

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology		LP: BT18601 Rev. No: 00	
B.E/B.Tech/M.E/M.Tech	: Biotechnology	Regulation: 2018A	Date: 29.12.2023
PG Specialisation	: NA		
Sub. Code / Sub. Name	: BT18601 / Chemical Reaction	Engineering	
Unit	: I		

Unit Syllabus: Scope of Chemical Kinetics & Chemical Reaction Engineering (9+3 h)

Broad outline of chemical reactors; rate equations; concentration and temperature dependence, development of rate equations for different homogeneous reactions. Industrial scale reactors.

Objective: To impart knowledge on chemical reactions, reaction rate theories, rate equations and reaction mechanism.

1.			1
1.	Overview of Chemical Reaction Engineering	T1 (1,2); T2 (1-3); R1 (1-3); R3 (3,4)	BB & PPT
2.	Broad outline of chemical reactors	T1 (1,2); T2 (4); R1 (309);	MENTIMETER & PPT
3.	Classification of reactions, Reaction rate	T1 (2-5, 13,14); T2 (4-8); R1(3,4)	BB & PPT
4.	Parameters affecting reaction rate	T1(3), R1(4-5)	BB & PPT
5.	Problems on Reaction rate	T1(6-8)	BB & PPT
6.	Rate Equations: Derivation	T1(13-14); R3(4-10)	BB & PPT
7.	Problems on rate equations	V1	Flipped Classroom
8.	Rate equation – Concentration dependent term	T1(14-26); R1 (42,43)	BB & PPT
9.	Problems (Concentration dependent term)	T1(22-25, 29, 73-74); T2(20- 22); R1 (44,45); R4(27-37)	BB & PPT
10.	Rate equation – Temperature dependent term	T1(27-29, 72-73); R1 (44,45)	BB & PPT
11.	Problems (Temperature dependent term)	T1(22-25, 29, 73-74); T2(20-22); R1 (44,45); R4(27- 37)	BB & PPT
12.	Industrial Scale Reactors	T2 (10-19); R1(18)	BB & PPT

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT18601 / Chemical Reaction Engineering

Unit : II

Unit Syllabus : Ideal Rectors (9+3 h)

Isothermal batch, flow, semi-batch reactors; performance equations for single reactors; Multiple reactor systems; multiple reactions.

Objective: To understand reactor design, to understand design equation for various reactor types and to derive expressions for chemical reactor analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Introduction to reactor design, Isothermal Reactor Design	T1(83-88); T2(140-143)	BB & PPT
14	Constant volume batch reactor	T1(38-66); T2(144-150); R1(26-28)	BB & PPT
15	Variable volume batch reactor	T1(67-72); T2(151-168) R1(29-37, 309-312)	BB & PPT
16	Design equation for batch reactors	T1(91-93); R1(296-308)	BB & PPI
17	Problems on constant volume batch reactor	T1(96-97); R2(2.41-2.118); R3(67-79)	BB & PPT
18	Problems on constant volume batch reactor	T1(96-97); R2(2.41-2.118); R3(67-79)	GOOGLE JAMBOARI
19	Problems on variable volume batch reactor	T1(99-100); R2(2.41-2.118); R3(67-79)	BB & PPI
20	Problems on variable volume batch reactor	T1(99-100); R2(2.41-2.118); R3(67-79)	BB & PP
21	Recycle reactor and autocatalytic reactions	T1(136-140); T2(200-202) R3(128-136)	BB & PP
22	Multiple Reactions, Parallel reactions	T1(124-136, 152-169) R1(422-431)	BB & PP1
23	Reaction in series	T1(170-181) R1(422-431)	BB & PPT
24	Problems on reactor in parallel and reactor in series	R2(5.29-5.59) R3(167-178)	BB & PP

Content beyond syllabus covered (if any): Integral and Differential method for chemical reactor data analysis.

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT18601 / Chemical Reaction Engineering

Unit : III

Unit Syllabus: Ideal Flow and Non Ideal Flow (9+3 h)

RTD in non-ideal flow; non-ideal flow models; reactor performance with non-ideal flow, Models for non-ideal flow.

Objective: To understand residence time distribution in reactor systems and to understand how to develop models for non-ideal flow systems.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Ideal and Non-Ideal flow characteristics	T1(257-260); T2(767-769); R1(318-324, 453-455)	BB & PPT
26	Residence time distribution (RTD) - chemical reactors	T2(769-770);	ANIMATIONS & PPT
27	E-curve, F-curve, Age distribution of fluid in RTD	T1(260-266); T2(771-776); R1(325-331)	BB & PPT
28	Problems on RTD	T1(267-273); T2(773-774, 779-781); R1(461-465)	BB & PPT
29	Problems on RTD	T1(267-273); T2(773-774, 779-781); R1(461-465)	BB & PPT
30	Models for non-ideal flow	T1(283-316); T2(808-809)	BB & PPT
31	Compartment and Dispersion models	T1(283-316);T2(852-853)	BB & PPT
32	Problems related to flow models	T1(305-309); T2(874-877);	BB & PPT
33	Tanks-in-series model	T1(321-338); T2(848-852)	BB & PPT
34	Problems on Tanks-in-series model	T1(329-332); R3(247-259)	BB & PPT
35	Problems on Multiparameter model	T1(329-332); R3(247-259)	BB & PPT
36	Earliness of Mixing, Segregation and RTD	T1(350-365)	BB & PPT
Content beyond syllabus covered (if any):			

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT18601 / Chemical Reaction Engineering

Unit : IV

Unit Syllabus : Gas-Solid, Gas-Liquid Reaction (9+3 h)

Models for fluid-particle reactions; Resistances and rate equations; heterogeneous catalysis; reactions steps; resistances and rate equations.

Objective:	To understand the principles on gas-solid, gas-liquid reactions; To solve material and energy balances
	and problems.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Fundamentals of heterogeneous reactions	T1(369-374); R1(154-170)	BB & PPT
38	Solid catalyzed reactions and rate equations	T1(376-406) R1(191-213)	BB & PPT
39	Problems on rate Equations	T1(376-406) R1(191-213)	GOOGLE JAMBOARD
40	Surface and heterogeneous catalysis	T1(376-406) R1(191-213)	BB & PPT
41	Solid-Gas reaction system	R1(224-238)	BB & PPT
42	Gas-Liquid systems	R1(238-256)	BB & PPT
43	Heterogeneous Catalysis: Kinetics in Porous Catalyst Particles	R1(198-213)	BB & PPT
44	Problems on Multiphase /Heterogeneous reacting systems	T1(407-416)	BB & PPT
45	Problems on Multiphase /Heterogeneous reacting systems	T1(407-416)	BB & PPT
46	Rate of reaction for shrinking spherical particle size	T1(577-586)	BB & PPT
47	Fluid-Particle systems	T1(566-576) R1(512-522)	BB & PPT
48	Problems (Fluid-Particle systems)	T1(566-576) R1(512-522)	BB & PPT
Content be	Content beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BT18601 / Chemical Reaction Engineering

Unit : V

Unit Syllabus : Solid Fluid Operations (9+3 h)

G/L reactions on solid catalysis; Resistances and rate equations; trickle bed, slurry reactors; three phase-fluidized beds; reactors for fluid-fluid reactions; tank reactors.

Objective: To understand the basics of solid fluid operations and design reactor for production of bio based product.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Reactors with suspended solid catalyst	T1(447-451)	BB & PPT
50	Fluidized bed reactors	T1(451-470)	ANIMATIONS
51	Fluidized bed reactors-Derivation	T1(451-470)	BB & PPT
52	Rate equations for G/L reactions on solid catalysts	T1(500-503)	BB & PPT
53	Performance equation – Fluidized bed systems	T1(503-510)	BB & PPT
54	Problems on performance equations	T1(517-518)	BB & PPT
55	Fluid-Fluid reaction kinetics;	T1(523-535); R1(614- 618)	BB & PPT
56	Tank reactors	T1(523-535); R1(614- 618)	BB & PPT
57	Reactors for fluid-fluid reactions	T1(540-546)	BB & PPT
58	Trickle bed reactor: Three phase reactions	T1(500-503); R1(618- 619);	BB & PPT
59	Problems related to fluidized bed reactor system	T1(536-537, 551-562)	BB & PPT
60	Problems related to Trickle bed reactor system & Summary	T1(516-518)	BB & PLICKERS
Content beyond syllabus covered (if any):			

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT18601 / Chemical Reaction Engineering

TEXT BOOKS

- 1. Levenspiel, O. Chemical Reaction Engineering, 3rd Edition, John Wiley, 1999.
- 2. Fogler, H.S., Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall India, 2006.

REFERENCES

- 1. Missen, R.W., Mims C.A., Saville B.A. "Introduction to Chemical Reaction Engineering and Kinetics", John Wiley, 1999.
- 2. Srivastava, R.P.S. Elements of Reaction Engineering, Khanna Publishers, 2000.
- 3. Gavhane, K.A. Chemical Reaction Engineering, Nirali Prakashan, 2011.
- 4. Pandey, G.N and Srivastava, S.N. Fundamentals of Chemical Reaction Engineering, Galgotia Publications, 2004.

VIDEO LINKS

1. https://www.youtube.com/playlist?list=PLODKZZeKAWb-PMMqRrD4hNUG4v7bkVbt1

. · ·	Prepared by	Approved by	
Signature	Ban	2 ratins	
Name	Dr. K. Vasantharaj	Prof.E.Nakkeeran	
Designation	Assistant Professor	HOD	
Date	29.12.2023	29.12.2023	
Remarks *: -			
Remarks *: -			

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD