RENC	ES:															
1	N.C. 41	X 7 N T	۸ · ۱	N.C. (1	י תוי	F1	• 15	•	• " -	г / Ъ	C	TT'11 /T	1. \	and	1	2012	
1.	Sodha	V.N, A	Arvina	Mittal,	$\int Base A n$	c Elect	Tical E	nginee	ring ,	1 ata M	2014	HIII (II	ndia)	, 2 E	.011101	1, 2013.	
Ζ.	Seuna	к.э.,	Alex	L DOOK	or Ap	pileu E		nes, s	.Chan	ia Co.	, 2014.						
OUTC	COMES	S:															
Upon s	SUCCESS	ful cor	nnletio	n of the	e cours	e the	student	s shou	ld be a	hle to							
e poir s			npieno		e cours	ie, the	studem	5 51100							1		
SL.NO						9	STATE	EMEN'	Т							RBT	
						~			-							EVEL	
CO1.	. W	iring o	f basic	electri	cal sys	tem an	d meas	ureme	nt of el	ectrica	l paran	neters.				4	
CO2	. Ve	erify th	e basic	laws o	f Elect	ric cir	cuits ar	nd selee	et vario	ous Ele	ctrical	Machir	nes.			4	
CO3	C	netruc	t electr	onic ci	renite	and dee	sign sol	lar nho	tovolta	ic syst	em					4	
		4									4						
CO4.	Apply the concept of three-phase system. 4									4							
CO5	Co	onstruc	t a fixe	d volta	ge reg	ulated	power	supply	•							4	
COUR	SE AI	RTICU	JLATI	ON M	ATRE	X											
СО								PC)'s								
	1	2	3	4	5	6	7	8	9	10	11	12	13	1	4	15	
1	2	2	2	2			<u> </u>		2			2			2		
1.	3	3	3	3					4			2			,		
2.	3	3	3	3					2			2			5		
3.	3	3	3	3		1	1	1	2		1	2			3		

4.

5.

PH 22161	PHYSICS LABORATORY	L	Т	Р	С
	Common to all Branches	0	0	2	1

To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS: (Any EIGHT Experiments)

- 1. a) Determination of Wavelength, and particle size using Laser.
- b) Determination of acceptance angle in an optical fiber.
- 2. Determination of velocity of sound and compressibility of liquid Ultrasonic Interferometer.
- 3. Determination of wavelength of mercury spectrum spectrometer grating.
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 5. Determination of Young's modulus by Non uniform bending method.
- 6. Determination of specific resistance of a given coil of wire Carey Foster's Bridge.
- 7. Determination of Rigidity modulus of a given wire -Torsional Pendulum
- 8. Energy band gap of a Semiconductor
- 9. Determine the Hysteresis loss of a given Specimen
- 10. Calibration of Voltmeter & Ammeter using potentiometer

TOTAL: 30 PERIODS

REFERENCES:

Physics Laboratory practical manual", 1st Revised Edition by Faculty members, 2018.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1.	Analyze the physical principle involved in the various instruments; also relate the	4
	principle to new application. materials.	
CO2.	Comprehend the Experiments in the areas of optics, mechanics and thermal physics	3
	to nurture the concepts in all branches of Engineering.	
CO3.	Apply the basic concepts of Physical Science to think innovatively and also improve	3
	the creative skills that are essential for engineering	
CO4.	Evaluate the process and outcomes of an experiment quantitatively and qualitatively	3
CO5	Extend the scope of an investigation whether or not results come out as expected	3

СО								PO's							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3	2	3	2				3	1		2		3	
2.	3	3		3		2			3	1		2		3	
3.	3	3	2	3	2	2			3	1		2		3	
4.	3	3		3					3	1		2		3	
5.	3	3		3	2				3	1		2		3	

MA22351		APPLIED MATHEMATICS III	L	Т	Р	С
			2	1	0	3
COURSE OB	JECTI	VES:				
The student sh	ould be					
• Compe	etent in	solving applications of ordinary differential equations us	ng anal	ytical m	nethod	s to obtain
 Find th 	utions. ne solutio	on of 1st & higher order PDEsusing analytical methods.				
• Introdu	ice Four	ier series analysis which is central to many applications in	enginee	ring apa	rt fror	n its use in
solving bound	ary valu	e problems.	lua prob	loma		
 Acquii Achiev 	e ule kli ve an un	derstanding of the basic concepts of the Fourier transform	and Z-t	ransfori	n tech	niques and
its application	in Engir	neering.				1
UNIT I	APPLI	ICATIONS OF ORDINARY DIFFERENTIAL EQUAT	IONS			9+3
Applications of	of Differ	ential Equations of First Order-Geometrical Applications-	Orthogo	nal Traj	ectorie	es-Physical
Applications-A	Applicat	ion of Linear Differential Equations-Simple Harmonic	Motion	s-Defle	ction	of Beams-
Applications of	of Simuli	taneous Linear Differential Equations.				
UNIT II	PART	IAL DIFFERENTIAL EQUATIONS				9+3
Formation of	partial d	ifferential equations - Singular integrals - Solutions of sta	indard ty	pes of	first o	rder partial
differential eq	uations	- Lagrange's linear equation – Linear homogeneous partia	differen	ntial equ	ations	s of second
and higher ord	FOUR	IER SERIES				9+3
	1		10		•	<u></u>
Dirichlet's coi cosine series –	nditions -Parseva	- General Fourier series – Odd and even functions – Ha l's identity – Harmonic Analysis.	lf range	sine sei	ries –	Half range
UNIT IV	BOUN	DARY VALUE PROBLEMS				9 + 3
Classification	of PDE	- Method of separation of variables - Solution of one di	mension	al wave	e equa	tion – One
dimensional e (Cartesian and	quation l polar co	of heat conduction – Steady state solution of two dimensi- oordinates).	onal equ	ation of	heat	conduction
UNIT V	FOUR	IER AND Z -TRANSFORMS				9 + 3
Fourier transfo	orm pair	- Fourier sine and cosine transforms - Properties (without	proof) -	- Convo	olution	theorem –
Parseval's ide	ntity. Z	- Transforms – Elementary properties – Inverse Z - transform	sform (using p	artial	fraction) -
			(L:4	15+T:15	5):60	PERIODS
TEVT DOOK	<u>76.</u>				,	
IEAI DOUR	70:					
1. Erwin	Kreyszi	g, "Advanced Engineering Mathematics", 10 th Edition, W	iley Indi	a, 2011.	2017	
 Grewa Naraya 	I. B.S., " anan S	Manicavachagom Pillay T K and Ramanajah G "Advanc	iblishers ed Math	ematics	2017. for F	ngineering
Students" Vol.	. II & III	I, S.Viswanathan Publishers Pvt. Ltd. 1998.		ematics		ingineering
REFERENCI	ES:					
1. Bali.N	.P and N	Manish Goyal, "A Textbook of Engineering Mathematics".	, 7 th Edi	tion, La	xmi P	ublications
PvtLtd , 2007.	U 4	Advanced Medam Englanding Meda di 11 4th English T		□		11
2. Glyn J	ames, "A	Advanced Modern Engineering Mathematics", 4" Edition, I	earson	Education	on, 20	11.

3. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2012.

4. LurryC.Andrews, "Special Functions of Mathematics for Engineers", 2nd Edition, McGraw Hill International Edition, 1992.

WEB LINKS:

1. Engg Mathematics-3 - APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS - 111 3 Application of Ordinary - Studocu .

- 2. FS_PDES_2016.dvi (ox.ac.uk)
- 3. Introduction to Fourier Series (purdue.edu)
- 4. <u>Applications of Partial Differential Equations (nitk.ac.in)</u>

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1.	Develop skills in dealing with problems on ordinary differential equations and apply knowledge of LDE to solve the problems in Chemical engineering.	4
CO2.	Classify, formulate and solve the first order and second order linear, non-linear partial differential equations and apply the knowledge of partial differential equations to solve the engineering problems.	3
CO3.	Achieve an understanding of the basic concepts of periodic function and method of solving problems in Fourier series.	4
CO4.	Analyze and evaluate various partial differential equations such as wave equation, one- and two-dimensional heat flow equations.	4
CO5	Develop the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.	4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	3	3	3	2	2	1	1	1	2	3	3	3	3
CO2	3	3	3	3	2	2	2	2	1	3	3	3	3	3
CO3	3	3	3	3	2	1	1	1	1	2	2	3	3	3
CO4	3	3	3	3	2	2	2	2	1	3	3	3	3	3
CO5	3	3	3	3	3	2	2	2	1	3	3	3	3	3

CH22301	CHEMICAL PROCESS CALCULATIONS	L	Т	Р	C
		2	1	0	3

- To impart knowledge on the basic fundamentals of process calculations.
- To enable the students to perform material balances on various unit operations and processes.
- To enable the students to understand the concepts and calculations associated with gases and other combustion operations in industry which involves two phases.
- To enable the students to perform energy balance calculations on various unit operations and processes.
- To impart knowledge on unsteady state material and energy balances and enable the students to solve problems using process simulators.

UNIT I UNITS AND DIMENSIONS

Base and derived Units - Conversion of units and conversion factors, Dimensional consistency Composition of Mixture and solutions - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculations.

9

9

9

UNIT II

MATERIAL BALANCE WITH AND WITHOUT CHEMICAL REACTIONS

Stoichiometric principles, Application of material balance to unit operations like distillation, evaporation, crystallisation, drying etc., multicomponent systems species analysis and Degree-of-Freedom Analysis Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

UNIT IIIHUMIDITY AND SATURATION9

Basic of humidity and application of psychrometric chart - Use of humidity in condensation and drying – application of air water systems - cooling tower, types and basic calculations.

UNIT IV ENERGY BALANCE WITH AND WITHOUT CHEMICAL REACTIONS

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems with and without chemical reaction - Unsteady state energy balances.

UNIT VFLUE GAS ANALYSIS9

Determination of Composition by Orsat analysis of products of combustion of solid, liquid and gas fuels -Calculation of excess air from Orsat technique, Combustion processes – Flue gas analysis, Ultimate and Proximate analyses of coal. Application of Process simulators and excel solver tool in energy and material balance problems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon succes	ssful completion of the course, the students should be able to	
SL.NO	STATEMENT	RBT LEVEL
CO1.	Interpret the data presented in different unit systems and apply various gas laws to calculate the unknowns in a given system.	4
CO2.	Develop knowledge on various unit operations and unit processes and analyze the material balances for steady and unsteady state chemical systems.	4
CO3.	Discuss humidification operations and its applications for known systems.	3
CO4.	Perform and analyze energy balance calculations for steady and unsteady state chemical processes.	4
CO5	Explicate various methods used for analyzing combustion processes and demonstrate the ability to understand process simulators.	4

TEXT BOOKS:

1. David M. Himmelblau, "Basic Principles and Calculations in Chemical Engineering", Eighth Edition, Prentice Hall of India, New Delhi, 2012

2. Bhatt B.I. and Vora S.M., "Stoichiometry", Second Edition, Tata McGraw Hill, New Delhi, 2004

3. Felder, R. M. and Rousseau, R. W., "Elementary Principles of Chemical Processes", Third Edition, John Wiley & Sons, New York, 2005

REFERENCES:

1. Hougen O A, Watson K M and Ragatz R A, "Chemical process principles" Part I, Second Edition, CBS publishers, 1976.

2. Venkatramani. V, Anatharaman. N and Meera Shariffa Begam "Process Calculations" Prentice Hall of India, New Delhi, 2011.

CO	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1.	3	3	3	3	2	2	1	1	1	2	3	3	3	3	
2.	3	3	3	3	2	2	2	2	1	3	3	3	3	3	
3.	3	3	3	3	2	1	1	1	1	2	2	3	3	3	
4.	3	3	3	3	2	2	2	2	1	3	3	3	3	3	

	5.	3	3	3	3	3	2	2	2	1	3	3	3	3	3
--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---

CH 22302	MOMENTUM TRANSFER	L	Т	Р	С
		2	1	0	3
COURSE OBJECT	TIVES:				

To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics for through pipes and porous medium, flow measurement and fluid machineries

UNIT I FUNDAMENTALS OF FLUID AND FLUID FLOW	
---	--

9

Fluid – properties of fluid – Continuum concept of fluid – Newton''s law of viscosity, pressure and temperature dependence – classification of fluids – Newtonian fluid – Non-Newtonian fluid and their classification. Classification of fluid flow – Incompressible and Compressible flow – Steady, Unsteady, Uniform and Non – Uniform flow. Flow visualization – streamline, pathline, streak line, velocity and stress field.

UNIT II	FLUID STATICS AND FLUID KINEMATICS	9

Fluid statics – Pressure concept, Hydrostatic equilibrium, Manometer and their types. Fluid flow - Differential analysis of fluid motion – Conservation of mass – Equation of continuity and Equation of motion - Euler"s equation, Bernoulli equation and with correction for fluid friction – correction for pump work, Navier- Stokes Equations and Applications

UNIT III	FLOW THROUGH CONDUITS, FIXED AND	9
	FLUIDIZED BEDS	

Reynolds number, experiment and significance, Hagen Poiseuelle equation and Darcy-Weisbach equation; internal flow - flow through pipes and conduits – Moody diagram – friction factor – friction factor chart – head loss due to friction, sudden expansion and contraction. External flows - Flow over a sphere – friction and pressure drag - flow through fixed and fluidized beds - Kozeny Carman equation – Blake Plummer equation and Ergun equation.

UNIT IV	TRANSPORTATION OF FLUIDS	9

Flow measurement –classification flow measuring devices – Principle and working of Orifice meter, Venturi meter, Pitot tube and Rotameter. Brief introduction to non-conventional methods: Laser Doppler velocimetry, Particle image velocimetry, ultrasonic flow meters, electromagnetic flow meters. Valves, Types and characteristics of Valves; Pumps – Classification and working of Centrifugal pumps and Reciprocating pumps, Centrifugal pump: Cavitation and priming – performance characteristics – Net positive suction head – factors influencing selection of pump. Introduction to compressors, fans and blowers.

UNIT V	TURBULENCE AND SIMILARITY	9				
Introduction to turk	oulence: Structure of turbulence, visualization of turbulence, R	eynolds decomposition.				
Fundamental dimension of quantities, dimensional homogeneity – dimensional analysis: Physical significance						
of dimensionless nu	mbers, Geometric – Kinematic and Dynamic Similarity					

TOTAL: 45 PERIODS

OUTCOMES:

	STATEMENT	RBT LEVEI
CO1.	Analyze the fluid properties and flow behaviour of fluids.	3
CO2.	Apply various equations governing fluid statics and fluid kinematics.	4
СОЗ.	Discuss the pressure drops during the flow of fluids through different	4
	physical systems like pipes, valves, fixed and fluidized beds.	
CO4.	Analyze several machineries used to transport the fluid and their performance including the flow measurements.	3
CO5	Compare the fluid flow characteristics during the turbulent conditions using	4
I. N Seventh	IcCabe W.L, Smith, J C and Harriot. P "Unit Operations in Chemical Engineering	, McGraw Hill
2. V	Edition, 2005. White, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011.	
2. V REFERI	Edition, 2005. Vhite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES:	
2. V REFER 1. R Fifth Edi	Edition, 2005. White, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009.	ley & Sons, Inc,
2. V REFER 1. R Fifth Edi 2. N	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. loel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I	ley & Sons, Inc, Edition, 2005.
2. V REFER 1. R Fifth Edi 2. N 3. J.	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. loel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999).	ley & Sons, Inc, Edition, 2005.
2. V REFER 1. R Fifth Edi 2. N 3. J. 4. R	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. [oel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). . B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second edition)	ley & Sons, Inc, Edition, 2005. n), Wiley
2. V REFERI 1. R Fifth Edi 2. N 3. J. 4. R Singapor	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. foel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). . B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second edition e (2002).	ley & Sons, Inc, Edition, 2005. m), Wiley
2. V REFER 1. R Fifth Edi 2. N 3. J. 4. R Singapor 5. N	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. foel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). . B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second edition e (2002). 1. M. Denn, Process Fluid Mechanics, Prentice Hall (1980).	ley & Sons, Inc, Edition, 2005. on), Wiley
2. V REFER 1. R Fifth Edi 2. N 3. J. 4. R Singapor 5. N COURS	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. foel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). . B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second editic e (2002). 1. M. Denn, Process Fluid Mechanics, Prentice Hall (1980). E ARTICULATION MATRIX	ley & Sons, Inc, Edition, 2005. on), Wiley
2. V REFERI 1. R Fifth Edi 2. N 3. J. 4. R Singapor 5. N COURS	Edition, 2005. /hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011. ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wi tion, 2009. foel de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third I O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). . B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second edition e (2002). 1. M. Denn, Process Fluid Mechanics, Prentice Hall (1980). E ARTICULATION MATRIX	ley & Sons, Inc, Edition, 2005. on), Wiley

						-							
1	2	3	4	5	6	7	8	9	10	11	12	1	2
3	2	3	3	3	2	1	1	2	2	1	1	3	3
3	3	2	3	3	3	2	1	2	2	1	3	3	3
3	3	2	3	3	3	2	1	2	2	1	3	3	3
3	2	2	3	3	2	2	1	2	2	1	3	3	3
3	3	3	3	3	3	3	1	2	2	1	3	3	3
	1 3 3 3 3 3 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 3 2 3 3 3 2 1 1 2 2 1 1 3 2 3 3 2 1 1 2 2 1 1 3 3 2 3 3 2 1 1 2 2 1 1 3 3 2 3 3 2 1 2 2 1 3 3 3 2 3 3 2 1 2 2 1 3 3 3 2 3 3 2 2 1 2 2 1 3 3 2 2 3 3 2 2 1 3 3 3 3 3 3 3 1 2 2 1 3 3 3 3 3 3 3 1 2 <td>1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 3 3 3 2 1 1 2 2 1 1 3 3 2 3 3 2 1 1 2 2 1 1 3 3 3 2 3 3 2 1 1 2 2 1 1 3 3 3 2 3 3 2 1 2 2 1 3 3 3 3 2 3 3 2 1 2 2 1 3 3 3 3 2 3 3 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1</td>	1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 3 3 3 2 1 1 2 2 1 1 3 3 2 3 3 2 1 1 2 2 1 1 3 3 3 2 3 3 2 1 1 2 2 1 1 3 3 3 2 3 3 2 1 2 2 1 3 3 3 3 2 3 3 2 1 2 2 1 3 3 3 3 2 3 3 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1							

CH22303	CHEMICAL ENGINEERING THERMODYNAMICS – I	L	Т	Р	С
		2	1	0	3

To apply the principles and application of first and second law of thermodynamics, and phase equilibria. •

INTRODUCTION UNIT I

Introductionscope of thermodynamics, Dimensions and Units, Temperature, Pressure. Work, Energy, Heat, Energy conservation & first law of thermodynamics; State functions; Equilibrium; Phase Rule; Reversible process; Constant P,V,T processes; Mass and energy balances for open systems

UNIT II

SECOND LAW OF THERMODYNAMICS

Statements of the second law; Heat engines, Carnot"s theorem, Thermodynamic Temperature Scales; Entropy; Entropy changes of an ideal gas; Mathematical statement of the second law, Entropy balance for open systems; Calculation of ideal work, Lost work

UNIT III PVT BEHAVIOUR OF FLUIDS

phase transitions, PVT behaviour; description of materials - Ideal gas law, Phases, vanderWaals, Reduced conditions & virial, and cubic equations of state; corresponding states theories; correlations in description of material properties and behaviour. Heat effects-latent heat, sensible heat, standard heats of formation, reaction, and combustion

THERMODYNAMIC PROPERTIES OF PURE FLUIDS **UNIT IV**

Thermodynamic property of fluids- Helmholtz free energy, Gibb's free energy, Thermodynamic property relations- Maxwell relations, Residual properties, 2-phase systems, graphs, Thermodynamic property diagrams -P-H, H-T, T-S, H-S and Thermodynamic property diagrams with its constructions.

REFRIGERATION AND LIQUIFACTION, COMPRESSOR WITH INTERCOOLING UNIT V

Application of thermodynamics to flow processes-pumps, compressors, and turbines. Thermodynamic analysis of steam power plants; Rankine cycle; Internal combustion engine, Otto engine; Diesel engine; Jet engine. The Carnot refrigerator; Vapour-compression cycle; Absorption refrigeration cycle. Compressors, Types of Compressors with design calculation. Thermodynamic analysis of steam power plants; Liquefaction processes.

TOTAL: 45 PERIODS

9

9

9

9

9

TEXT BOOKS:

1. M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, Seventh edition, McGraw-Hill International Edition, 2005.

REFERENCES:

- 1. K. V. Narayanan, A Textbook of Chemical Engineering Thermodynamics, Prentice Hall of India, 2001
- 2. B. G. Kyle, Chemical and Process thermodynamics. Second Edition., Prentice Hall of India, 2000
- 3. M J Moran, H N Shapiro, D Boettner and M B Bailey, Principles of Engineering Thermodynamics, 8th Edition, Wiley, 2000

OUTCOMES:														
Upon successful completion of the course, the students should be able to														
SL.N	0	STATEMENT										RBT LEVEL		
CO	1.	Apply concepts of heat, work and energy conversion and mass and energy balances to close and open systems									ces to	3		
CO	2.	Envisage the entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations.									3			
CO.	3.	Evaluate the properties of non-ideal gases.										4		
CO4	4.	Illustrate	the in	iter re	lations	between	n meas	surable	and nor	n measu	rable proj	perties.		4
CO	5	Examine	the p	rocess	of liq	uefactio	n, refi	rigeratio	on and c	lifferent	power cy	vcles		4
COL	DOP		T. A / 1											
COU	RSE	ARTICU	JLAT	ION	MATE									
CO			1	1			PO						F	rso
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	2	1	2	2	-	2	2	1	3	3
2	3	3	3	3	3	2	2	-	-	2	1	1	3	3
3	3	2	2	2	2	1	1	1	1	2	2	1	3	3
4	3	3	3	3	3	-	1	-	1	2	2	2	3	3
5	3	3	3	3	3	1	1	-	1	2	-	2	3	3

CH22304	MECHANICAL OPERATIONS	L	Τ	P	С
		2	1	0	3
COURSE OBJECT	IVES: tion of solids, size reduction, techniques of solid – fluid separation, mix	king and co	onve	eyin	g of
UNIT I	PARTICLE CHARACTERIZATION AND MEASUREMENT				9

Particle shape and size, different ways of expression of particle size, shape factor, sphericity. Mixed particle size analysis, standard screens, Differential and cumulative size analysis, specific surface of mixture of particles, number of particles in a mixture. Screens, ideal and Actual screens, Effectiveness of screen, Standard Screen Series, sub sieve analysis – air permeability method.

UNIT II PARTICLE SIZE REDUCTION AND SIZE ENLARGEMENT

9

Introduction – types of forces used for comminution, Criteria for comminution, Characteristics of comminuted products, Laws of size reduction, Work Index, Energy utilization, methods of operating crushers – Free and choke feeding, open circuit grinding, Closed circuit grinding, wet and dry grinding, Equipment's for size reduction & its operation– Jaw crusher, Roll crusher, Hammer mill, Ball mill, Fluid energy mill. Principles and importance of Size enlargement.

UNIT III	PARTICLE SEPARATION (GAS-SOLID AND LIQUID-	9
	SOLID SYSTEM)	

Mechanics of particle motion, Equation for one dimensional motion of particles through a fluid in gravitational and centrifugal field, Terminal velocity, drag coefficient, Motion of spherical particles in Stoke's region, Newton's region, and Intermediate region, Criterion for settling regime, Hindered settling, Modification of equation for hindered settling. Equipment's for particle separation and its operation – Gravity settling, double cone classifier, rake classifier and surface area estimation for thickener. Centrifugal separation principle -cyclones and hydro cyclones.

UNIT IV	NIT IV FILTRATION AND FILTRATION EQUIPMENTS				
Theory of filtration,	Batch and continuous filters, Flow through filter cake and filter med	lia, compressible and			
incompressible filter	cakes, filter aids. Filtration equipment's - selection, operation and	d optimum cycle of			
operation, Principle o	f operation – plate and frame filter press, leaf filter, bag filter, electrosta	tic precipitator.			

UNIT V	MIXING AND PARTICLE HANDLING	9

Mixing and agitation - Mixing of liquids (with or without solids), mixing of powders, selection of suitable mixers, power requirement for mixing. Storage of solids - Bunkers, silos, bins, and hoppers. Principles in transportation of solids in bulk – Conveying – belt, bucket and pneumatic.

TOTAL: 45 PERIODS

1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edn., McGraw-Hill, 2005.

2. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", Tata McGraw Hill, 1997.

3. Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit Operations", 2nd Edn., John Wiley & Sons, 1994.

4. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. II, 4th Edn., Asian Books Pvt. Ltd., India, 1998.

REFERENCES:

1. 1. Hiroaki Masuda , KoHigashitani and Hideto Yoshida, Powder Technology Handbook, 4th Edition. Taylor & Francis, 2006

2. Christie J. Geankoplis, Transport processes and unit operations, Prentice Hall, 2018.

3. Sunggyu Lee, Kimberly H. Henthorn, Particle Technology and Applications, CRC Press, 2017.

4. Martin Rhodes, Introduction to Particle Technology, Second Edition, John Wiley & Sons, 2008.

5. Unit Operations-I, Fluid Flow & Mechanical Operation, K.A Gavhane, Nirali Prakashan, 2016.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1.	Applying the basic knowledge on the solid handling characteristics and mixed particle size analysis through screening.	3
CO2.	Examine the various comminution equipment's for size reduction operations and to understand the principles of size enlargement techniques	4
CO3.	Make use of various solid separation techniques through settling and basic knowledge on such equipment design.	3
CO4.	Analyse the various types of filtration process in mineral processing industries.	4
CO5	Apply knowledge to practice various mixing processes and particles storage & conveying.	3
COURSE	E ARTICULATION MATRIX	
CO	PO	PSO

CO							FU							130
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	2	2	3	1	2	3	1	3	3	3
2	3	3	2	3	3	3	1	2	3	3	1	3	3	3
3	3	3	2	2	2	2	3	1	2	3	1	3	3	3
4	3	3	2	3	3	3	1	2	3	3	1	3	3	3
5	3	3	2	1	2	3	3	1	2	3	1	3	3	3

CH22305	MECHANICS OF SOLIDS FOR CHEMICAL ENGINEERING	L	T	Р	С
		2	1	0	3
COURSE OBJECTI	VES:	1			
• To learn funda	amental concepts of stress, strain and deformation of solids wi	th appli	cation	s to b	ars, beams,
columns, thin cylinder	rs and spherical shells.				
• To know the r	mechanism of load transfer in beams, the induced stress resu	ltants a	nd def	format	tions under
axial and transverse lo	oading.				
• To analyze the for	ces and stresses on pressure vessel.				
UNIT I	STRESS, STRAIN AND DEFORMATION OF SOLIDS				9
					-
Stress and strain - ten	sion, compression, reaction forces and shear stresses in simple	and con	mpour	nd bar	s- Hooke's
law -Thermal stresse	s - Relationship among elastic constants and Poisson's ratio	– Stre	ss str	ain di	agrams for
engineering materials	– Factor of safety.				
UNIT II	TRANSVERSE LOADING ON BEAMS				9
					-
Beams – support cond	litions – types of Beams - forces on solids and supports – trans	verse loa	ading	on be	ams - shear
force and bending mo	oment in beams - analysis of cantilevers, simply supported be	eams an	d ove	r hang	ging beams
with reaction force - r	relationships between loading, S.F. and B.M. In beams - S.F.&	B.M. c	liagra	ms – l	Location of
point of contraflexure	and maximum B.M.				
UNIT III	DEFLECTION OF BEAMS				9
Double integration method for computation	method, Macaulay's method, Moment-Area theorer on of slopes and deflections in simply supported and cantilever	ns and beams.	d co	onjuga	te beams
					0
UNITIV	STRESSES IN BEAMS & COLUMINS				9
Theory of simple ber	nding – assumptions and derivation of bending equation - a	nalvsis	of be	nding	stresses in
beams under transver	se loading – loads carrying capacity of beams – proportionin	g beam	sectio	ons - s	shear stress
distribution in beams	- determination of shear stress distribution in symmetrical and	i unsyn	ımetri	cal se	ctions with
reaction force.Colum	ns: Euler"s theory of long columns and critical loads for	colum	ns wi	th dif	ferent end
conditions.					
UNIT V	DESIGN OF PRESSURE VESSELS				9
Codes & Sta	undards, Vessels operating at low temp	eratures	ä	and	elevated
temperatures, design	conditions and stress, design of shell and its components, su	pports, s	stress	from	local loads
and thermal gradients	, thermal stresses in cylindrical shell. Features of high pressure	vessels	s - sol	lid wa	lled vessel,
vessel closures, jacket	S.				
		Т	OTA	L: 45	PERIODS

1) R. K. Bansal, Strength of Materials, Fifth Edition, Laxmi Publications, 2012.

2) R. C. Hibbeler, Mechanics of Materials, Sixth Edition, Pearson Education, Inc., 2005

3) E. P. Popov, Engineering Mechanics of Solids, Prentice Hall, 1998.

4) F. P. Beer, E. R. Johnston (Jr.) and J.T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2005.

5) M. V. Joshi, Process Equipment Design, Macmillan, 1976.

REFERENCES:

1) S. H. Crandall, N. C. Dahl, and T. J. Lardner, An Introduction To The Mechanics Of Solid, 2nd Ed., Tata McGraw Hill, 2008.

2) S. P. Timoshenko, Strength of Materials, Vols. 1 & 2, CBS Publishers, 1986.

3) H. Shames and J. M. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2003.

4) J. M. Gere, Mechanics of Materials, Thomson Brooks/Cole, 2006.

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1.	Recognize the fundamental concepts of stress and strain in mechanics of solids and	3
	structures.	
CO2.	Apply the knowledge on types of beams and loads and investigate the shear force	3
	and bending moment diagrams.	
CO3.	Utilizing various techniques to infer the deflection of beams.	3
		•
CO4	Develop the models to analyze the principle strasses in beens and columns	3
CO4.	Develop the models to analyze the principle suesses in dealins and columns.	3
CO5	Apply the knowledge of principle stresses to design the pressure vessels.	3

COURSE ARTICULATION MATRIX PO PSO CO

CH22311	ENVIRONMENTAL ENGINEERING LABORATORY	L	Т	Р	С						
		0	0	4	2						
COURSE O	DBJECTIVES:			<u> </u>	<u> </u>						
At the end of parameter of	of the course, the student will be aware of the standard procedures for a wastewater, soil and air.	quantific	cation	of qu	ality						
LIST OF EX	XPERIMENTS:										
1. Estin	nation of the Total Solids for a given sample of water.										
2. Perm	eability determination of solid sample.										
3. Direc	et shear test in cohesionless soil.										
4. Deter	rmination of chromium traces in tannery effluents.										
5. Deter	rmination of the metal concentration in solid samples.										
6. Deter	rmination of viscosity of oil samples using Brookfield Viscometer.										
7. Deter	rmination of pH range of indicator solutions.										
8. Deter	rmination of the COD of the given liquid sample.										
9. Deter	rmination of the BOD of the given liquid sample.										
10. Deter	rmination of total coliforms in water.										
11. Deter	rmination of corrosion rate of the given sample.										
12. Deter	rmination of air quality for indoor and outdoor environments.										
*Minimum 1	0 experiments shall be performed										
	um 10 experiments shall be performed										
		TOTAI	L: 60 I	PERIC	ODS						
LIST OF E	QUIPMENTS:	TOTAI	L: 60 I	PERIC	ODS						
LIST OF EC	QUIPMENTS: Digester	ΤΟΤΑΙ	L: 60 I	PERIO	ODS						
LIST OF E01.COD2.Atom	QUIPMENTS: Digester nic Absorption Spectroscopy	ΤΟΤΑΙ	L: 60 I	PERIO	ODS						
LIST OF EC1.COD2.Atom3.Brood	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer	ΤΟΤΑΙ	2: 60 1	PERIO	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter	ΤΟΤΑΙ	2: 60 1	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter luctivity meter	TOTAI	2: 60 1	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond6.Carbo	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter luctivity meter on dioxide (CO ₂) sensor	TOTAI	L: 60 I	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond6.Carbo7.Cons	QUIPMENTS: Digester hic Absorption Spectroscopy kfield Viscometer blved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter	TOTAI	2: 60 1	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond6.Carbo7.Cons8.Shear	QUIPMENTS: • Digester hic Absorption Spectroscopy kfield Viscometer blved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly	TOTAI	2: 60 1	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond6.Carbo7.Cons8.ShearOUTCOME	QUIPMENTS: Digester hic Absorption Spectroscopy kfield Viscometer olved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES:		L: 60]	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brood4.Disso5.Cond6.Carbo7.Cons8.ShearOUTCOMEUpon succes	QUIPMENTS: Digester hic Absorption Spectroscopy kfield Viscometer olved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES: sful completion of the course, the students should be able to		L: 60]	PERIC	DDS						
LIST OF EC1.COD2.Atom3.Brool4.Disso5.Cond6.Carbo7.Cons8.ShearOUTCOMEUpon succesSL.NO	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES: sful completion of the course, the students should be able to STATEMENT		L: 60]	PERIO	DDS						
LIST OF EC1.COD2.Atom3.Brool4.Disso5.Cond6.Carbo7.Cons8.SheatOUTCOMEUpon succesSL.NOCO1.	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter luctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES: sful completion of the course, the students should be able to STATEMENT Analyse the characteristics of waste water using standard procedures.		L: 60]	PERIO RI LEN	DDS BT /EL						
LIST OF EC 1. COD 2. Atom 3. Brool 4. Disso 5. Cond 6. Carbo 7. Cons 8. Shear OUTCOME Upon succes SL.NO CO1. CO2.	QUIPMENTS: Digester nic Absorption Spectroscopy kfield Viscometer olved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES: sful completion of the course, the students should be able to STATEMENT Analyse the characteristics of waste water using standard procedures. Conduct tests to determine the permeability and shear strength of soils.		2: 60 1	PERIO RI LEV 4	DDS BT /EL						
LIST OF EC1.COD2.Atom3.Brool4.Disso5.Cond6.Carbo7.Cons8.ShearOUTCOMEUpon succesSL.NOCO1.CO2.CO3.	QUIPMENTS: Digester hic Absorption Spectroscopy kfield Viscometer olved Oxygen meter huctivity meter on dioxide (CO ₂) sensor tant head permeameter r box assembly ES: sful completion of the course, the students should be able to STATEMENT Analyse the characteristics of waste water using standard procedures. Conduct tests to determine the permeability and shear strength of soils. Characterise metals affected by corrosion.			PERIO RI LEN 4 3	DDS BT /EL k						

CO5	Perform	form coliform analysis.													
COURSE A	RTICU	FICULATION MATRIX													
СО							РО						P	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2	2	3	1	3	3	3	3	3	2	3	3	3	
2	3	2	1	3	1	3	3	2	3	3	2	3	3	3	
3	3	2	1	3	1	3	3	2	3	2	2	3	3	3	
4	3	2	1	3	1	3	3	3	3	3	2	3	3	3	
5	3	2	1	3	1	3	3	1	3	3	2	3	3	3	

Image: control in the second conthe control in the second control in the second	CH22312	TECHNICAL ANALYSIS LABORATORY	L	Т	Р	C	
COURSE OBJECTIVES: To learn basic principles involved in estimation and characterization of industrially important materials LIST OF EXPERIMENTS: I. Soap Analysis a. Estimation of total fatty acid b. Estimation of precentage alkali content II. Oil Analysis a. Estimation of free acid b. Determination of Saponification value c. Determination of Saponification value c. Determination of Salphi faction value c. Estimation of calcium oxide content e. Estimation of calcium oxide content d. Estimation of calcium oxide content d. Estimation of available thorine IV. Coal Analysis a. Estimation of available chlorine V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of fuels a. Elstimation of purity of glycerol a. Hash point b. Fire point c. Cloud point d. Point point e. Aniltme point. TOTAL: 60 PERIODS OUTCONES: Upon successful completion of the course, the students should be able to Starte the alkali and total fatty acid content of soap. <td colspa:<="" th=""><th></th><th></th><th>0</th><th>0</th><th>4</th><th>2</th></td>	<th></th> <th></th> <th>0</th> <th>0</th> <th>4</th> <th>2</th>			0	0	4	2
To learn basic principles involved in estimation and characterization of industrially important materials LISTOF EXPERIMENTS: 1. Soap Analysis a. Estimation of total fatty acid b. Estimation of opercentage alkali content intervention of percentage alkali content II. Oil Analysis a. Estimation of Saponification value c. Determination of Saponification value b. Determination of iodine value III. Cement Analysis a. Estimation of isce content b. Estimation of calcium oxide content c. Estimation of calcium oxide content d. Estimation of Salphur present in coal b. Ultimate analysis of coal v. Analysis of Bleaching Powder a. Estimation of aulable chlorine VI. Analysis of Bleaching Powder a. Estimation of purity of glycerol a. Estimation of purity of glycerol a. Estimation of purity of glycerol v. Analysis of Fuels TOTAL' EOPERIODE v. Analysis of Glycerol a. Estimation of purity of glycerol d. Pour point c. Cloud point b. Pire point c. Cloud point c. Cloud point glycerol d. Pour point c. Cloud point d. Pour point glycerol GUTCOVEFERUE Glycerol G	COURSE	OBJECTIVES:					
LIST OF EXPERIMENTS: 1. Soap Analysis a. Estimation of total fatty acid b. Estimation of percentage alkali content II. Oil Analysis a. Estimation of Free acid b. Determination of Saponification value c. Determination of Saponification value c. Determination of Saponification value c. Determination of idile content b. Estimation of calcium oxide content c. Estimation of calcium oxide content d. Estimation of Sulphur present in coal b. Uttimate analysis of coal c. Proximate analysis of coal c. Proximate analysis of coal v. Analysis of Bleaching Powder a. Estimation of purity of glycerol VI. Analysis of Glycerol a. Estimation of prity of glycerol VI. Analysis of fuels a. Fire point c. Cloud point d. Pour point e. Antiline point. TOTAL: 60 PERIODS OUTCOMES: Upon successful completion of the course, the students should be able to Status the alkali and total fatty acid content of soap. Q1 Estimate the alkali and total fatty acid content of soap. 2	To learn b	asic principles involved in estimation and characterization of industrially ir	nportar	nt mat	erials		
1. Soap Analysis a. Estimation of total fatty acid b. Estimation of opercentage alkali content II. Oil Analysis a. Estimation of ree acid b. Determination of Saponification value c. Determination of Saponification value c. Determination of Saponification value iii Cement Analysis a. Estimation of Silica content b. Estimation of calcium oxide content c. Estimation of calcium oxide content c. Estimation of calcium oxide content c. Estimation of calcium oxide content b. Ultimate analysis of coal v. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Fastimation of purity of glycerol VII. Analysis of fuels a. Fastimation of the course, the students should be able to TOTAL: 60 PERIODS OUTCOUTES: Upon successful completion of the course, the students should be able to Statimate the alkali and total fatty acid content of soap. Q CO2. 3 <tr< td=""><td>LIST OF</td><td>EXPERIMENTS:</td><td></td><td></td><td></td><td></td></tr<>	LIST OF	EXPERIMENTS:					
a. Estimation of total fatty acid b. Estimation of percentage alkali content II. Oil Analysis a. Estimation of Saponification value c. Determination of Saponification value c. Determination of Silica content b. Determination of Silica content c. Estimation of Silica content b. Estimation of calcium oxide content c. Estimation of calcium oxide content c. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide by rapid method V. Analysis of coal v. Stamation of Sulphur present in coal b. Utimate analysis of coal c. Proximate analysis of coal v. Analysis of Bleaching Powder a. Estimation of purity of glycerol VI. Analysis of fuels a. Estimation of purity of glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of the course, the students should be able to VIII. Analysis of fuels a. Plash point b. Fire point c. Cloud point c. Cloud point c. Stattentent generation COTTCONETSING INTEMENT RBT LEVEL GO1 Estimate the acid value, iodine value and cloud & pour point of oil. 3 GO2 Determine the acid value, iodine value and cloud & pour p	I. Soap Ar	nalysis					
b. Estimation of percentage alkali content II. Oil Analysis a. Estimation of Saponification value c. Determination of Saponification value c. Determination of Silica content b. Estimation of Silica content c. Estimation of acitum oxide content c. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide content c. Estimation of Sulphur present in coal b. Uttimate analysis of coal c. Proximate analysis of Guyeerol v. Analysis of Bleaching Powder a. Estimation of purity of glycerol v. Analysis of Glycerol a. Estimation of purity of glycerol VI. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point c. Cloud point c	a. Est	mation of total fatty acid					
II. Oil Analysis a. Estimation of free acid b. Determination of Saponification value c. Determination of solica content b. Estimation of oil acium oxide content c. Estimation of calcium oxide content c. Proximate analysis of coal c. Proximate analysis of coal c. Proximate analysis of coal c. Proximate analysis of fool c. Proximate analysis of coal c. Proximate analysis of fuels a. Estimation of purity of glycerol a. Estimation of purity of glycerol a. Estimation of purity of glycerol c. Cloud point	b. Est	mation of percentage alkali content					
a. Estimation of free acid b. Determination of Saponification value c. Determination of oidine value III. Cement Analysis a. Estimation of Silica content b. Estimation of calcium oxide content c. Estimation of calcium oxide content d. Estimation of calcium oxide content d. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide by rapid method IV. Coal Analysis of coal c. Proximate analysis of coal v. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VI. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point c. Cloud point d. Pou	II. Oil An	alysis					
b. Determination of Saponification value c. Determination of oidine value III. Cement Analysis a. Estimation of calcium oxide content b. Estimation of calcium oxide content c. Estimation of calcium oxide content d. Estimation of Sulphur present in coal b. Ultimate analysis of coal V. Analysis of Bleaching Powder a. Estimation of purity of glycerol VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Fastmotin b. Brime point b. Fre point c. Cloud point d. Pour point e. Anilip point b. Fire point c. Stimation of the course, the students should be able to Strok Stimate the alkali and total fatty acid content of soap. QUICOMESI Quermine the acid value, iodine value and cloud & pour point oil. GO1. Estimate the alkali and total fatty acid content of soap. 2 GO2. Determine the quity of glycerol 2 GO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 GO4. Determine the purity of glycerol	a. Est	mation of free acid					
 c. Determination of rodine value III. Cement Analysis a. Estimation of Silica content b. Estimation of calcium oxide content c. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VI. Analysis of fuels a. Fash point b. Fire point c. Cloud point d. Pour point e. Aniline point. VIUPON SUPPRIDENT Completion of the course, the students should be able to SLNO Stimate the alkali and total fatty acid content of soap. Col. Estimate the alkali and total fatty acid content of soap. Col. Estimate the alkali and total fatty acid content of soap. Col. Determine the acid value, iodine value and cloud & pour point of oil. Col. Pour point of glycerol Col. Determine the purity of glycerol Col. Determine the purity of glycerol Col. Apply the principle of gravimetry to estimate the quantity of analyte. Col. Col. Determine the purity of glycerol Col. Analyze the available chlorine and resi	b. Det	ermination of Saponification value					
III. Cement Analysis a. Estimation of Silica content b. Estimation of Silica content c. Estimation of calcium oxide content d. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of glycerol a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol a. Estimation of purity of glycerol b. Fire point c. Cloud point c. Cloud point c. Cloud point c. Porv point c. Aniline point. SELNO STATEMENT RET LEVEL CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. CO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO4. Determine the purity of glycerol CO5 Analyze sulphate and turbidity in water sample, CO6 Analyze sulphate and turbidity in water sam	c. Det	ermination of lodine value					
a. Estimation of Silica content b. Estimation of alcium oxide content c. Estimation of alcium oxide content d. Estimation of alcium oxide by rapid method IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal v. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol a. Estimation of purity of glycerol a. Estimation of purity of glycerol b. Fire point c. Cloud point c. Cloud point d. Pour point e. Aniline point. TOTAL: 60 PERIODS OUTCOVES: Upon suczersi completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 CO4. Determine the purity of glycerol CO5 Analyze stuphate and turbidity in water sample. CO6 Analyze stuphate and turbidity in water sample. CO5 Analyze stuphate and turbidity in water sample.	III. Cemer	ıt Analysis					
b. Estimation of mixed oxide content c. Estimation of calcium oxide content d. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Bleaching Powder a. Estimation of purity of glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Anilire point. SUTOONETESTING STATEMENT SUPPONENTION STATEMENT CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. GO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO3. Analyze sulphate and turbidity in water sample. CO6 Analyze sulphate and turbidity in water sample.	a. Est	mation of Silica content					
 d. Estimation of calcium oxide content d. Estimation of calcium oxide by rapid method IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels	b. Est	mation of mixed oxide content					
IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Anil're point c. Cloud point d. Pour	d Est	imation of calcium oxide by rapid method					
IV. Coal Analysis a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. VIUPON SUCUES VII Upon SUCUES VII CODI Estimate the alkali and total fatty acid content of soap. 2 CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 CO4. Determine the purity of glycerol CO5 Analyzes ulphate and turbidity in water sample. 2 CO6 Analyze sulphate and turbidity in water sample. 2 CO3 CO4 CO5	u . <u>L</u> 5t						
a. Estimation of Sulphur present in coal b. Ultimate analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. TOTAL: 60 PERIODS OUTCOMES: Upon successful completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO4. Determine the purity of glycerol CO5 Analyze the available chlorine and residual chlorine in water sample CO6 Analyze sulphate and turbidity in water sample. 2 CO6 Analyze sulphate and turbidity in water sample.	IV. Coal A	nalysis					
 b. Onfinite analysis of coal c. Proximate analysis of coal V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. OUTCOMES: Upon successful completion of the course, the students should be able to SLNO STATEMENT RBT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. 2 CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte.	a. Est	mation of Sulphur present in coal					
 V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniltine the acid value, the students should be able to OUTCOMES: Upon successful completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. G CO3. Apply the principle of gravimetry to estimate the quantity of analyte. G CO4. Determine the available chlorine and residual chlorine in water sample G Analyze sulphate and turbidity in water sample. 	c Pro	ximate analysis of coal					
 V. Analysis of Bleaching Powder a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of purity of glycerol VII. Analysis of fuels a. Estimation of purity of glycerol CO10 dipoint d. Pour point e. Anilime point. CO11 completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO2. Estimate the alkali and total fatty acid content of soap. CO3. Apply the principle of gravimetry to estimate the quantity of analyte. G03. Apply the principle of gravimetry to estimate the quantity of analyte. G04. Determine the purity of glycerol G22. CO5 Analyze the available chlorine and residual chlorine in water sample G2 	0.110						
a. Estimation of available chlorine VI. Analysis of Glycerol a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. TOTAL 60 PERIODS OUTCOVES: Upon successful completion of the course, the students should be able to SLNO STATEMENT Extended the alkali and total fatty acid content of soap. 2 CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 CO4. Determine the purity of glycerol 2 CO5 Analyze the available chlorine and residual chlorine in water sample 2 CO6 Analyze sulphate and turbidity in water sample. 2 CO2 CO5 Analyze sulphate and turbidity in water sample.	V. Analys	is of Bleaching Powder					
VI. Analysis of Glycerol a. Estimation of purity of glycerolVII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point.TOTAL: 60 PERIODSOUTCOUNT COUNT COU	a. Est	mation of available chlorine					
a. Estimation of purity of glycerol VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. OUTCO SLNO Stimate the alkali and total fatty acid content of soap. CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. CO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO4. Determine the available chlorine and residual chlorine in water sample	VI. Analy	sis of Glycerol					
VII. Analysis of fuels a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point.TOTAL 60 PERIODSOUTCOVES:TOTAL 60 PERIODSOUTCOVES:Upon successful completion of the course, the students should be able toSLNORBT LEVELCO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the available chlorine and residual chlorine in water sample3CO5Analyze the available chlorine and residual chlorine in water sample3	_	a. Estimation of purity of glycerol					
viii Analysis of iters a. Flash point b. Fire point c. Cloud point d. Pour point e. Aniline point. OUTCOMES: Upon successful completion of the course, the students should be able to SL.NO SL.NO State the alkali and total fatty acid content of soap. C01. Estimate the alkali and total fatty acid content of soap. C02. Determine the acid value, iodine value and cloud & pour point of oil. C03. Apply the principle of gravimetry to estimate the quantity of analyte. C05 Analyze the available chlorine and residual chlorine in water sample C06 Analyze sulphate and turbidity in water sample.	VII Analy	reis of fuels					
b. Fire point c. Cloud point d. Pour point e. Aniline point. TOTAL: 60 PERIODS OUTCOVES: Upon successful completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. CO2. Determine the acid value, iodine value and cloud & pour point of oil. CO3. Apply the principle of gravimetry to estimate the quantity of analyte. CO4. Determine the purity of glycerol CO5 Analyze the available chlorine and residual chlorine in water sample CO6 Analyze sulphate and turbidity in water sample. CO6 Analyze sulphate and turbidity in water sample.	a. Fla	sh point					
c. Cloud point d. Pour point e. Aniline point. TOTAL: 60 PERIODS OUTCOMES: Upon successful completion of the course, the students should be able to SLNO STATEMENT RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. 2 CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 CO4. Determine the purity of glycerol 22 CO5 Analyze the available chlorine and residual chlorine in water sample 3 CO6 Analyze sulphate and turbidity in water sample. 22	b. Fire	e point					
d. Pour point e. Aniline point.TOTAL: 60 PERIODSOUTCOMES:Upon succentration of the course, the students should be able toSL.NORBT LEVELCO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	c. Clo	ud point					
TOTAL: 60 PERIODS OUTCOMES: Upon successful completion of the course, the students should be able to SLNO RBT LEVEL CO1. Estimate the alkali and total fatty acid content of soap. 2 CO2. Determine the acid value, iodine value and cloud & pour point of oil. 3 CO3. Apply the principle of gravimetry to estimate the quantity of analyte. 3 CO5 Analyze the available chlorine and residual chlorine in water sample 3 CO6 Analyze sulphate and turbidity in water sample. 2	d. Pou	r point					
NOTAL: 60 TERIODSOUTCOMES:Upon successful completion of the course, the students should be able toSL.NORBT LEVELCO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	e. An	line point.	ΓΟΤΑΙ	• 60	PFRI	200	
Upon successful completion of the course, the students should be able toSL.NOSTATEMENTRBT LEVELC01.Estimate the alkali and total fatty acid content of soap.2C02.Determine the acid value, iodine value and cloud & pour point of oil.3C03.Apply the principle of gravimetry to estimate the quantity of analyte.3C04.Determine the purity of glycerol2C05Analyze the available chlorine and residual chlorine in water sample3C06Analyze sulphate and turbidity in water sample.2				2.00		505	
SL.NOSTATEMENTRBT LEVELCO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2		ressful completion of the course, the students should be able to					
SL.NOSTATEMENTRBTLEVELCO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2						7171	
CO1.Estimate the alkali and total fatty acid content of soap.2CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	SL.NO			KB		/EL	
CO2.Determine the acid value, iodine value and cloud & pour point of oil.3CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2		Estimate the alkali and total fatty acid content of soap.			2		
CO3.Apply the principle of gravimetry to estimate the quantity of analyte.3CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	CO2.	Determine the acid value, iodine value and cloud & pour point of oil.			3		
CO4.Determine the purity of glycerol2CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	CO3.	Apply the principle of gravimetry to estimate the quantity of analyte.			3		
CO5Analyze the available chlorine and residual chlorine in water sample3CO6Analyze sulphate and turbidity in water sample.2	CO4.	Determine the purity of glycerol			2		
CO6Analyze sulphate and turbidity in water sample.2	CO5	Analyze the available chlorine and residual chlorine in water sample			3		
	CO6	Analyze sulphate and turbidity in water sample.			2		

СО				PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	1	1	1	1		3	3	2	2			1		
2.	1	1	1			3	3	2	2					
3.	1	1	1	1		3	3	2	2					
4.	1	1	1	1										
5.	1	1	1	1		3	3	2	2			1		
6.	1	1	1	1		3	3	2	2					

MA22452		NUMERICAL METHODS	L	Т	Р	С				
			3	1	0	4				
COURSE The Studen • Learn th • Understa • Learn ho • Familiari • Understa UNIT I	OBJECTI nt should be and solution of and the conc ow to apply ize in solvir and how to so SOLUTI	VES: e made to: of algebraic, transcendental equations, system of linear equation cept of Interpolation and approximation. numerical differentiation and Integration ng IVP solve BVP in ODE and PDE CON OF EQUATIONS AND EIGEN VALUE PROBLEMS putation_software_for_numerical_methods_solution_of_algebring		1 tran	12	ental				
equations - Pivoting - method - M Method fo	- Newton Raphson method- Solution of linear system of equations - Gauss elimination - Gauss Jordan method, Solution of Tri-diagonal system of equations – Gauss Seidel Matrix Inversion by Gauss Jordan method - Eigen values of a matrix by Power method a or symmetric matrix. Solving equations and Eigen value problems using computational to									
UNIT II	INTERP	OLATION AND APPROXIMATION			12					
Finite diff backward divided dif	erence open difference f fference inte	rators and its relations - Interpolation with equal intervals - formulae - Interpolation with unequal intervals - Lagrange's ir erpolation. Interpolation and Approximation using computation	Newto: nterpola al tools	n's fo tion -	rward Newt	and on's				
UNIT III	NUMER	ICAL DIFFERENTIATION AND INTEGRATION			12					
Approxima Simpson's Evaluation for numeri	ation of der 1/3 rule, of double cal differen	rivatives using interpolation polynomials - Numerical integra Romberg's Method - Two point and three-point Gaussian integrals by Trapezoidal and Simpson's 1/3 rules. Application tiation and integration.	tion usi quadra of con	ing Tr ture fo nputat	rapezo ormula ional t	idal, ae – xools				
UNIT IV	INITIAI EQUAT	L VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL	Ĺ		12					
Single Step for solving methods - Solving In	p methods - g first order Milne's ar itial value p	Taylor's series method, Modified Euler's method – Fourth ord equations, second order equations and simultaneous first orde and Adams- Bash forth predictor corrector methods for solvin problems using computational tools.	ler Run r equati g first	ge Ku lons - order	tta me Multi equati	thod step ions.				
UNIT V	BOUND	ARY VALUE PROBLEMS			12					
Finite diff Laplace's and implic Boundary	ference sol and Poissor cit (Crank l value probl	ution of ODE. Finite difference techniques for the solution's equations on rectangular domain – One dimensional heat fl Nicholson) methods – One dimensional wave equation by exems using computational tools.	on of t ow equ xplicit 1	wo-di ation	mensi by exp d. Sol	onal olicit ving				
		Ţ	ΓΟΤΑΙ	J: 60 I	PERIC	ODS				
OUTCOM Upon succ	IES: essful comp	pletion of the course, the students should be able to								
SL.NO		STATEMENT			RF LEV	BT /EL				
CO1.	Have the the linear syst	fundamental knowledge of solving an algebraic or transcendent tem of equations.	tal equa	tion,	2	?				
CO2.	Appreciat	e the numerical techniques of interpolation in various intervals			3	\$				
CO3.	Apply the problems.	e numerical techniques of differentiation and integration for	engine	ering	3	\$				
CO4.	Solve init	ial value problems using an appropriate numerical technique.			3	•				
CO5	Solve bou	ndary value problems using finite difference method.			3	5				

- 1) Grewal. B.S., Numerical Methods in Engineering & Science with Programs in C, C++ & MATLAB, Khanna Publishers, 11th Edition, New Delhi, 2013.
- 2) Jain M.K., Iyengar. S.R.K., and Jain. R.K, Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi, 2015.
- 3) Chapra. S.C., and Canale.R.P., Numerical Methods for Engineers, Tata McGraw Hill,7th Edition, New Delhi, 2015.

REFERENCES:

- 1) Sankara Rao. K., Numerical methods for Scientists and Engineers, Prentice Hall of India, 3rd Edition, New Delhi, 2007.
- 2) Gerald. C. F., and Wheatley. P. O., Applied Numerical Analysis, Pearson Education, Asia, New Delhi, 2009.
- 3) Venkataraman. M.K. Numerical Methods in Science and Engineering, National Publishers, 2001.
- 4) Kandasamy. K., Thilagavathy. K., and Gunavathi. K., Numerical Methods, S. Chand & Company Ltd., New Delhi, 2008.
- 5) Sastry, S.S., "Introductory Methods of Numerical Analysis", Prentice Hall of India, 2010.

WEBLINKS:

- 1. https://nptel.ac.in/courses/111/107/111107105/
- 2. https://nptel.ac.in/courses/111/107/111107063/

СО						PC)'s						PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1.	3	3	2									2			
2.	3	3	2									2			
3.	3	3	2												
4.	3	3	2	2											
5.	3	3	2	2											

CH22401	HEAT TRANSFER	L	Т	Р	C
		2	1	0	3

• To enable the students to learn the fundamental concepts of heat transfer conduction, convection, radiation, boiling, evaporation, and condensation.

• To use these fundamentals in typical engineering applications in heat transfer equipments like evaporator and heat exchangers.

UNIT I	HEAT TRANSFER BY CONDUCTION	9

Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer – Fourier's law of heat conduction - one dimensional steady state heat conduction equation for flat plate, hollow cylinder, spheres - Heat conduction through a series of resistances - Thermal conductivity measurement; effect of temperature on thermal conductivity; Heat transfer in extended surfaces.

UNIT II	HEAT TRANSFER BY CONVECTION	9
---------	-----------------------------	---

Concepts of heat transfer by convection - Natural and forced convection, Buckingham Pi Theorem, Dimensional analysis in heat transfer, heat transfer coefficient for flow through a pipe, flow past flat plate, and flow through packed beds. Application for developing semi - empirical non- dimensional correlation for convection heat transfer.

UNIT III	HEAT TRANSFER WITH PHASE CHANGE	9
----------	---------------------------------	---

Heat transfer to fluids with phase change - heat transfer from condensing vapours, drop wise and film wise condensation, Nusselt equation for vertical and horizontal tubes, condensation of superheated vapours, Heat transfer to boiling liquids - mechanism of boiling, nucleate boiling and film boiling.

UNIT IV	EVAPORATION AND RADIATION HEAT TRANSFER	9

TOTAL: 45 PERIODS

Theory of evaporation - single effect and multiple effect evaporation Thermal design calculation for single and multiple effect evaporation. Radiation heat transfer - Black body radiation, Emissivity, Stefan -Boltzman law, Plank's law, radiation between surfaces - Concepts of shape factor, Heat exchange between grey bodies – Radiation exchange between non-black surfaces, radiation shields.

UNIT V DESIGN OF HEAT EXCHANGERS	9
----------------------------------	---

Classification of heat exchangers - overall and individual film coefficients heat transfer coefficient and fouling factor - Concepts of LMTD, and NTU methods - plate heat exchangers; use of correction factor charts; heat exchangers effectiveness; - Chart for different configurations - Fouling factors.

OUTCOMES:										
Upon successful completion of the course, the students should be able to										
SL.NO	O STATEMENT									
CO1.	Impart knowledge on the various modes of heat transfer and apply conduction heat	3								

	transfer concept	
CO2.	Apply convective heat transfer concept to fluids without phase change	3
соз.	Develop the ability to model and analyze heat transfer processes with phase change	4
CO4.	Apply the concepts of evaporation to estimate steam economy, capacity of single and multiple effect evaporators	3
CO5	Apply thermal analysis of heat exchanger using LMTD and NTU method and design heat exchanger	4

1) Binay K. Dutta, "Heat Transfer Principles and applications" Prentice Hall of India Pvt.Ltd.

2) Holman, J. P., "Heat Transfer", Eighth Edition., Tata McGraw Hill, 1997

3) Coulson, J.M. and Richardson, J.F., "Chemical Engineering", Vol. I, Fourth Edition., Asian Books Pvt. Ltd., India, 1998.

REFERENCES:

 Kern, D.Q., "Process Heat Transfer", McGraw-Hill, 1999
 McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", Seventh Edition., McGraw-Hill, 2005.

СО		PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	2	2	3	1	1	3	2	2	2	3	3	3
2.	3	3	2	2	3	1	1	3	2	2	2	3	3	3
3.	3	3	2	2	3	1	1	3	2	2	2	3	3	3
4.	3	3	2	2	3	1	1	3	2	2	2	3	3	3
5.	3	3	2	2	3	1	1	3	2	2	2	3	3	3

CH22402		MASS TRANSFER I	L	Т	С						
			2	1	0	3					
COURSE	OBJECTI	VES:									
1. To 2. To 3. To 4. To 5. To	understand understand understand understand design a cr	the diffusion mechanism in fluids and solids. the role of mass transfer coefficients in design calculations. the mechanism of humidification operations. the drying operations used in chemical and allied industries. ystallizer for a suitable purpose.									
UNIT I		DIFFUSION			9						
Molecular	diffusion ir	n gases and liquids, measurement and calculation of diffusivitie	s, stead	y stat	e diffu	ision					
in multicor	mponent mi	xtures.									
Diffusion in solids, molecular and Knudsen diffusion in porous solids, unsteady state diffusion in solids.											
UNIT II		MASS TRANSFER COEFFICIENTS			9						
Eddy diff	usion, cond	cept of mass transfer coefficients, theories of mass transf	fer, dif	ferent	tran	sport					
analogies,	application	of correlations for mass transfer coefficients, inter phase mas	ss trans	sfer, ro	elatior	ıship					
between i	ndividual a	and overall mass transfer coefficients. NTU and NTP con	cepts,	Stage	-wise	and					
differentia	l contractor	s.									
UNIT III		HUMIDIFICATION			9						
Humidific	ation – Equ	lilibrium, humidification operations; theory and types of coolin	ig towe	r, deh	umidi	ifiers					
and humid	lifiers using	enthalpy transfer unit concept.									
UNIT IV		DRYING		9							
Drying Th	neory and I	Mechanism, Drying Characteristics, Estimation of Drying time	me, dr	ying 1	ate c	urve,					
Classificat	tion of Drie	rs, Through circulation driers design, Design of driers, Descrip	tion an	d App	olicatio	on of					
Driers, An	alysis of co	ntinuous driers.									
UNIT V		CRYSTALLISATION			9						
Crystalliza	ation - Equ	uilibrium, classification of crystallizers, mass and energy	balan	ce; k	inetic	s of					
crystallizat	tion – nucle	eation and growth; design of batch crystallizers; population bal	ance m	nodel	and de	esign					
of continue	ous crystalli	zers.									
		נ	OTAI	2: 45	PERI	ODS					
OUTCOM	AES:										
Upon succ	essful comp	pletion of the course, the students should be able to									
SL.NO		STATEMENT			RBT LEVEL						
CO1.	Apply the	principles of diffusion in measuring diffusivity.			Í	3					
CO2.	Calculate	different types of Mass transfer co-efficient and identify	the rel	ation		3					

3

3

3

1. Treybal, R.E., "Mass Transfer Operations", Third Edition, McGraw-Hill, 1981.

2. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", Seventh Edition., McGraw-Hill, 2005.

3. Geankoplis, C.J., "Transport Processes and Separation Process Principles Includes Unit Operations", Fourth Edition, Prentice Hall Inc., New Jersey, 2003

REFERENCES:

1. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, Fourth Edition, Asian Books Pvt. Ltd., India, 1998

2. Foust A.S, "Principles of Unit Operations", Second Edition, John Wiley, 2008

3. Seader J.D & Henley E.J, "Separation Process Principles", Second Edition, John Wiley, 2006.

4. E.L. Cussler, "Diffusion, Mass Transfer in Fluid Systems", Second Edition, Cambridge University Press, 1997

COUR	COURSE ARTICULATION MATRIX														
CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3		1									3	3	
2.	3	3		2									3	3	
3.	3	3		3		2	2	2				2	3	3	
4.	3	3		3		2	2	2				2	3	3	
5.	3	3	2	3		2	2	2				2	3	3	

CH22403		CHEMICAL REACTION ENGINEERING I	L	T	Р	С						
			2	1	0	3						
COURSE • To • To • To • To • To	 To study the kinetics of chemical reactions and the analysis of kinetic data To design a suitable reactor for single and multiple reaction schemes To study the non-isothermal operation of reactors To impart knowledge on residence time distribution studies in non-ideal flow reactors 											
UNIT I	KINETI	CS AND ANALYSIS OF EXPERIMENTAL KINETIC DAT	ГА			9						
Overview of Chemical Reaction Engineering - Kinetics of homogeneous reactions - Elementary and Non- elementary reactions - Theories on reaction rates - Temperature dependence of rate constants- Activation Energy and Arrhenius Equation - Kinetics of Bio-Chemical Reactions: Michaelis Menton model; Auto- catalytic reactions. , Analysis of experimental kinetics data, integral and differential analysis.												
Derformen		a for ideal batch. Dlug flow, Back mix flow and somi batch race		inoth	0,0000001	9						
condition,	Size compa	rison of single reactors, Multiple-reactor systems, Recycle react	tor.	15011	ermai							
UNIT III	MULTI	PLE REACTIONS				9						
Parallel rea multiple re	actions of c eactors - Ser	different orders: Yield and selectivity, Product distribution and ries reactions: first-order reactions and zero-order reactions.	l desigi	n for	single	and						
UNIT IV	TEMPE	RATURE EFFECTS FOR SINGLE AND MULTIPLE REA	CTIO	NS		9						
Thermal s Equilibrium Stirred Tar	tability of m conversion hk Reactor (reactors and optimal temperature progression for first order on - Adiabatic and heat regulated reactors, Multiple Steady (CSTR) - Design of non-isothermal reactors.	reversi States	ble ro in C	eaction Continu	ns – uous						
UNIT V	UNIT V NON – IDEAL FLOW REACTORS 9											
Concept of Plug Flow Dispersion	f residence Reactor ar Model.	time distribution (RTD), Measurement and moments of RTD, and CSTR. Zero Parameter Model: One parameter model: Tank	RTD ir cs in se `OTAL	batcleries 1	h reac nodel	tors, and						
OUTCOM	IES:											
Upon succ	essful comp	pletion of the course, the students should be able to										
SL.NO		STATEMENT			RE LEV	BT /EL						
CO1.	Analyze k	inetic data and determine the rate of the reaction.			4	ł						
CO2.	Design ide	eal reactors for homogeneous reactions			6	,						
CO3.	Evaluate reactor/co	reactor systems to carry out multiple reactions and mbination of reactors for the yield of desired product.	recomn	nend	5	;						
CO4.	Discuss the temperature effects and design non-isothermal reactors											
CO5	Develop n	nathematical models for conversion in non-ideal flow reactors			6	<u>,</u>						
TEXT BO 1) H.S. Fo 2) O. Leve	TEXT BOOKS: 1) H.S. Fogler, <i>Elements of Chemical Reaction Engineering</i> , Prentice Hall of India Ltd., 2016. 2) O. Levenspiel, <i>Chemical Reaction Engineering</i> , Wiley Eastern Ltd., 2006.											
REFERE	NCES:											

1) J.M. Smith, *Chemical Engineering Kinetics*, McGraw Hill, 1981.

2) Keith, J. Laidler, *Chemical Reaction kinetics*, Pearson Education Asia, 2004.

3) G. F. Froment, K. B. Bischoff and J. De Wilde, *Chemical Reactor Analysis and Design*, John Wiley & Sons, 1979.

4) M.E.Davis, R.J.Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill, 2003.

	<u>г</u>														
CO	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3	3	3	3	3	3			1	1	1	3	3	
2.	3	3	3	3	3	3	3			1	1	1	3	3	
3.	3	3	3	3	3	3	3			1	1	1	3	3	
4.	3	3	3	3	3	3	3			1	1	1	3	3	
5.	3	3	3	3	3	3	3			1	1	1	3	3	

CH22404	INSTRUMENTAL METHODS OF ANALYSIS	L	Т	Р	С
		3	0	0	3

• To enable the students to acquire knowledge in the field of various instruments which are used in the analysis of products in various chemical industries.

UNIT I FUNDAMENTALS OF SPECTRAL ANALYSIS

9

Spectral Analysis: principle, electromagnetic radiation-regions, properties and interaction with matter, classification of instrumental methods based on physical properties; Colorimetric analysis: Beer-Lambert's Law, Instrumentation, Real Limitations, Apparent ChemicalDeviations, Application, Nesslerimetry and Duboscq colorimetry, Estimation of inorganic ions such as Ni and Nitrite by Colorimetry; UV-Visible and IR spectroscopy: Instrumentation and application, Solvent effects, Various electronic transitions involved in organic molecules, Characterization, Chromophore concept, Effects of auxochromes and effects of conjugation on the absorption maxima, Modes of molecular vibrations, Mull and Pressed Pellet Technique;Woodward-Fischer rules for the calculation of absorption maxima.

UNIT II ELECTROMETRIC METHODS

Conductometric Titrations: Instrumentation, Types, Limitations, Specific-Equivalent-Molecular conductance, Advantages & Application; Potentiometric Titrations: Instrumentation, Types, Advantages & Application; Measurement of pH: Instrumentation, Calibration method, Applications; Ion selective electrodesand types: Electrode setup - Applications; Amperometric titrations: Principle, instrumentation, Application.

UNIT III IMPORTANT SPECTROSCOPIC METHODS OF ANALYSIS

9

9

Atomic Absorption Spectroscopy (AAS): Principle, Instrumentation, absorbance-concentration relationship, Interference and Applications;Emission Spectroscopy: Flame Photometry and Inductively coupled Plasma Atomic Emission spectroscopy (ICP-AES)- Principle, Instrumentation, Advantages& Applications; Polarimetry: Principle, Instrumentation and Applications; Refractometry: Principle, Snell's law, Instrumentation, Types and Applications;Nephlometry and Turbidimetry: Principle, Instrumentation and Applications.

UNIT IV MAGNETIC RESONANCE SPECTROSCOPY & MASS SPECTROMETRY

9

Absorption spectrum-emission spectrum; Magnetic resonance spectroscopy: Theory of NMR, environmental effect on NMR spectra, Modes of Nuclear Spin, Chemical shift, NMR spectrometers, applications of 1H and 13C NMR, Application; Molecular Mass Spectrum: Ion sources, Mass spectrometer, applications of molecular mass spectrometry, Electron Paramagnetic Resonance (EPR) – g values, instrumentation and applications.

UNIT V X-RAY METHODS AND SURFACE MICROSCOPY

9

Mosley law, Continuous and Discontinuous spectra, X-ray instrumentation, X-ray detection and measurement, The Laue method of analysis, Bragg"s law, Diffraction of X-rays, Production and detection of X-rays – Debye Scherrer method. Study of surfaces: Scanning electron Microscopy, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) microanalyzer, Scanning probe microscopes, Scanning Tunnelling Microscope (STM) and Atomic Force Microscope (AFM).

TOTAL: 45 PERIODS

OUTCOMES: Upon successful completion of the course, the students should be able to RBT SL.NO **STATEMENT** LEVEL Apply knowledge on the fundamental concepts and various terms in electromagnetic CO1. 3 radiations and absorption spectroscopy. Arrive at the knowledge in the various analytical instruments which are based on 4 CO2. electrical property of compounds. CO3. Obtain familiarity on various properties of liquid materials and the instruments used 3

	to measure these properties	
CO4.	Investigate the applications of spectroscopic techniques in Chemical Industry.	4
CO5	Analyze the modern techniques which are used in nanoscience.	3

4) D.A.Skoog, D.M.West, F.J.Holler and S.R.Crouch, "Fundamentals of Analytical Chemistry", Ninth Edition, Brooks / Cole, Cenage Learning, 2014.

5) B.K.Sharma, "Instrumental Methods of Chemical Analysis", Twenty Eighth Edition, Goel Publishing House, 2012.

REFERENCES:

- 6) H.H.Willard, I.I.Merritt, J.A.Dean and F.A.Settle, "Instrumental Methods of Analysis", Seventh Edition, Pearson Education, 2002.
- 7) H.Kaur, "Instrumental Methods of Chemical Analysis", Eighth Edition, Pragati Prakashan Publishers, 2012.

COUR	OURSE ARTICULATION MATRIX														
CO								PO's							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	2	1	1	1	3	2	1	1	1	1	1	2	2	2	
2.	3	1	3	2	3	-	-	1	1	1	-	2	1	1	
3.	2	2	3	1	3	2	-	-	1	-	-	1	1	1	
4.	2	1	1	1	1	1	1	-	1	-	1	2	1	1	
5.	3	3	1	1	3		2	1	1	1	1	1	2	2	

CH22408	8	CHEMICAL ENGINEERING THERMODYNAMICS II: THEORY AND PRACTICE	L	Т	Р	C					
			2	0	2	3					
COURSI	E OBJECTI	VES:									
• Deterninvolv	mine thermoved in indust	odynamic properties of gaseous mixtures, Solutions and als rial chemical processes	o to ev	valuate	heat	effects					
UNIT I		SOLUTION THERMODYNAMICS			6 +	6					
Fundame solution r	ntal property nodel, Exces	relation, Chemical potential, Partial properties, The ideal gas s properties.	mixtu	re mode	l, Th	ideal					
Practical	- Prediction	of Heat of solution by solubility method.									
UNIT II		APPLICATIONS OF SOLUTION THERMODYNAMICS			6+	6					
Activity of effects of terms of o	Activity coefficient, Excess Gibbs Energy, Models for the excess Gibbs energy, Property changes of mixing, Heat effects of mixing process. Criteria for equilibrium between phases in multi component non-reacting systems in terms of chemical potential and fugacity.										
UNIT III	– vapour ng I	PHASE EQUILIBRIUM			6+	6					
Application with a minimizer ternary lie Practical	Application of phase rule - vapour-liquid equilibrium, phase diagrams for homogeneous systems and for systems with a miscibility gap - effect of temperature and pressure on azeotrope composition - liquid-liquid equilibrium - ternary liquid-liquid equilibrium. Practical – Prediction of azeotropic composition and VLE data by vanlaar model										
UNIT IV	7	CORRELATION AND PREDICTION OF PHASE EQUIL	IBRIA		6+	6					
Activity of correlation liquid ext Practical	coefficient-co on and predic traction proce – Validating	composition models - thermodynamic consistency of phase equication of phase equilibria in systems of engineering interest paresses.	ıilibria rticularl	- applic y to dis	ation tillat	of the ion and					
UNIT V		CHEMICAL REACTION EQUILIBRIA			6 +	6					
Standard prediction Practical	free energy n of free ener – Determin	change and reaction equilibrium constant - evaluation of reaction gy data - calculation of equilibrium compositions for homogene ation of equilibrium constant	tion eq ous che	uilibriun emical re	n coi eactoi	nstant - rs.					
		TOTA	AL: L 3	0 + P 3) PE	RIODS					
OUTCO	MES:										
Upon suc	cessful com	bletion of the course, the students should be able to									
SL.NO	STATEMENT										
CO1.	Identify the	partial Molar property of solutions upon mixing.				3					
CO2.	Envisage the of solutions	e equilibrium between phases in multicomponent systems and l	Excess	property		4					
CO3 .	Explore and on azeotror	d generate the phase diagram data to find the effect of temperatu- bic conditions.	re and	pressure		4					
CO4.	Apply kno thermodyna	wledge on various models used to evaluate the equilibrium of amic consistency.	lata to	test the		4					
CO5	Inermodynamic consistency.Identify and calculate the equilibrium constant for various systems4										

1. M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, Seventh edition, McGraw-Hill International Edition, 2005.

REFERENCES:

- 1. K. V. Narayanan, A Textbook of Chemical Engineering Thermodynamics, Prentice Hall of India, 2001
- 2. B. G. Kyle, Chemical and Process thermodynamics. Second Edition., Prentice Hall of India, 2000
- 3. M J Moran, H N Shapiro, D Boettner and M B Bailey, Principles of Engineering Thermodynamics, Eighth Edition, Wiley

COURSE ARTICULATION MATRIX	

СО					PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	2	3	3	1	2	3	2	2	2	1	3	3
2.	3	3	3	3	3	1	2	2	2	2	1	1	3	3
3.	2	2	2	2	2	1	2	2	2	1	2	1	3	3
4.	3	3	3	3	3	2	2	3	2	1	2	1	3	3
5.	3	3	3	3	3	1	2	1	1	1	2	2	3	3

GE22451	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY (COMMON TO ALL BRANCHES)	L	Τ	Р	С
		3	0	0	3

To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize the biodiversity of India and its conservation.

To impart knowledge on the causes, effects and control or prevention measures of environmental pollution.

To study and understand the various types of renewable sources of energy and their applications.4

To familiarize the concept of sustainable development goals, economic and social aspects of sustainability, recognize and analyze climate changes, and environmental management challenges.

To inculcate and embrace sustainability practices, develop a broader understanding of green materials and energy cycles, and analyze the role of sustainable urbanization.

UNIT IENVIRONMENT AND BIODIVERSITY9

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– food chains, food webs and ecological pyramids, ecological succession. Biodiversity- types- genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: fragmentation and habitat loss, poaching of wildlife, human-wildlife conflicts – endangered and endemic species of India –conservation of biodiversity: In-situ and ex-situ.

9

UNIT II ENVIRONM

ENVIRONMENTAL POLLUTION

Definition, causes, effects and preventive measures of air, water and soil pollution. Marine and thermal pollution - causes, effects and control measures. Light and noise pollution - effect on flora and fauna. Nuclear pollution-Sources, effects and control measures. Disposal of radioactive wastes (Nuclear hazards). Pollution case studies. Role of an individual in the prevention of pollution. Solid, hazardous and E-waste management. Occupational health and safety management system (OHASMS). Environmental protection, Environmental protection acts, categorization of spices according to IUCN.

UNIT III	RENEWABLE SOURCES OF ENERGY	9

Energy resources: Growing energy needs, Nonrenewable resources – types, uses. Energy management and conservation - New energy sources, Need of new sources - geo suitability of establishing renewable energy sources, different types new energy sources. Applications of hydrogen energy, ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy. Role of an individual in conservation of energy.

UNIT IV	SUSTAINABILITY AND MANAGEMENT	9

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainabilityfrom unsustainability to sustainability-millennium development goals, and protocols, Sustainable Development Goals-targets, indicators and intervention areas - Principles of green chemistry, Climate change- Global, Regional and local environmental issues and possible solutions-case studies - Role of non-governmental organization, Concept of carbon credit, carbon footprint - Environmental management in industry - A case study

UNIT VSUSTAINABILITY PRACTICES9

Zero waste and R concept, circular economy, ISO 18000 series, material life cycle assessment, environmental impact assessment. Wasteland reclamation, Sustainable habitat: green buildings, green materials, energy efficiency and energy audit, sustainable transports. Energy cycles, carbon cycle, emission and sequestration, Green engineering: sustainable urbanization- socio-economical and technological change. Rainwater harvesting, watershed management, environmental ethics: Issues and possible solutions.

TOTAL: 45 PERIODS

TEXTBOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7th Edition, New Age International Publishers, 2022.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Pearson. 2011.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, CL Engineering, 2015.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCES:

OUTCOMES:

Upon successful completion of the course, the students should be able to

SL.NO	STATEMENT	RBT LEVEL
CO1.	Recognize the fundamental role of ecosystems and suggest an appropriate method for the conservation of biodiversity.	3
CO2.	Describe the different types of pollution, their effects and strategies to control pollution.	3
CO3.	Identify the various renewable energy resources and use the appropriate one thereby conserving non-renewable resources for future generation.	3
CO4.	Explain the various goals of sustainable development applicable to suitable technological advancement and societal development.	2
CO5	Summarize the various sustainability practices, green materials, energy cycles, and the role of green engineering in sustainable urbanization.	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3					3	3	2		2		1		
CO2	3					3	3	2		2		2		
CO3	3		1			3	3	1		2		1		
CO4	3					3	3	3		2		2		
CO5	3					3	3	3		2		2		

CE	[22411	MOMENTUM TRANSFER LABORATORY	L	Т	Р	C		
			0	0	4	2		
CC	OURSE OBJECT	IVES:	I		1	<u> </u>		
•	The students y	will learn experimentally to calibrate flow meters						
•	Find pressure	loss for fluid flows across various pipes beds						
•	Determine Per	rformance characteristics of different types of pumps.						
	ST OF EXPERIM	IENTS:						
1)	Calibration of Ori	fice and Venturimeter						
2)	Calibration of Ro	tameter						
3)	Calibration of V-I	Notch						
4)	Efflux time test ri							
5)	Flow through stra							
6)	Flow through ann	ular pipe						
7)	Flow through heli	ical coil						
8)	Flow Through spi							
9)	Losses in pipe fitt							
10)	0) Performance characteristics of Centrifugal pump							
11)	Performance char	acteristics of Reciprocating pump						
12)	Performance char	acteristics of Gear pump						
13)	Pressure drop stud	dies in packed column						
14)	Hydrodynamics o	of fluidized bed						
15)	Drag coefficient of	of solid particle						
16)	Velocity Measure	ement using Pitot Tube						
17)	Reynolds Experim	nent						
*M	linimum of 10 Ex	periments to be offered						
			TOTA	L: 30]	PERIC	ODS		
LIS	ST OF EQUPME	NTS:						
1)	Orificemeter							
2)	Venturimeter							
3)	Rotameter							
4)	V-Notch							
5)	Efflux time test ri	g						
6)	Straight pipe							
7)	Annular pipe							
8)	Helical coil							
9)	Spiral coil							
10)	Fittings and valve	28						
1 1	G							

- 11) Centrifugal pump
- 12) Reciprocating pump
- 13) Gear pump
- 14) Packed column
- 15) Fluidized bed
- 16) Drag Column
- 17) Pitot Tube
- 18) Reynolds Experiment

OUTC	COM	ES:													
Upon s	succe	essful co	mpleti	on of tl	ne cour	se, the	studen	its shou	ıld be a	ble to					
SL.NO	0	STATEMENT] L]	RBT EVEL		
C01.	•	Demonstrate practical understanding of various theoretical fluid flow properties													3
CO2	•	Utilize basic flow and pressure measurement techniques for fluid flow													
CO3.	•	Demonstrate practical understanding of friction losses in internal flows													
CO4	Discuss the differences among measurement techniques, their relevance and applications										3				
CO5	i	Compare the results of analytical models with the actual behavior of real fluid flows													
COUR	SE .	ARTIC	ULAT	ION M	IATR	IX									
CO								PO'	S						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	3	2	1	1	2	1	1	3	1	2	1	3	3	1
2.	3	2	1	3	2	2	1	1	2	1	2	1	3	3	1

3.

4.

5.
CH22412		MECHANICAL OPERATIONS LABORATORY	L	Т	Р	C						
			0	0	4	2						
COURSE OBJECTIVES:												
To enable the students to develop a sound working knowledge on different types of crushing equipment and separation studies using different mechanical filters and separators												
LIST OF	EXPERIM	ENTS:										
1.Screen Effectiveness												
2. Size An 3. Jaw Cru	2. Size Analysis 3. Jaw Crusher											
4. Ball mill												
5. Roll Cri	usher											
6. Drop we	6. Drop weight crusher 7. Loof filter											
8. Plate an	d Frame Fil	ter press										
9. Batch S	edimentatio	n Test										
10. Sub- Sieve Analysis - Beaker decantation												
12. Air Elutriator												
13. Air Pe	rmeability											
14. Mixing Index												
*Minimum 10 experiments shall be performed												
			ΓΟΤΑΙ	· 60 I	PERIO	ODS						
				2. 00 1		500						
LIST OF	EQUIPME	INTS										
1. Gyrator	y Sieve shal	ker & Sieves										
2. Air Peri 3. Jaw Cru	neability ap	paratus.										
4. Ball Mill												
5. Roll Cru	usher											
6. Drop Weight Crusher												
8. Plate and Frame Filter Press												
9. Cyclone Separator												
10. Air Elu	utriator											
OUTCOM	/IES:											
Upon successful completion of the course, the students should be able to												
SL.NO	STATEMENT											
CO1.	Apply knowledge of various mechanical operations											
CO2.	<u>Analyse</u> the practical importance of crushing, grinding and size separation in inorganic process industry											
CO3.	Relate the theoretical and practical concepts used in industry 4											
CO4.	Evaluate the working of equipment used for mechanical operations.5											
CO5	Develop th	ne skill to operate filter, screens, sedimentation tank, crusher, m	ill.		6	5						

COURSE ARTICULATION MATRIX															
СО	PO's														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	3	2	2	3	2	1	2	1	1	1	1	1	3	3	
2.	3	3	3	3	3	1	2	1	1	2	1	1	3	3	
3.	3	3	2	2	2	1	1	1	1	1	2	2	3	3	
4.	2	2	3	2	1	1	1	1	1	3	2	2	2	2	
5.	3	3	3	3	2	1	1	1	1	3	2	2	2	2	