Presentation on Diesel Engine Process

Diesel Engine Process

Combustion Process

Triangle of Fire

Diesel Engine

Chemically bound energy into mechanical energy

Combustion in the cylinder

Fuel ignites from heat of air compression

Force from the piston applied at the crank radius

Work is a force applied for a distance

Power is work performed per unit of time

Energy Losses

Energy Comparison

Heavy fuel

Nominal viscosity380 cSt/50°CDensity (15°C)0,98 kg/dm³Density at 135°C0,91 kg/dm³Heat value40400 kJ/kgMarine Diesel Fuel0,84 kg/dm³Density (15°C)0,84 kg/dm³Density at 45°C0,82 kg/dm³

Heat value 42500 kJ/kg

Heat Value per Volume

 For HF
 0,91 x 40400
 36764 kJ/dm³

 For MDH
 0,82 x 42500
 34850 kJ/dm³

 Difference
 1914 kJ/dm³

 or 5,5% more in HF

Different Ways of Construction

Typical Cylinder Pressure and Temperature Curbs

Mean Effective Pressure

MEP is the value referring to the constant pressure which would have to exist in a cylinder during power stroke to produce the same power at the flywheel.

Working Principle of Diesel Engine

$$\varepsilon = \frac{V_s + V_c}{V_c} = \frac{V_1}{V_c}$$

$$V_{c} = \frac{\pi \times D_{2}}{4}$$

 $\mathbf{pk} = \mathbf{p}_{1x} \varepsilon^n$ $\mathbf{n} = \text{polytrope exponent 1.35}$ $\mathbf{p}_1 = \text{pressure at the beginning}$ of the compression absolute pressure

 $t_{k} = T_{1} \times \varepsilon^{n-1} - 273$

T₁= temp at the beginning of the compression in Kelvin degree (rec. temp. +273)

Compression Ratio

Compression ratio $\boldsymbol{\epsilon}$

Swept volume :

$$V_i = \frac{\pi \cdot D^2}{4} \cdot s$$

Compression volume : V_p

Cylinder volume : V_s

$$V_s = V_i + V_p$$

 $\varepsilon = \frac{\text{cylinder volume}}{\text{compression volume}}$ $= \frac{V_s}{V_p} = \frac{V_i + V_p}{Vp}$

Stroke to Bore Ratio

Stroke to bore ratio

 $\frac{S}{D} = \frac{\text{stroke}}{\text{cylinder bore}}$

- big influence on the size of the engine structure
- s/d big ∴ big structure, high, small output in respect of structure volume
- s/d small ... piston is big compared to swept volume (heavy)

Piston Stroke and Cylinder Bore Ratio

PISTON STROKE TO CYLINDER BORE RATIO Stroke to bore ratio is of importance for the size of the engine.

- The bigger the ratio is the bigger (higher) the engine will be.
- The bigger the ratio the better efficiency (be)

Mean Piston Speed

Average speed values of the piston in diesel engines

Engine type	c _m m/s
2-stroke high speed	8,50 13,00
4-stroke high speed	8,00 12,00
Medium speed: main-engine auxiliary-engine	6,50 9,00 7,00 10,00
2-stroke low speed	5,50 7,00
4-stroke low speed	5,70 7,50

The Four Stroke Cycle Engine

THE FOUR STROKE ENGINE

1. THE INLET STROKE 2. THE COMPRESSION STROKE 3. THE WORK STROKE 4. THE GAS-EXCHANGE STROKE

Valve Graph 4-Stroke Cycle Engine

The First Stroke of 2-Stroke Diesel Engine

1st Stroke (Compression)

Piston at BDC

Scavenge Ports and Exhaust Valve Open

Scavenge air flows into the cylinder and presses the exhaust gases through the exhaust valve to the turbocharger.

Piston Moves Upwards:

Scavenge ports are being closed

Exhaust valve shuts, compression begins

The Second Stroke of 2-Stroke Diesel Engine

2nd Stroke (Ignition – Combustion – Expansion – Exhaustion – Scavenging)

Just Before TDC

Fuel is injected into the cylinder, Fuel Ignites in the compressed and heated air = ignition, with ignition combustion begins

Gases Expands and Press Piston Downwards (working stroke)

The exhaust valve opens, exhaust gases flow out if the cylinder to the turbo.

Scavenge ports are being uncovered by the downward moving piston, scavenge air flows into the cylinder and presses the exhaust gases out through the exhaust valve to the the turbocharger.

The 2-Stroke Diesel Engine

Uniflow Scavenging

Animation of Loop Flow

Scavenging

Gas Exchange Process

Gas Exchange Process

EExhaust Gas Temperatures

- 1°C change in ambient temperature will change exhaust gas temperature by 1,5...2°C
- 1°C change in receiver temperature will change exhaust gas temperature by 1,0...1,5°C

Good To Know

Charge air pressure will increase because of

- 1. High ambient pressure (P_o>1013 mbar or >750 mm Hg)
- 2. Low ambient temperature $(T_0 < 25^{\circ}C)$
- 3. High LT-water temperature $(T_{LT}>35^{\circ}C)$
- 4. Retarded injection timing $(5^\circ = 0, 3 \text{ bar})$

Charge air pressure will decrease because of

- **1.** Low ambient pressure ($P_0 < 1013$ mbar or < 750 mm Hg)
- 2. High ambient temperature ($T_0 > 25^{\circ}C$)
- 3. Low LT-water temperature ($T_{LT} < 30^\circ$)
- 4. Advanced injection timing $(5^\circ=0,3 \text{ bar})$
- 5. Charge air or exhaust gas leakage
- 6. High exhaust gas back pressure (P_{ATC} >300 mm H_2O)

