

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology			LP: BT18702 Rev. No: 00
B.E/ B.Tech /M.E/M.Tech	B.E/B.Tech/M.E/M.Tech: Biotechnology Regulation: 2018		
PG Specialisation	: NA		
Sub. Code / Sub. Name	: BT18702 & Downstream Pro	cessing	
Unit	: I		

Unit Syllabus: Introduction to **Downstream Processing** (7 h)

Introduction to separation of biomolecules and its importance in biotechnology, Characteristics of fermentation broth and biomolecules. Cell disruption for product release - mechanical and non-

mechanical methods. Pretreatment and stabilization of bioproducts.

Objective: It is intended to impart basic knowledge in the area of separation technologies for biomolecules.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to separation of biomolecules and its importance in biotechnology	T1 (2-10); R3 (1-12); T2 (3-39)	PPT & BB
2	Characteristics of fermentation broth and biomolecules	T1 (347-359)	PPT & BB
3	Cell disruption for product release and its types	T1 (77-78); R3 (13-17)	PPT & BB
4	Mechanical methods of cell disruption and problems	T1 (88-93); R3 (20 – 24); T1(94-95)	PPT & BB
5	Enzymatic methods of cell disruption and problems	T1 (84-88); R3 (18-21); T1 (94- 95)	PPT & BB
6	Non-mechanical methods of cell disruption and problems	T1 (82-84); R3 (16-18); T1 (94- 95)	PPT & BB
7	Pretreatment and stabilization of bioproducts	R2 (33-40); T1 (17-19); R4 (10- 20)	PPT & BB
Content bey	Content beyond syllabus covered (if any): Nil		

^{*}Session duration: 50 minutes; PPT – Power Point; BB – Black Board

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT18702 & Downstream Processing

Unit: II

Unit Syllabus: Physical Methods of Separation (9 h)

Unit operations for solid-liquid separation - Filtration, Centrifugation-based methods for separation of the cell organelles and biomolecules (DNA, RNA, Proteins and secondary

metabolites).

Objective: Students would be able to understand workflow for the separation of DNA, RNA, proteins and

secondary metabolites.

Session No *	Topics to be covered	Ref	Teaching Aids
8	Introduction to unit operations for solid-liquid separation	T1 (11-14)	PPT & BB
9	Introduction to filtration, Classifications of membrane processes; Pressure driven membrane processes	T1 (14-29); R3 (26-27); T2 (105-114)	PPT & BB
10	Continuous rotary filters, microfiltration, membrane modules	T1 (30-35); R3 (34-41); T2 (121,126)	PPT & BB
11	Problems related to rotary drum filters	T1 (42-45)	PPT & BB
12	Problems related to filtration	T1 (42-45)	PPT & BB
13	Introduction to centrifugation	T1 (47-48); R3 (42-45); T2 (142-149)	PPT & BB
14	Types of centrifuges used for separation of the cell organelles and biomolecules (DNA, RNA, Proteins and secondary metabolites)	T1 (53-61); R3 (45-49); T2 (149-153)	PPT & BB
15	Scale up of centrifugation, Centrifugal filtration	T1 (62-71); R3 (50)	PPT & BB
16	Problems related to centrifugation	T1 (73-75)	PPT & BB

Content beyond syllabus covered (if any): Classifications of membrane processes; Pressure driven membrane processes

^{*}Session duration: 50 minutes; PPT - Power Point; BB - Black Board

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT18702 & Downstream Processing

Unit: III

Unit Syllabus: Isolation of Products (9 h)

Liquid-liquid extraction-aqueous two-phase extraction, Membrane separation - Ultrafiltration,

nanofiltration and reverse osmosis, dialysis, Precipitation of proteins by different methods.

Objective: To impart knowledge on various product isolation methods.

Session No *	Topics to be covered	Ref	Teaching Aids
17	Introduction to liquid-liquid extraction	T1 (99-108); R3 (67-71)	PPT & BB
18	Different types of extractions	T1 (99-140)	PPT & BB
19	Aqueous two-phase extraction	T1 (114-138); R3 (71-99)	PPT & BB
20	Introduction to membrane separation techniques – Ultrafiltration	T1 (237-249 & 39-41); R3 (100-110)	PPT & BB
21	Nanofiltration, reverse osmosis and problems	T1 (250-260); R2 (218-221); R3 (110-118); T1(269-270)	PPT & BB
22	Dialysis, Introduction to precipitation and its types	T1 (264-268); T1 (221-229); R2 (41-71); R3 (119-142)	PPT & BB
23	Protein Precipitation by salts	T1 (264-268); T1 (221-229) R2 (41-71); R3 (119-142)	PPT & BB
24	Protein Precipitation by solvent	T1 (264-268); T1 (221-229) R2 (41-71); R3 (119-142)	PPT & BB
25	Protein Precipitation using acids/bases, etc	T1 (264-268); T1 (221-229) R2 (41-71); R3 (119-142)	PPT & BB
Content beyond syllabus covered (if any): Nil			

Content beyond synabus covered (ii any): Nii

*Session duration: 50 minutes; PPT - Power Point; BB - Black Board

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT18702 & Downstream Processing

Unit: IV

Unit Syllabus: Product Purification (12 h)

Basics of chromatography and its use in separation of biomolecules, size exclusion, ion-exchange, hydrophobic interaction, HPLC, bioaffinity, hydroxyapatite chromatographic techniques. Magnetic beads for bioseparation, Cell Sorting, Microfluidics based separation.

Objective: To understand the principles and types of various chromatography techniques for product purification.

Session No *	Topics to be covered	Ref	Teaching Aids
26	Basics of chromatography and its use in separation of biomolecules	R3 (143-167)	PPT & BB
27	Size exclusion chromatography	R3 (188-199)	PPT & BB
28	Ion exchange chromatography	R3 (175-187)	PPT & BB
29	Hydrophobic interaction chromatography	R3 (209-213); R1 (200-206)	PPT & BB
30	HPLC	R3 (163-166); T1 (185-209)	PPT & BB
31	Bioaffinity chromatography	R3 (214-225)	PPT & BB
32	Pseudo affinity chromatography	R3 (226-230)	PPT & BB
33	Hydroxyapatite chromatography	Journal Papers /Internet sources	PPT & BB
34	Magnetic beads for bioseparation	Journal Papers/ Internet sources	PPT & BB
35	Magnetic beads for Cell Sorting	Journal Papers/ Internet sources	PPT & BB
36	Microfluidics based separation	Journal Papers/ Internet sources	PPT & BB
37	Up scaling of chromatography	R3 (214-238)	PPT & BB

^{*}Session duration: 50 minutes; PPT - Power Point; BB - Black Board

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BT18702 & Downstream Processing

Unit : \mathbf{V}

Unit Syllabus: Final Product Formulation and Finishing Operations (8 h)

Crystallization - Basic Concepts, Crystal size distributions, Batch crystallization,

Recrystallization, Drying - Basic Concepts, Equipments and Lyophilization.

Objective: Students would be able to assimilate recent research findings, advancement and development in

the subject.

Session No *	Topics to be covered	Ref	Teaching Aids
38	Introduction to polishing steps	T1 (271-273)	PPT & BB
39	Crystallization basic concepts, Crystal size distributions	T1 (273-283); R3 (255)	PPT & BB
40	Crystallization types and equipments, Recrystallization	T2 (273-287); T1 (284-299); T1 (299-302)	PPT & BB
41	Basics of drying, equipment and types	T1 (307-317); R3 (259); T2 (290-311); T1 (317-324)	PPT & BB
42	Adiabatic drying	T1 (334-330)	PPT & BB
43	Lyophilization	R3 (263)	PPT & BB
44	Problems in drying	T1 (332); T2 (315)	PPT & BB
45	Problems in Crystallisation	T1 (303-305)	PPT & BB
Content be	Content beyond syllabus covered (if any): Nil		

^{*}Session duration: 50 minutes; PPT - Power Point; BB - Black Board

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT18702 & Downstream Processing

TEXT BOOKS

- 1. P.A. Belter, E.L. Cussler and Wei-Houhu Bioseparations Downstream Processing For Biotechnology, Wiley Interscience Pub. (1988).
- 2. Roger G.Harrison, Paul Todd-Bioseparations Science and Engineering, Oxford University Press, 2006.

REFERENCES

- 1. J.C. Janson and L. Ryden, (Ed.) Protein Purification Principles, High Resolution Methods and Applications, VCH Pub. 1989.
- 2. R.K. Scopes Protein Purification Principles and Practice, Narosa Pub., 1994.
- 3. B. Sivasanker Bioseperations Principles and Techniques, Prentice Hall of India, 2005.
- 4. Jenkins R.O, "Product Recovery in Bioprocess Technology Biotechnology" Open Learning Series, Butterworth-Heinemann, 1992.

	Prepared by	Approved by
Signature	Davener	Davenearen
Name	Prof. E. Nakkeeran	Prof. E. Nakkeeran
Designation	Professor	Professor & Head
Date	10.07.2023	10.07.2023

Remarks *: Yes

Remarks *: Yes

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD