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Introduction:
Differential equation:

An equation involving independent & dependent
variables & the derivatives of dependent variables
w.r.t independent variables is called a dif ferential
equation.

ie.if x is an independent variable,y is the

dependent variable then an equation involving, x,y
g & &

a“y
dx ' dx? "’
Dif ferential equation are of 2 types
(i)O.D.E:
A dif ferential equation which involves derivatives

w.r.t a single independent variable is known as O.D. E.

d
Eg: d—i:= sinx + cos x

etc is called a dif ferential equation.



(ii)P.D.E:
A dif ferential equation which involves two or more
independent variables & partial derivatives w.r.t

themis knownas P.D.E.

0%V 3%V 9%V

E =0
9 %22 T ay2 T 322

Order of a D.E:

The order of a D.E is the order of the highest
derivaties appearing in it.
po. &Y dy
g: T2 3dx+2y_0
The order is 2.

Degree of D.E.

The degree of a D.E is the degree of the derivative
of the highest order.
If the degree of a D.E is one then it is said to be a
linear D.E.



Higher order linear differential equation with
constant co efficient:
The general formof a linear dif ferential equation
of nt" order is

dny dm- 1)y d(n—z)y dy
dx" T dxm —1) a2 dxn—2) Tt apg dx T a,y = b
- (1)

where a4, a,, ..., a, are constants & b is a function of
x (or)constant.

The symbol D stands for dif ferential operator.

dy d*y d"y
— = Dy,—= = D?y,...,—== D"
le, dx Y dx2 Vo dxm Y
s~ (1) =>

(D" +a, D" 1 +--+a,_D+a,)y=>b - (2)
The complete solution of is given by

y — complementary function , particular integral



Complementary function:
Let my, m,, M3 ... be the roots of a nt" order
linear dif ferential equation then,
(i)If the roots are real & distinct (ie my + m, # -+ )
then|CF = Ae™* 4 Be™2* 4 Ce™3* 4 ...
(ii)If the roots are real & 2 are equal
(m; = m, = m(say) &ms + my, ...)
then|CF = (Ax + B)e™ 4 Ce™3* + ...
(iii)If 2 roots are imaginary (m = a + if3) & others are real
then|CF = e**(Acos fx + Bsinfix) + Ce™3* + ...

Type I: RHS =0

Rules:

1. Find the roots from LHS of the given D.E
2.Write the CF.

3.Since the RHS = 0,PI =0

4.Solution is y = CF.




Problems:

1.Solve y" — 6y' + 25y = 0
Solution:

Given, y"'—6y + 25y =0
=> (D?*—-6D+25)y =0
The auxillary equation is m?* — 6m + 25 =0
6++vV36—100 6++V—64
- 2 2
6+ 18
= =3+i4

(the roots are complex, here a = 3 & = 4)
~ CF = e3*(A cos 4x + B sin 4x)
~ Solution of d.e is y = CF(since RHS = 0)

=> |y = e3*(A cos 4x + B sin 4x)




2.Solve (D> + 1)y = 0,gny(0) =0,y'(0) = 1.
Solution:
Given, (D> + 1)y =0
The auxillary equationism? +1 =0
=>m==xi(Herea=0&F=1)
. CF = (Acosx + Bsinx)
~ Solution of d.eisy = CF(since RHS = 0)

=> y(x) = (Acosx + Bsinx)
Giveny(0) =0&y'(0) =1
=> y(0) =Acos0+Bsin0=>|A=0
y'(x) = A(—sinx) + Bcos x
=>vy'(0) = —Asin0+Bcos0=>|B=1

sy =0(cosx) +sinx =>|y =sinx




3.Solve (D3 +3D*—4)y =0
Solution:
Given, (D3 +3D%*—-4)y=0
The auxillary equation is m3 +3m? —4 =0
Ifm=1thenl1+3—-4=0
~m=1Iisaroot
~m3+3m?—4=0
=>(m-1)(m?+4m+4) =0
=>m—-1=0&m?+4m+4=0
=>m=1&m = —2(twice)
Here one root is distinct & 2 roots are equal
« CF = Ae* + (Bx + C)e™**
~ Solution of d.eisy = CF(since RHS = 0)

=>|y = Ae* + (Bx + C)e™?*




4.Solve (D* —a*)y =0
Solution:
The auxillary equation is m* — a* = 0
=> (m?+a*)(m*—-a?) =0
=>(m?+a*)=0&(m?*—-a*) =0
=>m==xia&m=*ta
(Here two rt's are imaginary & 2 rt's are real &
unequal)
. CF = (Acosax + Bsinax) + Ce®* 4+ De™%*
~ Solution of d.eisy = CF(since RHS = 0)
y = (Acosax + Bsinax) + Ce™ + De™**




Type 11: RHS = e**
Rules:

Let f(D)y = e%*
1. Find CF .

_L ax
2.P1—f(D)e

3.Replace D by a
Case of failure:

If the denominator becomes zero,
4. Multiply numerator by x & dif ferentiate the

denominator ie, PI = ,x e X
f'(D)

5. Repeat step 3.



Problems:
1.Solve (D — 2)%y = e?*
Solution:
Given, (D —2)%y = e?*
The auxillary equationis (m —2)?> =0
=>m = 2,2 (equal roots)
~|CF = (Ax + B)e?**
1
" 0-27°

1
=5 e?* [Replace D by 2]

- T [Replace D by 2]
2(D — 2) 0

2X

Pl

. Pl




~ Solution of d.eisy = CF + PI
2

X
y = (Ax + B)e** + - e?*

2 solve LY+ 4% 4 51 = —2 cosh
.0o0oLve dxz dx y— cosnx

Solution:
Given, (D% + 4D +5)y = —2 [e = ]
(D*+4D +5)y = —(e* +e7%)
The auxillary equationism?* + 4m +5 =0

—4 ++/16 — 20 _

(Herea =—-2& [ =1)
“|CF = e ?*(A cos x + B sin x)




Pl = (0% X
pzyap sl € te)
1 1
= — ex_ e_x
D2+411)+5 D2-|i4D+5

- e* — e ™
1+4+5t 1—4+5 .
[Replace D by 1in1°* term & — 1 in 2™¢ term]

Pl = Lox_1
~ "10° " 2°
~ Solutionof d.eisy = CF + PI
)’=e_zx(Acosx+Bsinx)—iex_le—x
10 2




3.Solve (D% + 2D + 2)y = 3 + 2¢e*
Solution:
Given, (D? + 2D + 2)y = 3eY + 2e*
The a.eism?+2m+2=0

—2++4 -8

=>m= =—14i
m > T 1

(Herea=—-1&L =1)
“|CF = e *(Acosx + Bsinx)
1
— 3 0 2 X
DZy2p 208 T2
= - 3e’ + . 2
'Jﬂ+zq+2‘? Dziﬂl+28

= 3el + 2e”
0+0+2°° T1+2+2°°

[Replace D by 0 in 15¢ term & 1 in 2™® term]
3 2

Pl == 42¢x
> T3¢

Pl

X




~ Solutionof d.eisy = CF + PI

y = e *(Acosx + Bsinx) +;+§ex
Type III: RHS = sin ax (or) cos ax
Rules:
Let f(D)y = sinax (or) cos ax
1.Find CF
2.PI = [sin ax] (or) ——=[cos ax]

f() f()

3.Replace D? by — a?
4.Take conjugate of denominator & simplify

Case of failure:
After replacing, if the denominator becomes zero,

5. Multiply numerator by x & dif ferentiate the
denominator ie,

Pl =

X

f'(D)

cosax

x .
sinax (or
oy (o)
6. Repeat step 3.



Problems:

Solution:

1. Find the PI of (D? + 4)y = cos 2x.

Given (D? + 4)y = cos 2x

Pl = COS 2Xx

D2 + 4

2 _ _
—4 1208 2x [Replace D 4]

= 5 cos 2x (case of failure)

N 2D

X
= EBCOSZX = chostdx

Pl ~ si 2
g = —sin 2x
h




2.Solve (D? — 4D + 3)y = sin 3x cos 2x
Solution:
Given (D? —4D + 3)y = sin 3x cos 2x

=3 |sin 5x + sin x]

1
<sinA cosB = 5 |sin(A + B) + sin(4 — B)])
The a.eism? —4m+ 3 = 0 => m = 3,1(real & unequal)

. |CF = Ae3* + Be*

To find PI.
1 1 .
PI =07 4D 13 E[sm5x+51nx]
_1[ 1 E 1 _ ]
~2lpz—4p+3"* Tp2—4p + 3717

1
PI =[Pl + PI]




Pl =D2_4D+35in5x
. in5x [D? — —25]
— — —
—25—41)+13Slrl *

~ Z4D — 22

sin 5x

—4D + 22

" (—=4D — 22)(—4D + 22)
_ —4D(sin5x) + 22 sin 5x

B 16D2 — 484
B —20cos5x + 22sin 5x

D? —» —25
T6(—25) —a8a D7~ 20
B —20cos5x + 22 sin 5x

B —884
B 20 cos5x — 22 sin 5x

Pl, =
1 884

sin 5x




1

Pl, =1D2_4D+35inx
= _1_4D+fsinx [D? - —1]
= Tap 2o
—4D — 2

= (CaD + 2)(—aD — 2) ¥

_ —4D(sinx) — 2sinx
B 16D2 — 4
—4cosx —2sinx
= [D? - -]
16(—1) — 4
—4 cosx —2sinx
—20
_ 2Ccosx + sinx

Pl, =
2 10




1
PI =[Pl + PI]

P — 1120 cos5x — 22 sin 5x N 2cosx + sinx
-2 884 10

~ Solution of d.eis|y = CF + PI

3.Solve (D? + 6D + 8)y = cos?x

Solution:
Given (D*+ 6D + 8)y = cos*x
_1+4cos2x e® + cos 2x
B 2 B 2
( , 1 + cos 2x>
cos’x =
2

To find CF:

a.e.ism?+6m+8=0=>m=—4,-2
“|CF = Ae™™ + Be™*¥




Pl

1 [eo + cos Zx]

“D2+6D + 8 2

1 1 - 1 2]
~2|p2+6D+8° "Dz+6D+8 %

1
-|PI == [PL + PI,]

1 1

0 — _,

“DZ+6D+8° 8
pL =1
17 g

PI, 0

Pl, =D2+6D+8C052x

1
— 2 —
—4+6D+8C052x |ID* - —4]
1 e 6D — 4 ,
“eD+4 YT 6D +4) 6D —4) >




_ 6D(cos 2x) — 4(cos 2x)
- 36D2 — 16

_ 6(—2sin2x) — 4(cos 2x)
B 36(—4) — 16
—12sin2x — 4 cos 2x

—160
3sin2x + cos 2x

PI, =

2 40
PI =[P + Pl
111 3sin2x + cos2x

Pl =—-|=
2_8+ 40

=~ Solution of d.eis|y = CF + PI




Type I1V: RHS = x™
Rules:

Let f(D)y = x™

1. Find CF.

_ 1 m
2.PI =) [x™]

3. Rewrite denominator of the form

. 1 -
11+ @(D)] lePI:ligo(D)[x ]

4.PI =1+ @(D)] tx™

5. Expand & simplify.

Note:
DA+x)T=1—-x+x2—-x3+ -
G)1—x)t=1+x+x%+x3+-



Problems:
1.Find PI of (D% + 4)y = x*
Solution:
Given, (D? + 4)y = x?
To find PI.

Pl=— 2
—D12+4x

xZ

12
1[ p21~t

14+—| «x°
1 X

4



1 1
PI=3]¥ -3
2.Solve (D*+5D+4)y=x*+7x+9
Solution:
Given (D*+5D+4)y=x*+7x+9
a.eism*+5m+4=0=>m=—4,-1
~|CF = Ae™** + Be™*
1

=D2-|—15D+4

D? + 5D]
4

PI x% + 7x + 9]

x% 4+ 7x + 9]

41+

4 4

_ 1|, _(p*+5D\ (D*+5D i
4 4 4

1[. D*+5D|"
=—[1+ [x% + 7x + 9]

[x? + 7x + 9]




4 4 16
{D[x*+7x+9] =2x+ 7,
D?[x? + 7x +9] = 2}

1 D? 5D 25D2
b Liaiairais [x? + 7x + 9]

1 2 502x+7) 25(2)
Pl = —|x* — ==

4[x +7x+9 1 1 + Te

1

1 5x 35 25
=—|x*+7x+9—-————+—

4 2 2 4 8

P1_1[ , 9% 23
—2t T2 T

~ Solution of d.eis|y = CF + PI




3.solve (D3 +2D?* + D)y = e** + x* + x
Solution:
a.e ism3+2m*+m=0
=>m(m?*+2m+1)=0=>m=0,—-1,—-1
Here the roots are real and one is distinct
CF = Ae®* + (Bx + C)e™™
1
S ERIY, PRy
— 1 2x_|_ 1 2 +
=05+20210° "Diiapi4p* TH
Pl = Pl; + PI,
1
“D3+2D2+D°

1
— 2% [D - 2
g2 12 WL~2

e?X 4+ x% + x

2X

PI,




(x* + x)

~ D(1+ (D% +2D))

=%[1 + (D? +2D)] 1 (x? + x)

[1 — (D?+ 2D) + (D? + 2D)? — -+ ](x? + x)
{ID(x? +x) =2x+ 1,D?(x* + x) = 2}

1
5[1 — D% — 2D + 4D?](x* + x)

1
D

1
- —[1+ 3D? — 2D](x? + x)

[(x%? +x) +3(12)—202x +1)]

blr—x “



- Pl = PI, + PL,
er x3 3x2

Pl = _2 44
g t3 5 T

~ Solution of d.eis|y = CF + PI

4.Solve (D* + D3 + D?)y = 5x? + cos x
Solution:
a.eism*+m3+m?=0
=>m*(m?+m+1)=0
=>m?’=0,m*+m+1=0

—1+iV3
2

=>m = 0,0,



1 V3 V3
CF =(Ax +B) +e 2* Cc057x+Dsin7x

1
— 2
Pl 1_ D7+ D3 £ D2 1% +1cosx]

= 5x° +
D2D2+D+1°" "D2D2+D+1) 7

PI=P11+P12
1

PI, = 52
LT D2 +D+ 1)

1
=73 [1+ (D? + D)]15x°

1
=5z [1= (D% + D)+ (D* + D) + - ]5x"

1
= —5[1= D2 =D + D?|547
{D(5x%) = 10x,D?*(5x%) = 10}




1
= F[sz — 10 — 10x + 10]

. [5x2 — 10x]
:—2 X~ — X
D 3 x2'

S PEANEPT
D[ 3 2
x4 x3
Pl, =5— —5—
1 12 3
1

“D2(DZ+D + 1)
_ 1 2, _
= (_1)((_1) oo 1) cosx |D 1]

1
= ——COSX = —SInx
—D

Pl, = —sinx
. PI = PI; + PI,
=~ Solution of d.eis|y = CF + PI

Pl, COS X




5.Solve (D% — 3D + 2)y = 2cos(2x + 3) + 2e*
Solution:
a.eism*—3m+2=0=>m=21
CF = Ae®* + Be*

1
Pl :1D2—3D+2[2COS(2x+3):_26x]
= 2 2x + 3) + 2e*
D7 —3p 422X+ g%
PI=P11+P12
Pl = 2 cos(2x + 3)

{72 — 3D+ 2
cos(2x + 3) [D? - —4]

=2
(—4) — 3D + 2

1
= 2_3D_2cos(2x+3)
—3D + 2

=2 9D — 2 cos(2x + 3)




—3(—2sin(2x + 3)) + 2 cos(2x + 3)

—40
_ —65sin(2x + 3) — 2 cos(2x + 3)
B 20
—3sin(2x + 3) — cos(2x + 3)
PIl — 10

. PI = PI; + PI,
~ Solution of d.eis|y = CF + PI




Type V: RHS = eV, whereV is some function of x
Rules:

Let f (D)y = e**V

1.Find CF
— 1 Lax
2. PI f(D)e 1V
—_ ax
3.PI =e f(D+a)V

4, Apply type I11 if V is sinax (or) cosax (or)type IV if Vis x™

Problems:
1.Solve (D% — 2D + 5)y = e**sinx
Solution:
a.eism?*—2m+5=0=>m=1+ 2i
CF = e*|Acos 2x + B sin 2x]

1
— 2 :
PI=pr3p45¢ Sinx




1

(D+2)2—-2(D+2)+5
1

D2 +4D+4—2D —4+5

2x 1 '
— € SINn X

1D2 +2D+5
— p2X . DZ —1
€ —1+2D+515mx D% = —1]

2D + 4
= g% b — 4 sin x
2_ 41)3L — 16
cosx —4sinx
— er _20 [DZ N _1]

L 2sinx —cosx
10
~ Solution of d.eis|y = CF + PI

— X sin x

— p2X sin x

2x sin x

— e

Pl = e?




2.Solve (D? — 4D + 3)y = 2xe3* + 3e* cos 2x
Solution:
a.eism’*—4m+3=0=>m=1,3

CF = Ae* + Be3*

1 1

PI = 2xe>* + 3e* cos 2
DZ—4D+3° TDZ_4p+3°° P

PI = PI, + PI,
Pl = ! 2xe3*
! D21—4D+3
= 2e3% D - D+3
T34+ 3 P D+

1
D? + 6D +9 — 4D—12+3

P 2egxll+ ]
— % " Dpzy2p” 2

=§’1—E]x (D(x) = 1}

= 2e3*




-3
e

P12=D —4D1 338 COS 2Xx
— 3e¥ 2
DA D 4D+ D30
ID - D + 1]
1
=381XD2_2DCOSZX
= 3e* (4 —2D cos 2x [D? - —4]
_ _gpx 2D — 4 )
T 2D+ 42D —4)
2D — 4
= —3e”* COS 2X

4D% — 16



. 2(=2sin2x) — 4 cos 2x

= —3 D? > —4
€ 4(—4) — 16 D% = —4]
_ 3 x4sin2x+4c052x
- 7o¢ 32

3
Pl, = — §ex[sin 2x + cos 2x]

~ PI = PI; + PI,
~ Solution of d.eis|y = CF + PI

3.Solve (D? — 6)y = e*sin®x
Solution:
a.eism?2—6=0=>m=+V6
CF = AeV®* + Be~V6*
1 N [1 — COS 2x]
e
D?2 — 6 2

Pl =




1 e* 1 e*cos2x

D2—-62 D2—6 2
PI = PI, — PI,

1 e* 1 1
D2—62 21-6

D2 —6 2

COS 2X

T2 (MD+1)2%-6
_ex 1
2 D242D-5
e’ _1 2% [D? - —4]
— - —
22D—9COS X
e* 2D+ 9

~ 2 4Dp2—g1

COS 2Xx

COS 2X

e* |D - 1]



_ €% 2(—=2sin2x) + 9 (cos 2x)
-2 —97

X

[D? - —4]

PI, = [4 sin 2x — 9 cos 2x]

194
~|PI = PI; — PI,
=~ Solution of d.eis|y = CF + PI

TypeVI:RHS = x" sin ax (or) x" cos ax

Rules:

1. Find CF
2.PI = mx sin ax (or)mx COS ax
3.PI = —IP(e‘“x)x"(or) RP(e')x™

f(D) f(D)
4. Apply type V and simplfy.



Problems:
1.Solve y" + 2y' + y = x cos x
Solution:
given (D? + 2D + 1)y = x cos x
a.eism*+2m+1=0=>m=-1,—-1
CF = (Ax+ B)e ™™

1
Pl = hE -IiZD n 1xcosx
:D2+2Dfﬁﬁnwmx
- PD2+2DTlemx
= Rpe® D+2+2D+ )+ 1
= RPe™ -

DZ+2iD—1+2D+2i+1"



1

D2+ 2D(i+ 1) + 2
1
D2+ 2D(i + D\
2i(1+ > )
l
1( D2+2D(i+1)>_1
1+ X

= RPe™ —
© 2 21

1 D?+2D(i+ 1
= RPe”‘—_(l — Zi( )+ )x

21
1 ( 2(i +1)
x_

— RPeixz > >[D(X) = 1]

1 1
=RPe‘x—_<x—1——.>
21 [

1
= RP(cosx + isinx)_—z(Zi(x —-1)—-1)
1

_E(_ cosx — (x — 1) sinx)

= RPe'*

— RPeX




1
Pl = E(COSX + (x — 1) sinx)

~ Solutionof d.eis|y = CF + PI

2.Solve (D% + 4)y = x? sin 2x
Solution:
a.eism?+4=0=>m=+2i
CF = Acos?2x + B sin2x

Pl = . 2 sin 2
= pa g X sin2x

= D21+ 4xZ(IPe"Z’C)

1 .
— 2,12
—IP—11)2+4x eleX

= [Pel?X D1 20? +4x2[D — D + 2i]




= [Pe'?*¥ . x?
D? +4iD — 4+ 4
= IPeitr 2
D? + 4iD
12x -1

1 2
4-lD’ Tl X

e[ D D .

= [P 1——+( ) + oo | x?

4iD[ ai " \4 ]x
LZx 2

= 1Py X __+—_16

{D(x?) = 2x,D?*(x?) = 2}
el?* [8ix? — 4x — i]
41D 3i

ein
237D [8ix? — 4x — i]

1
= ——IP(cos 2x + i sin 2x) [(8——x>1—2x ]

= IP

=IP

= IP

32



__L(sX 2x — 2x?sin 2
— 37 3 X | COS 2X X~SIN 424X

Pl = . 8x3 2 2x%sin 2
= -3 3~ X | cos 2x — 2x*sin 2x

~ Solution of d.eis|y = CF + PI

3.Find PI of (D% — 2D + 1)y = xe* sinx
Solution:

Pl =72 _;ll) _I_lxexsinx
:ex(D+1)2_%(D+1)+1xsinx
= Py 2Dr1—2D—z241 X

= ex%xsinx

1
= exﬁ | —x cos x + sin x|



{using bernoulli formula,
consider u = x &dv = sinx}

= e*|—x sinx — cos x — coS x|

Pl = —e*[xsinx + 2 cos x]




Cauchy’s Linear Differential Equation:

An equation of the form

dny d(n—l)y dy

x™ dx”+ a, x" (=D + o+ an- 1xdx

where a4, a,, ..., a, are constants & b is a function of x (or)
constant is called Cauchy's linear equation.
(1) can be reduced to linear d.e with constant
co ef ficient by substituting
x=e’*=>z=1logx

+a,y=b - (1)

Y D'y where D' —
x——=D'ywhere D' =

, dz
d<y
2_ - =D'(D' =1

3d3y !/ !/ !/
X @zD(D —1)(D" — 2)y & so on.



Problems:

d? d
1.Solvex2d—x32]—xd—z+y=0

Solution:
Given [x?D? —xD + 1]y = 0
Put x =e* =>z=logx
xD = D',x*D? = D'(D' — 1)where D' = %
“[D'(D'—=1) =D +1]y =0
=>[D"*-D'-D'+ 1]y =0
=>[D"*—2D"+ 1]y =0
a.eism*—2m+1=0
==>m=1,1
CF = (Az + B)e”
solnis y = CF (since RHS = 0)
~y=(Az+ B)e*
=>|y = (Alogx + B)x




d?y dy 5
2 Oy —
2.s0lve x T2 + X 7 9y =10 + >

Solution:

_ 5
Given [x*D? + xD — 9]y = 10 + —
Putx =e* =>z =logx

d
xD = D', x?D? = D'(D' — 1)where D' = p

(e7)?

[D'(D' — 1)+ D' — 9]y = 10e° +
[(D)? — 9]y = 10e° + 5e722
a.eism*—9=0=>m=43

CF = Ae3? + Be 3%
PI = PI, + PI,

10e? = _—980 [D’' = 0]

PL = =



o 10
1= 9

B 1
- (D")2-9
e %2 [D' - 2]

PI, Se~ %%

=979

PIZ —_ _e_zz

~Solnisy =CF + PI

10
=>y=Ae3? + Be 3% —— — g™ %2
9
=>y = AeBlogx n Be—Slogx _g_ e—ZIng
10
=> y=Ax3+Bx‘3—?—x‘2




3.Solve [x*D? — 3xD + 4]y = (log x)*+ cos(log x)
Solution:
Given [x*D? — 3xD + 4]y = (log x)*+ cos(log x)
Putx =e* =>z=logx

xD = D',x*D? = D'(D' — 1)where D' = =
[D'(D' — 1) — 3D’ + 4]y = (2)? + cos(z)
=> [(D')? —4D' + 4]y = z* + cos z
a.eism?*—4m+4=0=>m=2,2
CF = (Az + B)e??
PI = PI, + PL,

1
- 2 (t v
(D/)Z _4D/ + 4_Z ( ype )

1 D2 —4p'1?
=—[1+( ) ] z°

PI,

4 4



ZZ

N2 / N2 I 2
%1_(1))2 4D +<(D)2 4D>

4 4
1 (D")* -
=—|1- D'+ D'%| 72
4[ 2 + D + -Z
{D'(z?) = 22,(D")*(z%) = 2}
PL, = 1[ 21343 ]
L 7gl" T
1
P, = (DY — 4D’ 46052 (type III)
1
Sy 4Cosz[(D’)2 — —1]
1 —4D" — 3

T 4D’ +3 7 T 16(D)2—9 O °



4sinz—3cosz
Pl, = TS
s Solnisy = CF + Pl
]_[4sinz—3coszl

25

1 3
=>y=(AZ+B)BZZ+Z[ZZ+E+ZZ

1 3
y = (Alog x + B)x? +Z[(logx)2 +E + Zlogx]

4 sin(logx) — 3 cos(log x)
25

log x

2
4.Solve [x*D? — xD + 1]y = [ ] + x sin(log x)

X

Solution:
log x

2
given [x*D? —xD + 1]y = [ 2 ] + x sin(log x)

Put x =e* =>z=logx

d
xD = D', x?D? = D'(D' — 1)where D' = =




7\ 2
ID'(D'—1)—-D"+ 1]y = (;) + e?sinz
=> [(D")? —2D" + 1]y = e %?z% + e%Zsinz
a.eism?*—-2m+1=0=>m=1,1
CF = (Az + B)e*
PI = PI, + PL,

1 2Z 2 (t V
(D)> —2D' +1° ype V)
-2z 2

1
(D' —2)2—2(D'—-2)+ 1"~
ID' - D' — 2]

— p—2Z 1 2 IV
e (D)2 —6D + Z(type )

=27 -1
_ 2[ (D)Zg ] 52

P11:

— €

9



9 9 +81

e %7 [1 B (D)2 —6D' 36(D")?]
o—2z [ZZ B 2 2(22) 36(2):

9+3+81_

P, = e?sinz (typeV)

(D)2 —2D' + 1
= e? 1
(D' + DZ—2(D'+1) + 1
ID' - D" + 1]
1
(D )?

= e? (_1) sinz [(D")? - —1]

Sin z

sinz (type IIl)




Pl, = —e?sinz
s Solnisy = CF + Pl

e~ 2z 47
y =(Az + B)e? + — 5 [Z +—+9]—e sin z

x? 4logx 6
y = (Alogx + B)x + —— | (log x)? + —— 4 2
9 3 9

—x sin(log x)

5.Solve [x?D? + xD + 1]y = log x sin(log x)
Solution:
Gn [x*D? + xD + 1]y = log x sin(log x)
Put x = e* =>z=logx

d
xD =D',x*D? =D'(D' — 1)where D' = —

dz
ID'(D"— 1)+ D"+ 1]y =zsinz
=>[(D")? + 1]y = zsinz
aem?+1=0=>m=+i
CF =Acosz+ Bsinz



1

~(DNZ+1
1

BNODEE
= [Pe? .

Pl zsinz (type VI)

z(IP e%?)

DS S
| 1
_ iz
fhe (D)2 +2iD —1+1"
. 1
= [Pel”
© 2 +2ip”
D'1!

1+—
2i

D
2i|#

= JPe'?

Z

2iD’
— [Pe'Z

21D’



| 1
_ [peiz [ L
¢ i |7 2

- 1[z%2 =z
= [Pe'? [ —]

202 21

= [P(cosz + isin z)_—4 [iz? — Z]

1
PI=—Z[chosz—zsinz]
~ Solnisy = CF + Pl

1
y =Acosz+Bsinz—Z[z2 cos z — z sin z]

1
y =Acos(log x) + Bsin(log x) — 2 [(log x)zcos(log X)
—log x sin(log x)|




Legendre’s Differential Equation:

An equation of the form
dny 1d(n—1)y
n___ v n-—
(ax + b) —+ ky(ax + b) D)

+ kny =b - (1)
where kq, k-, ..., k,, are constants & b is a function of
x (or)constant is called Legendre's linear equation.
(1) can be reduced to linear d. e with constant

co ef ficient by substituting
ax + b =e” => z =log(ax + b)

dy
ax + b— = aD'y where D' =

dx , dz
d
(ax + b)zdx}zl =a’D'(D' — 1)y
d3y

(ax + b)3 e a’D'(D' — 1)(D' - 2)y

& so on.

dy
+ -+ ko1 (ax + b)a



Problems:
1.Solve [(x + 2)?D? — (x +2)D + 1]y = 3x + 4
Solution:
gn, [(x + 2)?D? — (x +2)D + 1]y = 3x + 4
Subx+2=e*=>x=e*—2
z = log(x + 2)

d
(X + Z)D = D', (X + Z)ZDZ — D/(D/ _ 1)Wh€7"€ D = —

=>[D'(D'=1) = D" + 1]y = 3(e” —2) + 4 “
=> [(D")? — 2D' + 1]y = 3e% — 2¢"
a.eism?-2m+1=0=>m=1,1
CF = (Az + B)e”
PI = Pl + P,

3e? (type 1)

Pl, =
1™ (N2 -2D" +1



1

= 3eZ[D' - 1
T2 1¢ D'~ 1]
. PI, = z 362=L362[D’—>1]
T T opr—2 2 —2
. |PI —2232
. 1_2 e
Pl, = —2)e° (type 11
2 (D’)Z—ZD’+1( e® (type Il)
— —2)e!
o—ox1l e
PIZZ_Z

s~ Solnisy = CF + PI

ZZ

y = (Az+B)eZ+?3eZ—2

y=(Alog(x+2)+B)(x+2)+

;(log(x +2))%(x+2)—2




2.Solve [(Bx + 2)*D?* +3(3x + 2)D — 36]y = 3x* + 4x + 1
Solution:
gn [(Bx+2)°D? +3(3x+2)D —36]y =3x*+4x+1
et —2

Put3x+2=e*=>x = 3

z =log(3x + 2)
d
(3x +2)D = 3D',(3x + 2)?D? = 9D'(D’' — 1)where D' =

dz
e? — 2)? e? — 2
—> [9D’(D’—1)+9D’—36]y=3( ) 4 +1

9 3
[9(D")2 — 9D’ + 9D’ — 36]y

1 1
=§[ezz— 4ez+4]+§(ez—2)+1
e’ 1

[9(D")* —36ly =——3

a.eis9m? —-36=0=>m = +2
CF = Ae?? + Be™ %%
PI = PI, + PI,




eZz
~9(D")2 — 36 3

1 1 ——
= — —
1336—3681

yA yA
.~ Pl == 2Z — —_—p2Z[D' 5 2
1=3780' ¢ —336¢ D 2

P, = — 2Z
1~ 708

PL=—— °\ (eype 1D
"2 90z —36\ 3 )"
11 1

PI,

(type II)

" PIZZ_

~Solnisy =CF + PI



y = Ae?? + Be %% + iZezz + L
108 108

y=A0Bx+2)*+B@Bx+2)%+

1 1
_— 2
108log(3x+2) (3x+2) +—

3.Solve [(x + 1)?D? + (x + 1)D + 1]y = 4 cos(log(x + 1))
Solution:
Gn,[(x + 1)?°D? + (x + 1)D + 1]y = 4 cos(log(x + 1))
Subx+1=e’*=>x=e“—-1
z =log(x + 1)

d
(x —+ 1)D = D’, (X + 1)2D2 — D/(D/ _ 1)Wh€7"€ D = —

dz
=>[D'(D'—1)+ D' + 1]y = 4cosz
[(D")* + 1]y = 4cosz
a.eism?+1=0=>m = +i
CF =Acosz+ Bsinz




B 1
~(DN2 +1

1
= 13 14cosz [(D')? - —1]

- Pl

Pl

4 cosz (type lll)

. yA
2D

= Zchosde

4 cosz

Pl = 2zsinz
~ Solnisy = CF + Pl
y=Acosz+ Bsinz+ 2zsinz

y = Acos(log(x + 1)) + Bsin(log(x + 1)) +
2(log(x + 1)) sin(log(x + 1))




Simultaneous first order linear equations with
constant co efficient:
If x&yare?2dependent variables &t is
independent variable, then the pair of equation

of the form

iD)x +f(D)y =T, = (1)

91(D)x + g, (D)y =T, - (2)

where f1, >, 91, g, are polynomials in the operator

d
D = h & T, &T, are functions of tis called

simultaneous d. e.
To solve (1) and (2),we proceed as in solving
simultaneous algebric equations.



Problems:
1.Solve the simultaneous eqn's
%+ 2x + 3y = 2e4t

dy .
E+3x+2y—0

Solution:
Gmn,
dx
E+2x+3y= 2e%t => Dx + 2x + 3y = 2e?t

=> (D + 2)x + 3y = 2e%t - (1)
d

d—}t]+3x+2y=0=>Dy+3x+2y=0

=>3x+D+2)y=0 - (2)
solve (1) & (2)
(DXxD+2)=>D+2)*x+3(D+2)y=2(D+2)e? - (3)
(2)X3=>9x+3D+2)y=0 - (4)
(3)—(4) => (D + 2)?x —9x = 2(D + 2)e?*t
=> [D? + 4D + 4 — 9]x = 2[2e2t + 23]



=> [D? + 4D — 5]x = 8e?!
a.e ism?+4m—-5=0=>m = —5,1

CF = Ae >t + Bet

1
PI = 071D _5882t (type II)
1
=4+8—58€2t D= 2]
3
Pl = - e
~e
~Solnisx = CF + Pl
3

=>|x = Ae >t + Bet + 76” - (5)
Diff (5) w.r.t.t

dx 16

o _gpe-St t 4 - 2t

o 54e +Be+7e - (6)
Sub (5) & (6) in (1) we get,

dx
(1) => I

+ 2x + 3y = 2e?t



16 8
—54e~ >t + Bet + 7€2t + 2 [Ae‘St + Be! + 7821 + 3y = 2e%t

16 16
— 54e7 5t + Bet + 7621: + 24e~°t + 2Bet + 7€2t + 3y = 2e?t

32
—34e7 >t + 3Bet + 7e2t + 3y = 2e?t
32
3y = 2e?t + 34e™°t — 3Bet — 7€2t
6
y = Ae~5t — Bet _782t

Hence the solution are

8 6
x = Ae >t + Be' + 7eZt,y = Ae >t — Be! — 7eZt




2 Solve b 2w —3y =562 _ 35 4 27 = 0
.Solve —=+2x — 3y = 5t,———3x + 2y =

given that x(0) = 0& y(0) = —1.

Solution:
dx
Gn, E+2x—3y=5t=>(D+2)x—3y=5t
- (1)
dy
E—3x+2y=0=> -3x+D+2)y=0
— (2)

(1) X (D +2)=>
(D+2)?’x—3(D+2)y=5D+2)t - (3)
(2)X—-3=>9%x-3D+2)y=0 - (4)
(3)—(4) => (D +2)?’x —9x = 5(D + 2)t
=> [D? + 4D — 5]x = 5(1 + 2t)
a.eism*+4m—-5=0=>m = -5,1

CF = Ae >t + Bet




1
PJ] = 5(1 + 2t)

D? +4D — 5
5

= 2
5[1_0 +4D]

D2 +4D]""
— |1 = : (1+2¢t)

[ D? + 4D
= — |1+ c

(1+ 2t)

+ ] (1+ 2¢t)

- — [(1 + 2t) +é(2)] D1 +2t) =2}

o 2

13

s Solnis x = CF + PI

1
x = Ae™ >t + Bet — [2t+

3

- (5)



Diff (4) w.r.t.t
dx

— = —54e ' + Bet — 2 > (6)

dt

Sub (5) & (6) in (1) we get,
dx
(1) >—+2x—3y—5t

13
—54e >t + Bet — 2+ 2 [Ae‘5t + Be® — [21: + ?” — 3y = 5t

13
—5A4e7°t + Bet — 2 + 24e7>¢ + 2Bet — 2 [2t + ?] — 3y =5t

36

—3y = 5t + 34e >t — 3Bet + 4t + ?
12

y = —Ae~ >t + Bet — 3t e (7)

given that x(0) = 0&y(0) = —1
13
=~ x(0) = Ae5(0) 4 B0 — [O + ?] =0

13

=>A+B=— - (8)

5



12
&y(0) = —Ae® + Be® +O—?:_1

7

13 7
@) +(9) =>2B=—+c=>2B=4

=>[B =2
Sub B = 2 in (8)we get

A—13 2 => A—3
=< _ =

s Solutions are

3
x=—e "t 4+ 2ef — [2t i

5
3 12

— 5t2 -
y 5 + 2et — 3t =

13




3.Solve Dx + y =sint ,x + Dy = cost
gnthat x =2&y=0att=0
Solution:
Given,Dx + y = sint — (1)
&x+ Dy =cost — (2)
(1) Xx D => D?x + Dy = D(sint) - (3)
(2) X1 =>x+Dy=cost - (4)
(3) — (4) => D?x —x = cost — cost
=>(D?-1)x =0
a.eism?—1=0=>m=+1
CF = Aet + Be™ ¢
since RHS =0 =>PI =0
~solnisx =CF =>|x = Aet + Be™t| - (5)
Diff (5) w.r.t.t

dx
o = Aet — Be™ ! - (6)

Sub (6)in (1)
Aet —Be '+ y =sint



o |y = —Aet + Be™t +sint| - (7)
gnthat x =2&y=0att=0
x(0) = Ae® + Be® =2 => A+ B =2 — (8)
y(0) = —A4e® + Be® +sin0 = 0
—>_A+B=0 - (9)
8)+(9)=>2B=2=>|B=1
SubB=1in(8)=>|4A=1
~solnare|lx = et + e

t

,y=—e'+et+sint

4.Solve Dx + 2x — 3y =t,Dy — 3x + 2y = e*!

Solution:

Gn,(D+2)x—3y=t - (1)

—3x+(D+2)y=e?t - (2)
(DOxD+2)=>D+2)*x-3D+2)y=(D+2)t - (3)

(2) x3=>-9x+3(D + 2)y = 3e*t - (4)
(3)+(4)=> (D +2)°x —9x = (D + 2)t + 3e?t
[D? + 4D —5]x = 1 + 2t + 3e?t



a.eism*+4m—-5=0=>m = -5,1
CF = Ae~>t + Betl

__1 L 1+ 2t
B 5[ D2+4D]( )
1=——=7
1. D*+4D]" (1420
-5 5
_ 2 +D2+4D+ (1+2¢t)
-5 5
1 4
= —c|a+2+z@|wa+20 =2
Pl = 1[2t+13
5 5




s solnisx = CF + PI

131 3
x = Ae™ >t + Betl ——[2t+ +—=e?t| - (5)

7
Diff (5)w.r.tt
dx

dt
Sub (5) & (6) in (1) we get,

dx
(1)=>d—+2x—3y=t
2 6 1
—5Ae™>t + Bet — §+7€2t+2A€ >t + 2Bet ——[2t+
6

+7eZt—3y=t

2 6
—54e~°t 4+ Bet — =t 76” - (6)

3



4 12 36
—34e™ >t +3Bet — =t + —e%t — — —

stttz e Ty T
—3y =t+3Ae‘5t—BBet+gt—1—7ZeZt+%
—3y=3Ae‘5t—BBet+§t—1—7zeZt+3—§
y=—Ae‘5t+Bet—%t+§eZt—%

Hence the solution is
1 13 3
x=Ae‘5t+Bet—§[2t+? + = e,
3 4 12
= —Ae > + Bet ——t +-e? — —
Y € €757 T35




Method of variation of parameter:
Let us consider the second order d.e

d’y = dy
F+aa+by—X - (1)
The CF of (1) is CF = Af; + Bf,
Let W = f,f, — fof{ be the Wronskian of the function.

Then PI = Pf; + Qf,
X X
Wh€T€P=—ff2de & Q =jf1de

~y=CF+PI
Note:
1. [tanax dx = —%logcos ax

2. [ cotax dx = %log sin ax

1

3. [ secax dx = Zlog(sec ax + tan ax)

4. [ cosecax dx = —%log(cosec ax + cot ax)



Problems:
1.Solve (D? + 4)y = cot 2x using method of
variation of parameter.
Solution:
Gn, (D? + 4)y = cot 2x
Thea.eism? +4=0=>m = +2i
“|CF = Acos2x + Bsin2x| (Afy + Bf3)
Here f; = cos2x => f{ = —2sin2x
fo =sin2x => f, = 2 cos2x
W = fif; — fofi = cos2x(2cos2x) — sin2x (—2 sin 2x)
= 2¢0s%2x + 2sin?2x = 2
Here X = cot2x
Then PI = Pf; + Qf,
X P sin 2x cot 2x
Tl

dx

where P = —



N | =

sin 2x

1 _ COS 2Xx
= _Ej sin 2x dx

1
= —Z 2x d
2jCOS.?C?C

_ sin 2x
B 4
fled B J cos 2x cot 2x
w 2
B 1jcos2 Zxd
2 sin 2x x
B 1[1—sin22xd
2 sin 2x X

j cosec2x dx — J sin 2x dx

dx




1
=5 [— —log(cosec 2x + cot 2x) + 5 cos 2x

1
Q =— Zlog(eosec 2x + cot2x) + 7508 2x

‘P1=Pf1+Qf2

B sin 2x )
= 1 COS 2X

1 1
+ (— 2 log(cosec 2x + cot 2x) + 7 608 2x> sin 2x

sin 2x
4
s~ solnisy = CF + PI
y=Acos2x + Bsin2x —
sin 2x

4

Pl = — log(cosec 2x + cot 2x)

log(cosec 2x + cot2x)




2.Solve (D% 4+ a?)y = secax
Solution:
Gn, (D? + a®)y = sec ax
Thea.eism? +a? =0 =>m = +ai
“|CF = Acosax + Bsinax| (Afy + Bf5)
Here f; = cosax => f{ = —asinax
fo =sinax => f, = acosax
W =fif, — fofi = acos?ax + asin‘ax = a
Here X = secax
Then PI = Pf, + Qf,

KX sin ax sec ax
where P = — | —dx = — dx
/4 a
1
= —— | tanax dx
a

B 1[ 1l ]
=——|"Z og(cos ax)



1
P = 0 — log(cos ax)

B led _fcosaxsecaxd
Q = W X = . X
1 X
=—fdx=—

a a
B
Q_a

~ Pl =Pf] +Qf, = (%log(cos ax)) cos ax + gsin ax

s solnisy = CF + PI

y=Acosax+Bsinax+<

X
a

1

a?

+ —sin ax

log(cos ax)) Cos ax




3.solve (D? — 2D + 1)y = e*logx
Solution:
Gn, (D? —=2D + 1)y = e*logx
Herem =1,1
. CF = (Ax + B)e* = Axe* + Be*
Here f; = xe* => f] = x(e*) + e*(1)
fo=e*=>f; =¢€"
W =fif; — fofi = (xe*)e* —e*(xe* + e¥)

=>W = —e?¥
Here X = e*logx
X e*e*logx
where P = — Wd =—f —x dx
= flogx dx

P=xlogx —x




f1X xe*e*logx
= —dx—j —x dx

= — jxlogx dx

use integration by parts,u = logx,dv = x dx

dx x*
=>du=—,v=—
X 2
B j l g le x? dx
Q = xlogx dx = > 0g X >

2 2
x> x2

Q= —7logx+7

x? X
= ——logx + f—dx




» PI = Pfi + Qf,

x? x?
= (xlogx — x)xe* + (—7logx + Z) e*

xle* xe*

> logx + 1
xzex1 3x2e*

) OBY Ty

s solnisy =CF + PI

x%e* 3x%e*
log x — 2

Zex_

= x%e*logx — x

Pl =

y = (Ax + B)e* +

4.Solve (D% + 1)y = cosec x cotx
Solution:
Gn, (D% + 1)y = cosec x cot x
a.e.ism?>+1=0=>m=+i
CF =Acosx + Bsinx




Here f; = cosx => f{ = —sinx
fo =sinx => f, = cosx
W= fuf; = off
= cos’x + sin®x =1
Here X = cosec x cotx

ThenPI=Pf1+Qf2
X
WhereP=—jf2de=—

J Sin x cosec x cotx

n dx

=—jcotx dx

P = —log(sinx)

f1iX COS X cosec x cot x
Q — f—dx :f 1 dx




cos? x
= — dx
sin? x

1 —sin? x ,
=f — dx = f(cosec x — 1)dx
sin4 x

) =—cotx —x

Pl = (—log(sinx)) cosx — (cotx + x) sinx

s solnisy =CF + PI

y =Acosx + Bsinx (—log(sinx)) cosx
—(cotx + x) sinx




DEFINITIONS

(1) A differential equation is an equation which involves differential coefficients or differentials.
d2

Thus () e*dx+e’dy=0 (i) d—t;‘ +n2x=0
d a1 [a
Lo dy x . Y Y _
(iii) y_xa+dy/dx (iv) [1+[£J] B =c
() %—wy=acospt,%+wx=asinpt (vi) x%+y-g—“=2u

& &
(vir) &_g =c? ax—g are all examples of differential equations.

(2) An ordinary differential equation is that in which all the differential coefficients have reference to
a single independent variable. Thus the equations (i) to (v) are all ordinary differential equations.

A partial differential equation is that in which there are two or more independent variables and partial
differential coefficients with respect to any of them. Thus the equations (vi) and (vii) are partial differential
equations.

(3) The order of a differential equation is the order of the highest derivative appearing in it.

The degree of a differential equation is the degree of the highest derivative occurring in it, after the equa-
tion has been expressed in a form free from radicals and fractions as far as the derivatives are concerned.

Thus, from the examples above,

(i) is of the first order and first degree ; (i7) is of the second order and first degree ;

2
(iti) written as y% = x[gx‘z) + x is clearly of the first order but of second degree ;

3

2 2 2
and (iv) written as [1 + [%‘:—) ] =c? (—j—x%] is of the second order and second degree.

426



DirrerenTiAL EquaTions oF FirsT ORDER 427

PRACTICAL APPROACH TO DIFFERENTIAL EQUATIONS

Differential equations arise from many problems in oscillations of mechanical and electrical systems,
bending of beams, conduction of heat, velocity of chemical reactions etc., and as such play a very important role
in all modern scientific and engineering studies.

The approach of an engineering student to the study of differential equations has got to be practical
unlike that of a student of mathematics, who is only interested in solving the differential equations without
knowing as to how the differential equations are formed and how their solutions are physically interpreted.

Thus for an applied mathematician, the study of a differential equation consists of three phases :

(i) formulation of differential equation from the given physical situation, called modelling.

(i1) solutions of this differential equation, evaluating the arbitrary constants from the given conditions, and
(iit) physical interpretation of the solution.

FORMATION OF A DIFFERENTIAL EQUATION

An ordinary differential equation is formed in an attempt to eliminate certain arbitrary constant from a
relation in the variables and constants. It will, however, be seen later that the partial differential equations may
be formed by the elimination of either arbitrary constants or arbitrary functions. In applied mathematics, every
geometrical or physical problem when translated into mathematical symbols gives rise to a differential
equation.

Example 11.1. Form the differential equation of simple harmonic motion given by x = A cos (nt + o).

Solution. To eliminate the constants A and « differentiating it twice, we have

dx

2
5 =—nA sin (nt + o) and a4 =—n2A cos (nt + o) = — n’

dt?

2
Thus ) +n%x =0
dt®
is the desired differential equation which states that the acceleration varies as the distance from the origin.

Example 11.2. Obtain the differential equation of all circles of radius a and centre (h, k).

(Andhra, 1999)
Solution. Such a circle is (x — 2)? + (y — k)2 = a? wilt)
where k and k, the coordinates of the centre, and a are the constants.
Differential it twice, we have
2 2
| x—h+(y—k)% =0 snd 1+G-4) g?h[%] -0
2 2
Then y—k=—————-—-1+2(ayfd:)
- d2y/dx
2
d h k)dy/dx e o
== SRS RS — T
Substituting these in (i) and simplifying, we get [1 + (dy/dx)?]® = a? (d%y/dx2)? ...(i1)
as the required differential equation
213/2
Writing (i) in the form 1+ ((;yr‘dx)z r =a,
d°yldx

it states that the radius of curvature of a circle at any point is constant.

Example 11.3. Obtain the differential equation of the coaxial circles of the system x%+ ¥ + 2ax + ¢ = 0
where ¢ is a constant and a is a variable. (J.N.T.U., 2008)
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Solution. We have x2 + y2 + 2ax + ¢2= 0 (2)
Differentiating w.r.t. x, 2x + 2ydy/dx + 2a =0

dy
-— + ——
or 2a_—2[x y )

Substituting in (i), x>+ y%2 -2 (x + y dy/dx)x + ¢ = 0
or 2xy dyldx = y2% — x2 + ¢2
which is the required differential equation.

(1) SOLUTION OF A DIFFERENTIAL EQUATION

A solution (or integral) of a differential equation is a relation between the variables which satisfies the
given differential equation.
For example, x=A cos (nt + o) ..(1)

2
is a solution of -j—t;- + n%x = 0 [Example 11.1] -(2)

The general (or complete) solution of a differential equation is that in which the number of arbitrary
constants is equal to the order of the differential equation. Thus (1) is a general solution (2) as the number of
arbitrary constants (A, o) is the same as the order of (2).

A particular solution is'that which can be obtained from the general solution by giving particular values
to the arbitrary constants.

For example, x = A cos (nt + /4)
is the particular solution of the equation (2) as it can be derived from the general solution (1) by putting o = /4.

A differential equation may sometimes have an additional solution which cannot be obtained from the
general solution by assigning a particular value to the arbitrary constant. Such a solution is called a singular
solution and is not of much engineering interest.

Linearly independent solution. Two solutions y,(x) and y,(x) bf the differential equation
d’y dy
— b a(x)= +a(x)y=0 ...(3)
dxg 1 dx 2 y
are said to be linearly independent if c;y, + c,y, = 0 such that ¢, = 0 and c,= 0
If ¢, and ¢, are not both zero, then the two solutions y, and y, are said to be linearly dependent.

If y,(x) and y,(x) any two solutions of (3), then their linear combination cy, + czy, where ¢, and c, are
constants, is also a solution of (3).

Example 11.4. Find the differential equation whose set of independent solutions is [e*, xe*].

Solution. Let the general solution of the required differential equation be y = c,e* + c,xe* ..(@)
Differentiating (i) w.r.t. x, we get
¥y = €1€° + ¢, (e* + xe”)

% ¥y =y, =ce” ...(i1)
. Again differentiating (i) w.r.t. x, we obtain
Y1 —Yg=Coe* ...(Tin)
Subtracting (iit) from (ii), we get Yi

Y=y1-0,-99)=0 or y-2y,+y,=0

which is the desired differential equation.
(2) Geometrical meaning of a differential equation. Consider any C
differential equation of the first order and first degree

dy
2 =) (D) A,

If P(x, y) be any point, then (1) can be regarded as an equation giving the
value of dy/dx (= m) when the values of x and y are known (Fig. 11.1). Let the 0
value of m at the point A (x4, ¥,) derived from (1) be m,. Take a neighbouring Fig. 11.1

>y
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point A,(x,, ¥,) such that the slope of AjA, is m,,. Let the corresponding value of m at A, be m,. Similarly take a
neighbouring point A,(x,, y,) such that the slope of A;A, is m, and so on.

If the successive points A, A}, A,, A, ... are chosen very near one another, the broken curve AAAA, ...
approximates to a smooth curve Cly = ¢(x)] which is a solution of (1) associated with the initial point A (x,, y,).
Clearly the slope of the tangent to C at any point and the coordinates of that point satisfy (1).

A different choice of the initial point will, in general, give a different curve with the same property. The
equation of each such curve is thus a particular solution of the differential equation (1). The equation of the
whole family of such curves is the general solution of (1). The slope of the tangent at any point of each member of
this family and the co-ordinates of that point satisfy (1).

Such a simple geometric interpretation of the solutions of a second (or higher) order differential equation
is not available.

PROBLEMS 11.1

Form the differential equations from the following equations :
1. y=ax® + bx2 2. y = C, cos 2x + C, sin 2x (Bhopal, 2008)
3. xy =Ae* + Be™* +2%. (U.P.T.U.,, 2005) 4. y=e* (A cosx + B sin x). (P.T.U., 2003)
5. ¥ =ae® + be~ ¥ + ce*.

Find the differential equations of :
6. A family of circles péssing through the origin and having centres on the x-axis. (J.N.T.U., 2006)
7. All circles of radius 5, with their ecentres on the y-axis.
8. All parabolas with x-axis as the axis and (a, 0) as focus.

9. Ify,(x) =sin 2x and y, (x) = cos 2x are two solutions of y” + 4y = 0, show that y, (x) and y, (x) are linearly independent
solutions.

10. Determine the differential equation whose set of independent solutions is [e*, xe*, x2 e*] (U.P.T.U., 2002)

11. Obtain the differential equation of the family of parabolas y = x? + ¢ and sketch those members of the family which
pass through (0, 0), (1, 1), (0, 1) and (1, — 1) respectively.

EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

It is not possible to solve such equations in general. We shall, however, discuss some special methods of
solution which are applied to the following types of equations :

(z) Equations where variables are separable, (i) Homogeneous equations,
(iii) Linear equations, (iv) Exact equations.
In other cases, the particular solution may be determined numerically (Chapter 31).

[EEXG] VARIABLES SEPARABLE

If in an equation it is possible to collect all functions of x and dx on one side and all the functions of y and
" dy on the other side, then the variables are said to be separable. Thus the general form of such an equation is f(y)
dy = ¢(x) dx

Integrating both sides, we get (y)dy = | ¢(x) dx + c as its solution.
ydy=1¢

x(2 log x+ 1)

Example 11.5. Solve dy/dx = — :
siny+ycosy

(V.T.U., 2008)

Solution. Given equation is x (2 log x + 1) dx = (sin y + y cos ¥) dy
Integrating both sides, 2 I(log x.x+x)dx= jsin ydy+ chosydy +c

2 2 2
or 2[[Iogx.:—€2—— j%.%dx}+%]=—-cosy+[ysiny— Isiny.ldy+c]
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2 2

2x2log x — “?+“? =—cosy+ysiny+cosy+c

Hence the solution is 2x?log x —y siny = c.

A’

Example 11.6. Solve % e e S

Solution. Given equation is % =ePE*+x%) or e¥dy=(e3+x%)dx

Integrating both sides, I e? dy = I € +x%)dx +c

2y e3x x3

= 2 +? +c or 3e% =2(e* +x3) + 6¢.

e

Example 11.7. Solve % =sin (x +y) + cos (x + y).

Solution. Puttingx +y =t so thatdy/dx =dt/dx -1

dt
The given equation becomes - —1=sint + cost

dx
dt/dx=1+sint +cost
Integrating both sides, we get dx = J- L +c.
1+sint+cost
J' 2d6
A= +c
1 + sin 20 + cos 20
2
o sl Y s
2 cos”® 0 + 2 sin 6 cos O 1+tan 6

=log(l+tanB) +c

Hence the solution is x = log [1 + tan %(x + y)] +cC.
Example 11.8. Solve dy/dx = (4x +y + 1)%,if v (0) = 1.

dy gt

Solution. Putting 4x + y + 1 = £, we get 4.
g y ge O d%
the given equation becomes % ~4 =4 & _ 4 +12
; ; dt
Integrating both sides, we get I 5= Idx +c
4+

t 1 -1[1
lta.n_l—=x+«t: or —tan 1[—(4x+y+1)jf =x+cC.
2 2 2 2

4x +y+1=2tan 2(x + c)
Whenx=0,y=1 .. % tan-1(1)=ci.e. c = 8.
Hence the solution is 4x + y + 1 = 2 tan (2x + w/4).

2, .2
Example 11.9. Solve ¥ dy T JELE e iy
xdx 22 +y°)+1

Solution. Putting x? + y? = ¢, we get 2x + 2y g.% -2 or 2 B ot

dx x dx 2x dx

(V.T.U., 2005)

[Putting £ = 20]

(V.T.U., 2003)
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1 dt -1
Therefore the given equation becomes EE_I 2“_1
1 dt t—1 t+2 2t+1
—————:1———=-— 2xdx= dt
or 2x dx  2t+1 2041 O t+2
3
or 2xdx=[2-'—)dt
+2
Integrating, we get x2=2t-3log(t+2)+c
or 22+ 22 -3log(x?+y?+2)+c=0 [ t=x2+97

which is the required solution.

PROBLEMS 11.2

HOMOGENEOUS EQUATIONS

dy _f(x,y)
dx ¢, )
where f(x, y) and ¢(x, y) are homogeneous functions of the same degree in x and y (see page 205).

are of the form

To solve a homogeneous equation (i) Put y = vx, then % =v+ %

(i7) Separate the variables v and x, and integrate.

Solution. Given equation is jz e yz which is homogeneous in x and y. ()
xy
( -
Put y = vx, then %=U+x%- (l)becomesv+x%—l vv
1-v* 1-2°

di
X—= =
dx v v
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1-2v x

Integrating both sides, j' L I gz +c
x

1-20%
1 —4v dx 1
- — = e e g 1 —2 2 =
or 4[1_202&) -[x +¢ or . og(l-2v%)=logx+c
or 4logx +log(1-2v%)=—-4c or logx*(1-2v%)=-4c [Putv =y/x]
or xH1-2y%x2) =e%=¢’
Hence the required solution is x2%(x% — 2y2) = ¢’.
Example 11.11. Solve (x tan y/x -y sec? y/x) dx — x sec? y/x dy = 0. (V.T.U., 2006)
Solution. The given equation may be rewritten as
dy _ (l ge® Y o 1] ooyl D)
dx \x x vy x

which is a homogeneous equation. Putting y = vx, (i) becomes v + x % = (v sec? v — tan v) cos? v

dv

or x— =v—tanvcos?v—v
dx
sec? v dx

Separating the variables dv=- ~

v
Integrating both sides log tan v = — log x + log ¢
or xtanv=c or xtany/x=c.

Example 11.12. Solve (1 + ¢/) dx + ¢*¥(1 - x/y) dy = 0.

(P.T.U,, 2006 ; Rajasthan, 2005 ; V.T.U., 2003)

Solution. The given equation may be rewritten as
dx __ &?-xly)

dy 1+e*'Y
which is a homogeneous equation. Putting x = vy so that (i) becomes
dv e'(1-v) dv e'1-v) v+eé’
V+y—=—-—"—— or y—= v
dy 1+¢" dy 1+¢" 1+¢°

Separating the variables, we get

_ ﬁ=1+e du:d(u+e )
y v+é' v+eée

Integrating both sides, —logy =log (v + e*) + ¢
or yw+e)=e° or x+yeY=¢ (say)
which is the required solution.

PROBLEMS 11.3

Solve the following differential equations :

-(2)

1. (x2-y?)dx=2xydy 2. (x%y — 2¢y?) dx — (23 - 3x%) dy = 0. (Bhopal, 2008)
3. 2%y dx-(3+y3)dy=0. (V.T.U, 2010) 4 yde-xdy= ,/;2 +y? dx. (Raipur, 2005)
By e S By 6.1Ba50 " 20y%) dr's G Sa) dy'=0: (S.V.T.U., 2009)

dx dx



EQUATIONS REDUCIBLE TO HOMOGENEOUS FORM

dy ax+by+e
dx adx+by+c
can be reduced to the homogeneous form as follows :

The equations of the form (1)

Case L. When %#B,
a b
Putting x=X+h,y=Y +k, (h, k being constants)
so that dx = dX, dy = dY, (1) becomes

£= aX +bY +(ah + bk +¢)
dX aX+bY +(@h+bk+c)
Choose h, k so that (2) may become homogeneous.

-(2)

Put ah+bk+¢c=0, and a’h+bk+c"=0
h k 1
so that bc'—bc ca —ca ab —bd
be’ —b'c ca’ -ca
* S —va' T @b -8

dy aX+bY

Thus when ab’ - ba #0,(2)1)900]1188 E=m

putting ¥ = vX.
Case IL. When 2 =2
a b

i.e.,ab’—b’a = 0, the above method fails as h and k& become infinite or indeterminate.

which is homogeneous in X, Y and can be solved by

Now

i re )

_ dy _dt
Putax+by—t,sot.hata+bdx—dx

dy _1(dt _ ‘ 1(dt _\__t+c
or —_— [dx ﬂ) oa (4)becomes b(d‘l’ a)—m

a_,  bt+be (am + b)t + ac’ + be
de mt+c mt+c
so that the variables are separable. In this solution, putting ¢ = ax + by, we get the required solution of (1).

or

" . .. dy y+x-2 [ a Q] .
Solution. Given equation is R Case i i)



or

or

or

or

- Lo

Puttingx = X + h ,y = Y + k, (h, k being constants) so that dx = dX, dy = dY, (i) becomes
£~Y+X+(k+h -2)
dX Y-X+(k-h-4)

Putk+h—-2=0 and k-h-4=0sothath=-1,k=3.

(if) becomes g 11; * f{ which is homogeneous in X and Y.

put ¥ = uX, then 9% v+ X -2
(iii) becomes v+X%=3fi or X%%ii -”=%ﬁ
Integrating both sides, —% L+ 20— d" I_ +c.
_%log{1+2v—vg)=logX+c
log [1+3§1—§—2} +log X2 =

log(X2+2XY-Y?)=—2 or X?+2XY-Y’=e %=
PuttingX=x—-h=x+1,Y=y -k =y -3, (iv) becomes
x+12+2x+1)(y-38)-(-32=c
22 + 2xy — y? 4x+8y 14 = c’whxchlstherequlredsolutmn

(i)

..(iit)

-(iv)

or

dy _ (2x+ 3y)+4

Solution. Given equation is —- dx 22x+3y)+5

: _ dy _dt . . 1(dt ) _t+4

Puthng2x+3y—tsothat2+3—dx-——dx ~. {i) becomes 3(&—2)—2“.5
dt 3t+12 Tt+22 2t+5
—=2+ = or dt=
dx 2t+5 2t+5 Tt+ 22

. 2t+5
Inte both sides, =
ntegrating sides 7t+22dt Idx+c

2 9 1 2 9
s dt = Pt 29) =
I[7 7 7t+22] x+c or Tt 4910g{7t+ )J=x+¢

Putting ¢ = 2x + 3y, we have 14(2x + 3y) — 9 log (14x + 21y + 22) = 49x + 49¢
21x — 42y + 9 log (14x + 21y + 22) = ¢’ which is the required solution.

-A2)
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LINEAR EQUATIONS

A differential equation is said to be linear if the dependent variable and its differential coefficients occur
only in the first degree and not multiplied together.

Thus the standard form of a linear equation of the first order, commonly known as Leibnitz's
linear equation,* is

% +Py=Q  where, P, Q are the functions of x. (1)

To solve the equation, multiply both sides by e-[ Pdx 5o that we get
%.J”"+y(JMP)=QeIP"" ie., %(yelmx)=QeI%

Integrating both sides, we get ye!de = IQeIde dx + ¢ as the required solution.

. I. el 5' _h TN
Solution. Dividing throughout by (x + 1), given equation becomes

dy y _ S T 4 .
- e = e3% (x + 1) which is Leibnitz’s equation. ..(2)
_ 1 ~_Tde _ _ 1
Here P=— —— and [Pdr=- [-o =—logx+1)=log(x+ 1"

LF =JP¢‘ = plosGev™ _ 1
o x+1

Thus the solution of (1) is y(LF.) = [[e™* (x + DI(LF.) dx + ¢

Y (.3 _1 3« = (1.3«
or m-]e dx+c-32 +¢ or y (se +c)(:r.+1).

Solution. Given equation can be written as gx—y + % =£ 7 (D)
xlfﬂ
LF. = ej e ez‘{;
e—zJE
Thus solution of () is y (LF.) = [ 7 (F)de+e
2%
2Jx ¢* 2Jx
= [E—-." dx
or ye j e +cC
or yez‘(;zjx'uzdr+c or yezJ;=2J§ +c.

* See footnote p. 139.



d
Solution. Putting y® = z and 3y? £y=g§, the given equation becomes
2 92 (o2 1)z= dz 2% -1 _ ad .
x(1 xz}a}—d-(Zr 1)z=ax3, or dx+x—x3 z P (D)

which is Leibnitz’s equation in z

2_
LF. =exp [ I 2 sldx]

x—x

1 1 .1 1 1 1
== —_ = s fa
[ x 21+x 2°1- ]dx log x — 5 log (1+x)— 5 log (1-x)

=—log [ - x*)]

IF = —loglx\i(l 1 N [x ‘(1 x I'-].

Thus the solution of (z) is

2(LF.) = J‘

o s (LF)dx +c
x—x

3
or g [ 2. —E_diio=a [#1-22) 2 dx
[/ - 2%)] jx(l—xz) 21— x%) I

=..%]‘(—2x)(1-x2)‘3’2dx+c=a(1_x2)‘”2 +c

Hence the solution of the given equation is

y=ax+ex JA-xP). [+ 2=5%

oss:(E)

Solution. We have ds +
which is a Leibnitz’s equation in x

[y
I1F.= ¢’ Y8y =el’°su°8ﬂ=logy

1
Thus the solution of (i) is x (I.F.) = I; (LF.)dy +c

1 1
xlogy= I— logydy +c= E(logy)zhc

"
"2

ie., log y+c (log y)‘1

Solution. This equatlon contains y? and tan~! y and is, therefore, not a linear in y; but since only x occurs,
it can be written as

dx x _tan'ly
dy 1+9° 1457

dx
1 +y? ay =tanly—-x or
which is a Leibnitz’s equation in x.
14
152 2% =efl+f T enly

tan™!

Thus the solution is x (I.F.) = I 1 2y
+

(LF.)dy +c



- _1 -
t"“":Itm y.et'““l"dy+c

or xe d
1+ y2=
1+y
= Ite‘ dt+c=t.e‘—jl.e‘ dt+c (Integrating by parts)
=t.el—e +c=(tan”! y—l)eta“-l"' +c
tan'ly

or x=tan 1y -1+ ce”

Solution. Given equation can be rewritten as

L de 1 _
sin 05"+ (1-2r%) cos 0 = — 12 )

Putcos®=y sothat - sin®d6/dr=dy/dr
; dy (1 ) dy 1
b - _ =2 =2
Then (i) becomes o= + (—r 2r|y= or — 4 [2:‘ _r)y =

r

2r —1/r)dr 5 2
which is a Leibnitz’s equation .. I.F.=e'[(r Gha W logr=%e2
2
Thus its solution is y [1 e'zJ= Irz 4 % dr+c

r

2, 1.2 _1 2
or ye !r—zje 2rdr+c_2e +c
2 2 2
or 2¢" cos@=re’ +2cr or r(1+2ce” )=2cos®6.

PROBLEMS 11.5

BERNOULLI’S EQUATION

The equation 2 + Py = @y" (1)

where P, @ are functions of x, is reducible to the Leibnitz’s linear equation and is usually called the Bernoulli’s
equation®.

*Named after the Swiss mathematician Jacob Bernoulli (1654-1705) who is known for his basic work in probability and
elasticity theory. He was professor at Basel and had amongst his students his youngest brother Johann Bernoulli (1667—
1748) and his nephew Niklaus Bernoulli (1687—-1759). Johann is known for his basic contributions to Calculus while Niklaus
had profound influence on the development of Infinite series and probability. His son Daniel Bernoulli (1700-1782) is known
for his contributions to kinetic theory of gases and fluid flow.
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To solve (1), divide both sides by y", so that y™ % +Pyl-"=@Q ..(2)
Puty!-"=zsothat(1-n)y" %=%
(2)becomes -9 4 Pz=Q or £ +P(1-n)z=Q0-n),

which is Leibnitz’s linear in z and can be solved easily.

Example 11.21. Solve x % +y =x%65. . ' W AR 10 '_," 1 r"q
-5
Solution. Dividing throughout by xy8, y % + y? =22 ..(D)
dy _dz . 1dz =z
-5 _ 6 & _ e 2 B T T

Puty ®=2z,sothat—5y"° J-=—-- . (Z) becomes B B

or % — 3 2 = — 52 which is Leibnitz’s linear in z. ...(it)
X

IF. = 9'1(5"-“)‘1‘ e 5logx — elog 8 i I_5

the solution of (if) is z (LF.) = j' (- 5x*)(LF)dx+¢c or zx %= _[ (-5x%) x5dx +¢

-2
or y 5x%=—5. % +c [+ .2=y5"

Dividing throughout by y~%x~%, 1 = (2.5 + cx?) %% which is the required solution.

" 7 T BRI
Example 11.22. Solve xy (1 + 59 5> = 1.  (Nagpur, 2009)

2L

Solution. Rewriting the given equation as

dx _ .3
5 —yx = y3x2

and dividing by x%, we have

2 ‘% —yxl=48 ..(D)

; dx _dz ,.
-1_ g0k G2
Putting x~' = z so that —a~ dy _dy (i) becomes

j—; +y2 = —y® which is Leibnitz’s linear in 2.

d 2
Here LF.= eI’ ¥ = 12

the solution is z (LF.) = [(-")(LF.)dy +¢c

1y Putly®=t
212 2 ¥ 2
or ze’ ——jy .e?” . ydy+c sothat-ydpside
=—-2_[lr.e1 dt +c¢ [Integrate by parts]

=—2[t.e~ [1.eldtl+c=—2t—el +c=(2-9D) & /% +c

_1.2 1.2
or z2=(2-y?) + ce 2’ or Vx=(2-y%)+ ce 8" .
Note. General equation reducible to Leibnitz’s linear is f’ (y) % +Pfy)=@Q ...(A)

where P, @ are functions of x. To solve it, put f (y) = z.



Solution. Dividing throughout by cos?y, seczy % 4 95 SBY Y _ 3

sec?y %i- + 2x tan y = x° which is of the form (A) above. (@)
- dy _dz . dz -
put tan y = z so that sec? y p ol () becomes = + 2xz = a8,
This is Leibnitz’s linear equationinz. .. LF.= eI e =

the solution is ze* = J'e"‘53 dx + r:=~33‘(:c2 “1De* +e

Replacing z by tan y, we get tany = %(:»:2 —1)+ ce® which is the required solution.

Solution. Dividing by z, the given equation becomes

1de . 1 _1 )
;a+;logz—x(logz)2 P
Put log z = ¢ so that %%=% = (i) becomes
dt t_t° 1dt 1 1_1 .
&*zx T fdx i s ~
This being Bernoulli’s equation, put 1/ = v so that (iZ) reduces to
do,v_1  dv 1, 1
“dx x x % dx x x
Thiis is Leibnitss Hnear i v, & L= ¢ 0% o1/s
the solution is v.l=— -la.ldx+c=l+c
x xx x

Replacing v by 1/log z, we get (x logz)" ! =x1+¢ or (logzr1=1+cx

which is the required solution.

PROBLEMS 11.6
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EXACT DIFFERENTIAL EQUATIONS

(1) Def. A differential equation of the form M(x, y) dx + N (x, y) dy = 0 is said to be exact if its left hand
member is the exact differential of some function u (x, y) i.e., du = Mdx + Ndy = 0. Its solution, therefore, is
u(x,y)=c.

(2) Theorem. The necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be
exact is

Condition is necessary :
The equation Mdx + Ndy = 0 will be exact, if
Mdx + Ndy =du (1)
where u is some function of x any y.

But du = %" dx + g;‘ dy (2

equating coefficients of dx and dy in (1) and (2), we get M = % and N =

I|¥

M _ du 4N _ du
o oyox T ox  oxdy
u  u
dyox  dxdy

oM

3 = %\r which is the necessary condition for exactness.

But (Assumption)

oM _oN
dy  ox’
Let J'de =u, where y is supposed constant while performing integration.

du oM oN
Then (IMdXJ) ax A .'.e M= — ax g=¥(g1\ren) ...(3)
oM _d%uw N _du =g(§g] ang Qu _ ou
dy  dyox dx dxdy odx\dy dyox  oxdy
Interating both sides w.r.t. x (taking y as constant).

g; + f(y), where f(y) is a function of ¥ alone. -(4)

Condition is sufficient : i.e., if —— then Mdx + Ndy = 0 is exact.

Mdx + Ndy = %;‘.de:r{ %‘+ f(y)}dy [By (3) and (4)]

{gdx+%dy}+fb’)dy du +f(y)dy = d[u+jf(y)dyl ...(5)

which shows that Mdx + Ndy = 0 is exact.
(3) Method of solution. By (5), the equation Mdx + Ndy = 0 becomes d[u + jf (y)dyl =

Integrating u+ I f(y»)dy=0.
But u= I Mdx- and fly) = terms of N not containing x.
¥ constant

The solution of Mdx + Ndy = 0 is
I Mdx + j (terms of N not containing x)dy =c¢

(y cons.)
oM N

provided _337 gy



Solution. Here M= yze’g’g +4x® and N= 2::_-ye":"ﬂ—3_'y2
2 oN
?=2ye’“’ +y2e’°'2.2xy=¥
Thus the equation is exact and its solution is
Lde + J'(termsoanotcontainingx)dy =c

const.)

ie., (%" + 4a®)dx + [~ 8yP)dy =¢ or & +xt-yi=c.

jfyomst.)

Solution. Here M=y (1+ 1/x)+cosy and N=x+logx—xsiny

%=1+1}x —siny:%

Then the equation is exact and its solution is

Ium) Mdx + I(terms of N not containing x)dy =c

1 — e
I{ym) {(1+;)y+cosy} dx=c or (x+logx)y+xcosy=c.

Solution. Here M = 1 + 2xy cos x> —2xy and N = sin 22 —x?
oM _ _ox= N

Thus the equation is exact and its solution is

L,m} Mdx + _[(terms of N not containing x) =c
a4 Lym,{1+2x3’msx2—2xy)dx=c or x+y[I°°312.21dx“szdx]=c

or x+ysinx®-yx2=c.

[2F

Solution. Given equation can be written as
(yeosx+siny+y)dx+(sinx+xcosy+x)dy=0.
Here M =ycosx+siny+y and N =sinx+xcosy +x.

aﬁ=(m'.-.‘.:::+c|:».siy+1=ﬂ.

dy ox
Thus the equation is exact and its solution is

I(y:‘ggg + _[(termsoanotoontalmngx)dy =¢

i.e., I(ycosx+siny+y)dx+j(0)dx=c or ysinx+(siny+y)x=c.
(y const.)



Solution. Given equation can be written as
ydy _ 22" +3y" -7
xdx  3x? 4 2y% -8
ydy + xdx _5(x* + y* -3) ..
or = componendo & dividendo]
ydy-xdx 4% 44741 By omipe
xdx + ydy =5 xdx — ydy

o 22 +y%-3 % —y? -1
Integrating both sides, we get
j2xdx+2ydy=5I2xdx 2ydy
2 +y%-3 22 -y -1
or log (x? +y2—-38)=5log (x2—y%2—1) + log ¢’ [Writing ¢ = log ¢’]
or 2+y2-83=¢'(x%2-y%2-1)P
which is the required solution.

EQUATIONS REDUCIBLE TO EXACT EQUATIONS

Sometimes a differential equation which is not exact, can be made so on multiplication by a suitable factor
called an integrating factor. The rules for finding integrating factors of the equation Mdx + Ndy = 0 are as
follows :

(1) LF. found by inspection. In a number of cases, the integrating factor can be found after regrouping
the terms of the equation and recognizing each group as being a part of an exact differential. In this connection
the following integrable combinations prove quite useful :

xdy +ydx = d (xy)

'M=d(lj;w=d[log[l]]
x x xy x
xdy—ydx . x) xdy-ydx ( 411)
e i o
2y oyi% ol Ly X8
2 x—y

-5

Solution. It is easy to note t.hat the terms ye*dx and e*dy should be put together.
(ye*dx — e*dy) + 2xy? dx = 0
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Now we observe that the term 2xy? dx should not involve y2. This suggests that 1/y2 may be I.F. Multiply-
ing throughout by 1/y?, it follows

X x X
YA | odx=0 or d{%} +2:dx =0
y

X
Integrating, we get € 422 = which is the required solution.
y

(2) LF. of a homogeneous equation. If Mdx + Ndy = 0 be a homogeneous equation in x and y, then
1/(Mx + Ny) is an integrating factor (Mx + Ny # 0).

Example 11.31. Solve (x%y ~ 22y%) dt — (x° — 3x%y) dy = 0. . (Osmania, 2003 S)
Solution. This equation is homogeneous in x and y.

. 1 _ 1
" Mx+Ny (x%y-2xy?)x—(x° -3x%y)y 2%y
Multiplying throughout by 1/x%?, the equation becomes

(_——de—(%—?—)dy:Owhichisexact.
y x y oy

LF. 5

the solution is J.

Mdx + I(terms of N not containing x) dy = c or 29 logx+3logy=c.
(y const) Yy

(3) LF. for an equation of the type f, (xy)ydx + f,(xy)xdy = 0.
If the equation Mdx + Ndy = 0 be of this form, then 1/(Mx — Ny) is an integrating factor (Mx — Ny = 0).

. Example 11.32. Solve (I + xy).ydx + (1~ xy) xdy = 0. ‘ L (8T, 2008)
Solution. The given equation is of the form f;(xy) ydx + f,(xy) xdy = 0
Here M=QQ+xy)y, N=(1-xy)x.
1 1 1
Mx—Ny (1+xy)yx—(1—-xyxy 2x°y>
Multiplying throughout by 1/2x%y2, it becomes.

LF. =

1 1 1 1
2%y + o dx + 2y = 2_y dy = 0, which is an exact equation.

the solution is I Mdx + I(terms of N not containing x) dy = ¢

(y const)
1 1 1 1
or —[__]"'_10333——1083’:9 or logi——~1~=c'.
2y x 2 2 y xy
(4) In the equation Mdx + Ndy =0,
oM oN

(a) if ayN_ax be a function of x only = f(x) say, then ef fdx js an integrating factor.

oN oM

dy

) if -QI—HI— be a function of y only = F(y) say, then ej F(ydy is an integrating factor.

Example 11.33. Solve (xy? - o!/<")dx~ 5% ydy = 0 - (S.V.T.U,, 2009 ; Mumbai, 2007)

Solution. Here M = xy? - s and N = — a2y
oM oN

b ox 20-C2x) 4 nichisafinction ofx only.
N - 2%y x




i
LF. = eITd" =g 4l0gx = 5 -4

Y1 s y
Multiplying throughout by x —4, we get {—3 - ?el J dx—=5 dy=0
x x

which is an exact equation.

.. the solution is I
(
¥ 1 g8
or J' = —— ¢’ |de+0=¢

4
x3 X

) (Mdx) + I(bems of N not containing x) dy = c.

2 -2 i i 2
or = +-1—Ie‘3(—3x‘4)dx=corle"s—lz—=c.
2 3 3

Otherwise it can be solved as a Bernoulli’s equation (§ 11.10)

Example 11.34. Solve (xy® +y) dx + 2(x%2 + x +y*) dy = 0. ' Al y: ,1

Solution. Here M = xy® +y, N = 2(x%y? + x + %)
oN oM 1

——— |=————(4xy2 + 2-3xy% - 1) = ,whlchzsafunctmnof alone.
[&x ByJ J(xy2+1)4xy o y 4

IF = Il!ydy logy =y
Multlplylng throughout by y, it becomes (xy* + ¥2) dx + (2x%3 + 2xy + 2y°) dy = 0, which is an exact

equation.

its solution is I

(Mdx) + I (terms of NV not containing x) dy =0
(y const)

1 1
4 2 5dy = 24 2., —.6_
or I(ymnst](xy +y°)dx + _‘lz.')’ dy=c or g Xyt +ayt+ 3yf=c.
Example 11.35. Solve (y log y) dx + (x —log y) dy =0 " (UPT.U, 2@04)"
Solution. Here M =y logy and N = x —log y
oN oM 1 1 T ;
— = (1 -logy—1)=— —, which is a function of y alone.
( ox oy } ylogy d y
1
LF. = eﬁf}dy =g 8y = A
Yy
Multiplying the given equation throughout by 1/y, it becomes
logy dx + —;7 (x—logy)dy =0
w5 s X J d(x-logy).
which is an exact equation v —(log y)=— [ -7J
a [ Y | y
its solution is I (Mdx) + j'(terms of N not containing x) dy =¢
(y const)
or log y Idx+j(ﬂde=c or xlogy—l(logy)2=c.
y 2

(5) For the equation of the type
1%y (mydx + nxdy) + x*y* (m’ydx + n’xdy) =
an integrating factor is x"y*
a+h+1 b+k+1 a'+h+1 b +k+1

where = : — = .
m n m n




Solution. Rewriting the equation as xy (ydx + xdy) + x*? (2ydx — xdy) = 0 and comparing with
x%y® (mydx + nxdy) + x*y* (m’ydx + n’xdy) = 0,

wehavea=b=1,m=n=1a'=b'=2,m'=2,n"=-1.

LF. = xhy*.
a+h+1 b+k+1 a+h+1 b +Ek+1
Where = 4 = = =
- m n m n
e 1+h+1 1+k+1 2+h+1 2+k+1
' 1 I " g T =g
or h—k=0,h+2k+9=0

Solving these, we get h =k = — 3. .. LF. = 1/x%5.
Multiplying throughout by 1/x3y3, it becomes
1 2 1
——+~ [dx+ —2-—1 dx = 0, which is an exact equation.
xry X .

The solution is I{ o Mdx + I(terms of N not containing x) dy = ¢
y

1 1
or ;[u;]+2!ogx—logy=c or 2logx—logy—1/xy.=c.

EQUATIONS OF THE FIRST ORDER AND HIGHER DEGREE

As dyldx will occur in higher degrees, it is convenient to denote dy/dx by p. Such equations are of the form
f(x,y, p) = 0. Three cases arise for discussion :

Case. 1. Equation solvable for p. A differential equation of the first order but of the nth degree is of the
form

pP"+Pp" 14+ P,p"-24+ . +P, =0 (1)
where P, P,, ..., P, are functions of x and y.
Splitting up the left hand side of (1) into n linear factors, we have
p "'"fl(x:y)] [P _fz(x’y)] s {P _‘fn(xsy)] =0.
Equating each of the factors to zero,
P= f]_(xa J’).P =f2(xs ¥ D= fn(xvy)
Solving each of these equations of the first order and first degree, we get the solutions
Flcx: Y, c)= 09 Fz(xsys c)= g,..., Fn {x-y, C) =0.



ie.,

These n solutions constitute the general solution of (1).
Otherwise, the general solution of (1) may be written as
Fl(x,y,c)-Fz(x,y,C) ------- Fn(xayac)=0-

d
Solution. Given equation is p — Suf 3 where p = Ey orp?+p [l—-ﬁ]—1=0.
_ Py x x y
Factorising (p + y/x)Xp —x/y) = 0.
Thus we have p+yx=0 ..(i)) and p-xly=0 ..(iD)
From (i), §+1=Oorxdy+ydx=0
dx «x
d(xy) = 0. Integrating, xy = c.
From (ii), %—-% =0orxdx—ydx=0

Integrating, 2 — y2 = ¢. Thus xy = ¢ or 22 — y2 = ¢, constitute the required solution.
Otherwise, combining these into one, the required solution can be written as
(xy —c)x2-y2—¢)=0.

or

p+ycotx==ycosecx
p =y (—cot x + cosec x) (D)
p =Yy (- cot x — cosec x) ...(if)

From (i), jx—y = y(~ cot x + cosec x) or % = (cosec x — cot x) dx

Integrating, logy = log tan = —log sinx + Jog ¢ = log cta:n—xiz
2 sin x
y= p— ory(l+cosx)=c ...(iLn)
2cos x2/2 i
From (ii), % =—y (cotx + cosecx) or L2/ = — (cot x + cosec x) dx
Integrating, log y = — log sin x — log tan = +logc =log pm
2 sin x tan =
2
y= S y(1—cosx)=c ..(iv)

2sin? X
2

Thus combining (iii) and (iv), the required general solution is
y(1+cosx)=c.




