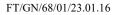


COURSE DELIVERY PLAN - THEORY

Page 1 of 6


Department of Biotechnology		LP: BT18020 Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Biotechnology	Regulation: 2018 (Autonomous)	Date: 01.03.2022
PG Specialisation : NA		
Sub. Code / Sub. Name : BT18020 Plant Biotechnolo	ogy	
Unit : I		

Unit Syllabus: Organization of Genetic Material (9 h)

Genetic Material of plant cells – nucleosome structure and its biological significance – junk and repetitive DNA – outline of transcription and translation.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Introduction to Plant Biotechnology and Genetic Material of Plants	RB10; Pg. (68-84) RB10; Pg. (1-6)	PPT/BB
2.	Nucleosome structure and Biological significance of nucleosome structure	RB14; Pg. (256-260) RB14; Pg. (260-266)	PPT/BB
3.	Transposons	RB12; Pg. (234-245)	PPT/BB
4.	Junk and Repeat sequences	RB13; Pg. (1-19) RB14; Pg. (231-245)	PPT/BB
5.	Outline of Transcription	RB10; Pg. (23-27) RB15; Pg. (347-406)	PPT/BB
6.	Outline of Translation.	RB10; Pg. (27-32) RB15; Pg. (411-456)	PPT/BB
7.	Regulation of Gene Expression	RB10; Pg. (10-15) RB10; Pg. (288-391)	PPT/BB
8.	Alternative and Trans Splicing	RB9;Pg.(697-750)	PPT/BB
9.	Constitutive and Differentially expressed genes	RB9;Pg.(279-301)	PPT/BB
Content b	eyond syllabus covered (if any): Tandem chimerism		1

Objective: To understand the fundamentals of plant cells, structure and functions

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT18020 & Plant Biotechnology

Unit : II

Unit Syllabus: CHLOROPLAST & MITOCHONDRIA (9 h)

Structure, function and genetic material; rubisco synthesis and assembly, coordination, regulation and transport of proteins. Mitochondria: Genome, cytoplasmic male sterility and import of proteins.

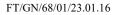
Session No *	Topics to be covered	Ref	Teaching Aids
1.	Chloroplast Genome: Structure and function	RB10; Pg. (32-35)	PPT/BB
2.	Copy Number of Plastid Genome and Localisation	RB10; Pg. (35-37)	PPT/BB
3.	Gene Content, Transcription and RNA processing	RB10; Pg. (38-43)	PPT/BB
4.	Protein Genes, Chloroplast Promoter sequences	RB10; Pg. (44-46)	PPT/BB
5.	Rubisco synthesis and Assembly	RB11; Pg. (166-168)	PPT/BB
6.	Coordination and regulation of proteins	RB9; Pg. (168-171)	PPT/BB
7.	Transport of Proteins	RB12; Pg. (27-36)	PPT/BB
8.	Mitochondrial Genome: Structure and function	RB10; Pg. (47-56) RB14; Pg. (245-250)	PPT/BB
9.	Cytoplasmic male sterility and import of proteins.	RB10; Pg. (56-60) RB12; Pg. (28-36)	PPT/BB
ontent b	eyond syllabus covered (if any): T-CMS		

Objective: To impart a thorough grounding in the major plant organelles its genome structure and function.

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT18020 & Plant Biotechnology


Unit : III

Unit Syllabus: Nitrogen Fixation (9 h)

Nitrogenase activity – nod genes – nif genes – bacteriods.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Nitrogen Fixation - Introduction	RB9; Pg. (307-308)	PPT/BB
2.	Legumes	RB9; Pg. (308-309)	PPT/BB
3.	Symbiosis	RB9; Pg. (309-311)	PPT/BB
4.	Nitrogenase activity	RB9; Pg. (313-316)	PPT/BB
5.	Nod genes and Nif Genes	RB9; Pg. (311-312) RB9; Pg. (311-313)	PPT/BB
6.	Bacteroids and Nitrogen Fixation at low oxygen Concentration	RB9; Pg. (309-311) RB9; Pg. (316-318)	PPT/BB
7.	Plants symbiosis with Fungi and Root Nodule Symbiosis Evolution	RB9; Pg. (318-320) RB9; Pg. (320-321)	PPT/BB
8.	Production of Secondary metabolites	RB18; Pg. (17-19)	PPT/BB
9.	Flavanoid synthesis and metabolic engineering.	RB18; Pg. (19-21)	PPT/BB
Content be	eyond syllabus covered (if any): Flavanoid metabolic engineering	g in Tomato	1

Objective: To illustrate and explain the molecular genetics and physiology of nitrogen fixation

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT18020 & Plant Biotechnology

Unit: IV

Unit Syllabus: Agrobacterium and Viral vectors (9 h)

Pathogenesis, crown gall disease, genes involved in the pathogenesis, Ti plasmid – T-DNA, importance in genetic engineering. Viral vectors: Gemini virus, Cauliflower mosaic virus, viral vectors and its benefits.

Objective: To illustrate and describe the genetic transformation in plants by the aid of different vector systems.

2. cr	athogenesis of Agrobacterium tumefaciens	RB8; Pg. (55-56)	PPT/BB
	own gall disease		
	own gan alsease	RB8; Pg. (56)	PPT/BB
3. G	enes involved in the pathogenesis	RB8; Pg. (59-62)	PPT/BB
4. Ti	i plasmid – T DNA	RB8; Pg. (56-59)	PPT/BB
5. D	irect Gene Transfer Methods	RB5; Pg. (468-472)	PPT/BB
6. Bi	inary Vectors for plant Transformation	RB8; Pg. (79-100)	PPT/BB
7. V	ïral Vectors: Gemini virus	RB5; Pg. (465-466)	PPT/BB
8. V	iral Vectors: cauliflower mosaic virus	RB13; Pg. (465-466)	PPT/BB
u	iral Vector Benefits and methods for transgene lentification	RB13; Pg. (464)	PPT/BB
Content beyon	nd syllabus covered (if any): Whiskers		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: BT18020 & Plant Biotechnology

 $Unit:\mathbf{V}$

Unit Syllabus : Applications of Plant Biotechnology (9 h)

Outline of plant tissue culture- Transgenic plants: herbicide and pest resistant plants, molecular pharming, therapeutic products.

Objective: To illustrate and explain the different techniques and applications of plant tissue culture and plant regeneration; to elaborate the major target for the genetic manipulation of crops and how they are being approached or have been achieved.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Outline of plant tissue culture	RB5; Pg. (356-400) RB8; Pg (35-52)	PPT/BB
2.	Transgenic plants	RB5; Pg. (445-446)	PPT/BB
3.	Herbicide Resistant Plants	RB5; Pg. (478-480)	PPT/BB
4.	Pest/Insect Resistant Plants	RB5; Pg. (480-486)	PPT/BB
5.	Stress Tolerant Plants	RB8; Pg. (205-229)	PPT/BB
6.	Viral resistant Plants	RB8; Pg. (179-202) RB5; Pg. (487-489)	PPT/BB
7.	Molecular Pharming	RB8; Pg. (261-302)	PPT/BB
8.	Therapeutic Products	RB5; Pg. (515-519) RB8; Pg. (288-298)	PPT/BB
9.	RNA i, Transgene silencing ,ethical issues	RB8; Pg.76	PPT/BB
Content b	yond syllabus covered (if any): RNAi in Tomato	I	

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT18020 & Plant Biotechnology

TEXT BOOKS:

1. Chawla, H.S., "Introduction to Plant Biotechnology", 3rd Edition, Science Publishers, 2009. 2. Gamburg OL, Philips GC, "Plant Tissue & Organ Culture fundamental Methods", Narosa Publications, 1995. 3. Adrian Slater, Nigel Scott, Mark Fowler," Plant Biotechnology: The genetic manipulation of plants", 2nd Edition, Oxford University Press, 2008. **REFERENCES:**

- 1. Stewart Jr., C.N., "Plant Biotechnology and Genetics: Principles, Techniques and Applications", Wiley-Interscience, 2008.
- 2. Heldt HW, "Plant Biochemistry & Molecular Biology", Oxford University Press, 1997.
- 3. Ignacimuthu .S, "Applied Plant Biotechnology", Tata McGraw Hill, 1996.REFERENCES
- 4. Grierson D. and Covey, S.N. Plant Molecular Biology, 2nd ed., Blackie, 1988
- 5. Singh BD. Text Book of Biotechnology, Kalyani Publishers. 1998
- 6. Heldt HW. Plant Biochemistry & Molecular Biology, Oxford University Press. 1998.
- 7. Ignacimuthu .S, Applied Plant Biotechnology, Tata McGraw-Hill. 1996.
- 8. Adrian Slater, Nigel Scott, Mark Fowler, Plant Biotechnology, The Genetic Manipulation of Plants, Oxford University Press, 2003.
- 9. Hans-Walter Heldt, Plant Biochemistry, 4th edition, Academic Press, Elsevier
- 10. S. Ignacimuthu, Plant Biotechnology, Oxford and IBH publishing.
- 11. Photosynthesis physiology and metabolism, Richard C Leegood, Kluwer academic publishers.
- 12. Molecular Cell Biology, Lodish, 5th Edition, W. H. Freeman and company
- 13. Multimedia E-textbook of medical biology, genetics and genomics, 4th Chapter Author: MUDr. Ondřej Šeda, PhD. Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 14. Molecular Cell Biology, Lodish, 7th Edition, W. H. Freeman and company
- 15. Molecular Biology of the Cell, Watson, Baker, Bell -2004, 5th edition, Pearson
- 16. Gamburg O.L., Philips G.C. Plant Tissue & Organ Culture: Fundamental Methods. Narosa, 1995.
- 17. Wilkins M.B .Advanced Plant Physiology, ELBS, Longman, 1987
- 18. Plant secondary metabolites, occurrence structure and role in human diet. A.Croizer, M.N. Clifford, Blackwell publishing.
- 19. Genes VIII- Benjamin Lewin, Pearson prentice hall.

	Prepared by	Approved by
Signature	Jert	1 8 2/28/22
Name	Mr. J. Hariharan	Dr. V. Sumitha
Designation	Assistant Professor	HOD Incharge-BIO
Date	01.03.2022	01.03.2022
Remarks *: The	same lesson plan will be followed in the sub	sequent semester

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD