

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology	LP: BT18503 Rev. No: 00 Date: 10.07.2023
B.E/B.Tech/M.E/M.Tech : Biotechnology Regulation:2018	
PG Specialisation : Nil	
Sub. Code / Sub. Name : BT18503/ Molecular Biology	
Unit : I	

UNIT I CHEMISTRY OF NUCLEIC ACIDS

Introduction to nucleic acids: Nucleic acids as genetic material, Classical experiments – Griffith experiment, Hershey and Chase, Avery, McLeod and McCarty- Structure and physicochemical properties of elements in DNA and RNA- Biological significance of differences in DNA and RNA- Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond- Secondary Structure of DNA: Watson & Crick model-Chargaff's rule- X ray diffraction analysis of DNA- Forces stabilizes DNA structure- Conformational variants of double helical DNA- Hogsteen base pairing- Reversible denaturation and hyperchromic effect- Tertiary structure of DNA: DNA supercoiling.

OBJECTIVE: The objective of this unit is to impart the students the basic knowledge of nucleic acids, structure and mechanisms.

Session No*	Topics to be covered	Ref	Teaching Aids
1	Mendelian genetics - Linkage, Crossing over Introduction to nucleic acids - Nucleic acids as genetic material	T2 (01-42) T1 (61-63, 89-90, 117-119, 123-124)	BB & PPT
2	Classical experiments - experiments – Griffith experiment, Hershey and Chase, Avery, McLeod and McCarty		BB & PPT
3	Structure and physicochemical properties of elements in DNA and RNA	T1 (79-85, 117- 119) T5 (01-45) R1 (99-174)	BB & PPT
4	Biological significance of differences in DNA and RNA	R2 (14-46)	BB & PPT
5	Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond	T1 (60-63) T3 (40-70) T4 (30-55)	BB & PPT
6	Secondary Structure of DNA: Watson & Crick model, Chargaff's rule	T1 (79-85)	BB & PPT
7	X ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA		BB & PPT
8	Hogsteen base pairing- Reversible denaturation and hyperchromic effect	T3 (35-62) T4 (25-55) T1 (96-103, 86)	BB & PPT
9	Tertiary structure of DNA: DNA supercoiling.	T1 (228-233) R1 (318-378)	BB & PPT

* Session duration: 50 minutes

9

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name : **BT18503/ Molecular Biology** Unit : II

9

UNIT II DNA REPLICATION & REPAIR

Overview of Central dogma- Organization of prokaryotic and eukaryotic chromosomes- Enzymology of replication- DNA replication: Meselson & Stahl experiment- bi directional DNA replication- Geometry of replication- θ replication- Okazaki fragments- Proteomics of DNA replication- Fidelity of DNA replication- Inhibitors of DNA replication- Overview of differences in prokaryotic and eukaryotic DNA replication- D-loop and rolling circle mode of replication- Mutagens, DNA mutations and their mechanism- various types of repair mechanisms.

OBJECTIVE: The objective of this unit is to impart the students the deep knowledge on nature and properties of genetic material, various replication processes in prokaryotes and Eukaryotes

		Teaching Aids
gma, Organization of otic chromosomes	T1 (178-180, 181- 188, 207-208)	Animated Videos & PPT
ion	T1 (226-227)	BB & PPT
lson & Stahl experiment- bi ation	T1 (226-227)	BB & PPT
ι- θ replication- Okazaki	T1 (226-250) R1 (318-378)	Animated Videos & PPT
lication	T1 (223-243)	BB & PPT
tion- Inhibitors of DNA	T1 (233-253)	BB & PPT
s in prokaryotic and eukaryotic	T5 (353-399)	Smart Board & PPT
ukaryotes - Centromeres and olling circle mode of replication	T1 (106, 269, 186- 188, 258-260, 260- 262, 640)	BB & PPT
	T 1 (277, 200)	BB & PPT
]	ns and their mechanism- various ns. ny): Mutations in cancer	ns. R1 (379-440)

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name : BT18503/ Molecular Biology Unit : III

UNIT III TRANSCRIPTION

9

Structure and function of mRNA, rRNA and tRNA- Characteristics of promoter and enhancer sequences- RNA synthesis: Initiation, elongation and termination of RNA synthesis- Proteins of RNA synthesis- Fidelity of RNA synthesis- Inhibitors of transcription, Differences in prokaryotic and eukaryotic transcription- Basic concepts in RNA world: Ribozymes, RNA processing: 5'-Capping, Splicing- Poly 'A' tail addition and base modification.

OBJECTIVE: The objective of this unit is to impart the students the deep knowledge on transcription process and various components involved in the process of transcription in both Prokaryotes and Eukaryotes.

Session No*	Topics to be covered	Ref	Teaching Aids
19	Structure and function of mRNA, rRNA and tRNA	T1 (334-341, 379)	BB & PPT
20	Characteristics of promoter and enhancer sequences	T1 (321-325, 349-342)	BB & PPT
21	RNA synthesis: Initiation, elongation and termination of RNA synthesis	T1 (321-333) T5 (241-274) R1 (553-827)	BB & PPT
22	Proteins of RNA synthesis	T1 (325-327)	Animated Videos & PPT
23	Fidelity of RNA synthesis- Inhibitors of transcription	T1 (346-351)	BB & PPT
24	Differences in prokaryotic and eukaryotic transcription (Transcription factors)	R1 (553-827)	BB & PPT
25	Basic concepts in RNA world: Ribozymes	T1 (352-355)	BB & PPT
26	RNA processing: 5'-Capping	T1 (352-355)	BB & PPT
27	Splicing- Poly 'A' tail addition and base modification	T1(355-363) T5 (697-710) T1 (353-355)	BB & PPT
Content b	Content beyond syllabus covered (if any): Transcription factors of prokaryotes and Eukaryotes		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name : **BT18503/ Molecular Biology** Unit : IV

9

UNIT IV TRANSLATION

Introduction to Genetic code: Elucidation of genetic code- Codon degeneracy- Wobble hypothesis and its importance- Prokaryotic and eukaryotic ribosomes- Steps in translation: Initiation, Elongation and termination of protein synthesis- Inhibitors of protein synthesis- Post translational modifications and its importance.

OBJECTIVE: The objective of this unit is to impart the students the knowledge on genetic codon, translation in prokaryote and eukaryotes and post translational modifications.

Session No*	Topics to be covered	Ref	Teaching Aids	
28	Introduction to Genetic code	T1 (355-377) T5 (167-178)	BB & PPT	
29	Elucidation of genetic code	T1 (355-377) T5 (167-178)	BB & PPT	
30	Wobble hypothesis and its importance	T1 (388-391)	BB & PPT	
31	Prokaryotic and eukaryotic ribosomes	T1 (415-419)	BB & PPT	
32	Steps in translation - Initiation, Elongation	T1 (425-435) T5 (135-150)	BB & PPT	
33	Steps in translation - termination of protein synthesis	T1 (425-435) T5 (135-150)	BB & PPT	
34	Inhibitors of protein synthesis	T1 (441-445)	BB & PPT	
35	Post translational modifications (PTM)	T1 (436-438)	BB & PPT	
36	Importance of PTM	T1 (436-438)	BB & PPT	
Content b	Content beyond syllabus covered (if any): Codon redundancy and usage in different organisms.			

UNIT V

FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN - THEORY

SRI VENKATESWARA COLLEGE OF ENGINEERING

Page 5 of 6

Sub. Code / Sub. Name : BT18503/ Molecular Biology Unit : V

REGULATION OF GENE EXPRESSION

9

Organization of genes in prokaryotic and eukaryotic chromosomes- Hierarchical levels of gene regulation-Prokaryotic gene regulation- lac and trp operon- Regulation of gene expression with reference to λ phage life cycle.

OBJECTIVE: The objective of this unit is to impart the students the knowledge on gene regulation, life cycle of Bacteriophages and various Operon concepts.

Session No*	Topics to be covered	Ref	Teaching Aids	
37	Organization of genes in prokaryotic chromosomes	T1 (178-188)	BB & PPT	
38	Organization of genes in eukaryotic chromosomes	T1 (178-188)	BB & PPT	
39	Hierarchical levels of gene regulation	T1 (453-456, 501-504)	BB & PPT	
40	Prokaryotic gene regulation	T1 (456-481)	BB & PPT	
41	lac operon and Gal operon	T3 (456-460) R1 (588-640)	BB & PPT	
42	trp operon and Ara operon	T4 (479-481) T5 (279-297)	BB & PPT	
43	λ phage	T1 (579-584) T5 (329-349)	BB & PPT	
44	λ phage life cycle	T1 (579-584) T5 (329-349)	BB & PPT	
45	Regulation of gene expression with reference to λ phage life cycle	T1 (579-584)	BB & PPT	
Content b	Content beyond syllabus covered (if any): Eukaryotic gene regulation.			

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT18029 / Molecular Therapeutics

TEXT BOOKS:

 Bernhard, O. P & Sangeeta, N. B. Tissue Engineering, 2nd ed., Prentice Hall, 2009.
Pamela, G & Michelle, M. Molecular Therapeutics: 21st Century Medicine, John Wiley & Sons Limited, 2008.

REFERENCES:

1. Goldsby, R.A., Kindt, T.J., Osbome, B.A & Kerby, J. Immunology, 5th Ed., W.H Freeman, 2003.

2. Winnacker, E.L., From Genes to clones: Introduction to Gene Technology, Panima Publishing Corporation, 2003.

3. Glick, B.R., & Pasternak, J.J., Molecular Biotechnology: Principles and applications of recombinant DNA, 3rd Ed., ASM Press, 2003.

4. Lemonie, N.R., & Cooper, D.N., Gene therapy, Oxford BIOS Scientific Publishers, 1996.

5. Gary Walsh, Pharmaceutical Biotechnology: Concepts ans Applications, Wiley, 2007.

	Prepared by	Approved by	
Signature	France	A	
Name Mr. J. Hariharan		Dr. E. Nakkeeran	
Designation	Assistant Professor	HOD	
Date	10-07-2023	10-07-2023	
Remarks *: The s	ame lesson plan will be followed in the subsequer	nt semester/year.	