

COURSE DELIVERY PLAN - THEORY

Page 1 of 5

9

	LP: BT18402
Department of Biotechnology	Rev. No: 02
B.E/B.Tech/M.E/M.Tech : B. Tech Biotechnology Regulation: 2018A	Date:
PG Specialisation : NA	07.02.2023
Sub. Code / Sub. Name : BT18402/Analytical Methods and Instrumentation	
Unit : I	

UNIT – I INTRODUCTION TO SPECTROMETRY

Properties of electromagnetic radiation, wave properties, Components of optical instruments, Sources of radiation, Wavelength selectors, Sample containers, Radiation transducers, signal process and read outs, signal to noise ratio, Sources of noise, Enhancement of signal to noise, Types of optical instruments.

Objective: To acquire fundamental knowledge about the Light spectrum, Absoprtion, Fluorescence, NMR, Mass spectroscopy

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Introduction and characteristic properties of electromagnetic radiation.	T1 (13-32) & T2 (1-11	BB/PPT
2.	Importance of the wave properties and major components of optical instruments.	T1 (158- 169)	BB/PPT
3.	The main sources of radiation in the optical instruments.	T1 (193- 203)	BB/PPT
4.	The major perspectives of the wavelength selectors in the optical instruments.	T1 (203- 220)	BB/PPT
5.	The functional aspects of the sample containers and radiation transducers in the optical instruments.	T1 (220- 232)	BB/PPT
6.	The importance and application of signal process and read outs in the optical instruments.	T1 (232- 233)	BB/PPT
7.	The measurement and applications of signal to noise ratio reflecting the output of the instruments.	T1 (135- 150) & T2	BB/PPT
8.	The analysis of sources of noise and enhancing signal to noise in the betterment of the output.	T1 (234- 235)	BB/PPT
9.	The different types of optical instruments in functional aspects.	T1 (235- 243)	BB/PPT
Content b	eyond syllabus covered (if any): Advance application of optical	instruments	1

COURSE DELIVERY PLAN - THEORY

Page 2 of 5

Sub. Code / Sub. Name: BT18402/Analytical Methods and Instrumentation

Unit : II

UNIT – II MOLECULAR SPECTROSCOPY

Molecular absorption spectrometry, Beer's law, Theory of UV – visible absorption spectrometry, Instrumentation, Applications, Theory of fluorescence and Phosphorescence, Instrumentation, Applications, Theory of Infrared absorption spectrometry, IR instrumentation, Applications, Theory of Raman spectroscopy, Instrumentation, Application of FTIR and Raman spectroscopy in the analysis of biological samples.

Objective: To acquire fundamental knowledge about the Light spectrum, Absoprtion, Fluorescence, NMR, Mass spectroscopy

Session No *	Topics to be covered	Ref	Teaching Aids
10.	Molecular absorption spectrometry and the application of Beer's law.	T1 (378-385) & T2 (159-	BB/PPT
11.	Application of Beer- Lambert's Law, theory and instrumentation perspectives of UV – visible absorption spectrometry, Instrumentation.	T1 (312-320)	BB/PPT
12.	Application of Beer- Lambert's Law, theory and instrumentation perspectives of UV – visible absorption.	T1 (444-469)	BB / PPT
13.	Principle and importance of fluorescence and Phosphorescence.	T1 (444-469)	BB/PPT
14.	Principle and importance of fluorescence and Phosphorescence.	T1 (478-488) & T2 (288)	BB / PPT
15.	Theory, instrumentation structure and applications of Infrared absorption spectrometry.	T1 (488-502) & T2 (293-305	BB/PPT
16.	Theory, instrumentation structure and applications of Infrared absorption spectrometry.	T1 (505-599)	BB/PPT
17.	Principles and application of Raman spectroscopy.	T1 (533-540) & T2 (321-	BB/PPT
18.	Importance of Raman spectroscopy in Fourier Transform Infrared (FTIR) spectroscopy in the analysis of biological samples.	T1 (540-549) & T2 (325-335)	BB/PPT
Content b spectrosco	eyond syllabus covered (if any): Advance technologies pe opy	ertaining to the II	R

* Session duration: 50 mins

9

COURSE DELIVERY PLAN - THEORY

Page 3 of 5

Sub. Code / Sub. Name: BT18402/Analytical Methods and Instrumentation

Unit : III

UNIT – III MAGNETIC RESONANCE SPECTROSCOPY AND MASS SPECTROMETRY 9

Theory of NMR, Environmental effects on NMR spectra, Chemical shift, NMR spectrometers, Applications of 1H and 13C NMR, Molecular mass spectra, Ion sources, Mass spectrometer. Applications of molecular mass spectrometry, Electron paramagnetic resonance, g values, Instrumentation.

Objective: To acquire fundamental knowledge about the Light spectrum, Absoprtion, Fluorescence, NMR, Mass spectroscopy

Session No *	Topics to be covered	Ref	Teaching Aids
19.	Principle aspects and Theory of NMR and its application in Molecular characterization.	T1 (300- 302)	BB/PPT
20.	Environmental effects on spectra acquired through NMR	T1 (302- 306)	BB/PPT
21.	The importance of chemical shift in the spectral features of NMR spectrometer.	T1(312-320)	BB/PPT
22.	Applications of different kinds of NMR such as 1H and 13C NMR in molecular characterization.	T1 (312- 320)	BB/PPT
23.	The flowchart of working aspects, application of Mass spectrometer.	T1 (320- 325)	BB/PPT
24.	Different types of mass analyzers and its application in molecular mass spectrometry.	T1 (320- 325)	BB/PPT
25.	The major importance of Electron paramagnetic resonance effect in mass spectrometer.	T1 (320- 325)	BB/PPT
26.	The principles aspects of g values in Instrumentation.	T1 (647- 666)	BB/PPT
27.	The principles aspects of g values in Instrumentation.	T1 (647- 666)	BB/PPT

Content beyond syllabus covered (if any): Characterization of Biomolecules using NMR

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 5

9

Sub. Code / Sub. Name: BT18402/Analytical Methods and Instrumentation

Unit : IV

UNIT-IV SEPARATION METHODS

General description of chromatography, Band broadening and optimization of column performance, Liquid Chromatography, Partition chromatography, Adsorption chromatography, Ion exchange chromatography, Size exclusion chromatography, Affinity chromatography- principles of GC and applications, HPLC, Applications of chromatography techniques in biotechnology and Biopharmaceutical industry.

Objective: To acquaint the student with different chromatographic methods for separation of biological products.

Session No *	Topics to be covered	Ref	Teaching Aids
28.	General description of chromatography, work flow, and its different types.	T1 (836-843) & T2 (513-	BB/PPT
29.	Band broadening and optimization of column performance.	T1 (843-858)	BB/PPT
30.	Principle and importance of Liquid Chromatography, Partition chromatography, Adsorption chromatography, Ion exchange chromatography	T1 (893-931) & T2 (545-548,	BB/PPT
31.	Principle and importance of Liquid Chromatography, Partition chromatography, Adsorption chromatography, Ion exchange chromatography	T1 (923-927)	BB/PPT
32.	Principle and importance of Size exclusion chromatography, Affinity chromatography- principles of GC and applications,	T1 (927-930)	BB/PPT
33.	Principle and importance of Size exclusion chromatography, Affinity chromatography- principles of GC and applications,	T1 (836-843) & T2 (513-	BB/PPT
34.	Principle and importance of HPLC, Applications of chromatography techniques in biotechnology and Biopharmaceutical industry.	T1 (843-858)	BB/PPT
35.	Principle and importance of HPLC, Applications of chromatography techniques in biotechnology and Biopharmaceutical industry.	T1 (893-931) & T2 (545- 548)	BB/PPT
36.	Principle and importance of HPLC, Applications of chromatography techniques in biotechnology and Biopharmaceutical industry.	T1 (893-931) & T2 (545- 548)	BB/PPT

COURSE DELIVERY PLAN - THEORY

Page 5 of 5

Sub. Code / Sub. Name: BT18402/Analytical Methods and Instrumentation

Unit : II

UNIT – V ELECTROPHORESIS AND SURFACE MICROSCOPE

Introduction to electrophoresis, Types of electrophoresis, Agarose gel electrophoresis, Polyacrylamide gel electrophoresis, Study of surfaces, Scanning probe microscopes, AFM and STM.

Objective: To gain the knowledge on separation of proteins, DNA using electrophoresis and structure determination of molecules through surface microscopy.

Session No *	Topics to be covered	Ref	Teaching Aids
37.	Principle aspects and applications of electrophoresis	R3	BB/PPT
38.	Principle aspects and applications of electrophoresis	R3	BB/PPT
39.	Types of electrophoresis: continuous and discontinuous electrophoresis with examples	R3	BB/PPT
40.	Theory, instrumentation structure and applications Agarose gel electrophoresis	R3	BB/PPT
41.	Theory, instrumentation structure and applications Polyacrylamide gel electrophoresis	R3	BB/PPT
42.	Study of surfaces through electron simulated analysis methods	T2 (666)	BB/PPT
43.	Principle aspects and applications of Scanning probe microscopes	T2 (667- 674)	BB/PPT
44.	Principle aspects and applications of Atomic force microscope	T1 (675- 726)	BB/PPT
45.	Principle aspects and applications of scanning tunneling microscope	T1 (675- 726)	BB/PPT
Content b	eyond syllabus covered (if any): Importance of confocal laser sca	nning micro	oscope

* Session duration: 50 mins

9

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

REFERENCES:

TEXT BOOKS

1. Skoog, D.A, James H. F and Stanky R. C, "Principles of Instrumental Analysis", 6 th Edition, Cengage Learning, 2016.

2. Willard H. H, "Instrumental Methods of Analysis", 7th Edition, CBS, 1986.

3. Braun R. D, "Introduction to Instrumental Analysis", Pharma Book Syndicate, 1987. 4. Ewing G.W, "Instrumental Methods of Chemical Analysis", 5th Edition, McGraw, Hill, 1985.

REFERENCE BOOKS

1. Sharma, B.K, "Instrumental Methods of Chemical Analysis: Analytical Chemistry", Goel Publishing

House, 1972.

2. Aven M. C, "Laboratory Instrumentation", 4th Edition, John Wiley, 1995.

3. Hert DG, Fredlake CP, Barron AE. Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis. 2008 Dec;29(23):4618-26.

	Prepared by	Approved by
Signature	Kg-t-Q	&
Name	Dr. K. Ganesh Prasath	Prof. E. Nakkeeran
Designation	Assistant Professor	Head of the Department
Date	07.02.2023	07.02.2023

Remarks *: Nil

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD