

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

DEPARTMENT OF BIOTECHNOLOGY		
B.E/B.Tech/M.E/M.Tech : B.Tech - Biotechnology		LP: BT22404
Regulation	: 2022	Rev. No: 00
PG Specialisation	: NA	Date:
Sub. Code / Sub. Name	: BT22404 / GENETICS AND MOLECULAR BIOLOGY	23/01/2024
Unit	:1	

Unit Syllabus: LAWS OF INHERITANCE

Laws of inheritance: Mendel's Laws - dominance, segregation, independent assortment; Chromosome theory of inheritance, Concept of alleles, types of dominance, lethal alleles, multiple alleles, test of allelism, complementation.

Objective: To explain the laws of inheritance.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Laws of inheritance: Mendel's Laws - dominance	TB3 (1-2)	Blended Mode, Animations & BB
2.	Laws of inheritance: Mendel's Laws - segregation	TB3 (2-5)	PPT & BB
3.	Laws of inheritance: Mendel's Laws - independent assortment	TB3 (11)	Animations & BB
4.	Chromosome theory of inheritance	TB3 (6-7)	PPT & BB
5.	Concept of alleles	TB3 (7)	PPT & BB
6.	Types of dominance	TB3 (7-10)	Animations & BB
7.	Lethal alleles	TB3 (18-19)	PPT & BB
8.	Multiple alleles	TB1 (18-20) RB2 (6-8)	PPT & BB
9.	Test of allelism, complementation	TB2 (19-24) RB1 (7-11)	Animations & BB
Content be	eyond syllabus covered (if any): NIL		

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name : **BT22404 / GENETICS AND MOLECULAR BIOLOGY** Unit : 2

Unit Syllabus: LINKAGE, MAPPING AND CHROMOSOMAL CHANGES

9h

Epistasis, Linkage and Gene Mapping, Penetrance and Expressivity, Changes in Chromosome number and structure: Euploidy, Aneuploidy, chromosomal rearrangements - deletion, duplication, inversion, and translocation.

Objective: To explain the role of alleles, allelism and epistasis.

Session No *	Topics to be covered	Ref	Teaching Aids
10.	Epistasis	TB1 (7-9) RB1 (11-14)	PPT & BB
11.	Linkage and Gene Mapping	TB1 (11-13) RB1 (16-19)	Animations & BB
12.	Penetrance	TB3 (16-17)	PPT & BB
13.	Expressivity	TB3 (18-19)	Animations & BB
14.	Changes in Chromosome number and structure: Euploidy	TB1 (20-24) RB2 (8-12)	PPT & BB
15.	Changes in Chromosome number and structure: Aneuploidy	TB2 (28-30) RB1 (11-14)	PPT & BB
16.	Chromosomal rearrangements: Deletion	TB2 (44-46) RB2 (32-38)	Animations & BB
17.	Chromosomal rearrangements: Duplication	TB2 (81-84) RB1 (69-72	PPT & BB
18.	Chromosomal rearrangements: Inversion and Translocation	TB2 (101-104) RB2 (121-124)	PPT & BB
Content beyond syllabus covered (if any): NIL			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name : **BT22404 / GENETICS AND MOLECULAR BIOLOGY** Unit : 3

Unit Syllabus: DNA REPLICATION AND REPAIR MECHANISM

DNA as a genetic material, Classical experiments by Griffith, Hershey and Chase, Avery, McLeod and McCarty. Biological significance, structure and physicochemical properties of elements in DNA and RNA. Overview of Central dogma- Organization of prokaryotic and eukaryotic chromosomes. DNA replication: Meselson & Stahl semiconservative replication, Bidirectional DNA replication, theta replication, rolling circle replication. DNA mutations and repair mechanism.

Objective: To explain about the principle of DNA replication.

Session No *	Topics to be covered	Ref	Teaching Aids
19.	DNA as a genetic material	TB3 (107-110) RB2 (44-46)	Animations & BB
20.	Classical experiments by Griffith, Hershey and Chase, Avery, McLeod and McCarty	TB3 (111-115) RB2 (47-48)	PPT & BB
21.	Biological significance, structure, and physicochemical properties of elements in DNA	TB3 (116-117) RB2 (48-49)	PPT & BB
22.	Biological significance, structure, and physicochemical properties of elements in RNA	TB3 (107-110) RB2 (50-51)	Animations & BB
23.	Overview of Central dogma	TB3 (111-114) RB2 (51-53)	PPT & BB
24.	Organization of prokaryotic and eukaryotic chromosomes	TB3 (114-115) RB2 (53-55)	PPT & BB
25.	DNA replication: Meselson & Stahl semiconservative replication, Bidirectional DNA replication	TB3 (115-117) RB2 (56-58)	Animations & BB
26.	Theta replication, Rolling circle replication	TB3 (114-119) RB2 (59-60)	PPT & BB
27.	DNA mutations and repair mechanism	TB3 (120) RB2 (60-61)	PPT & BB
Content beyond syllabus covered (if any): NIL			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name : **BT22404 / GENETICS AND MOLECULAR BIOLOGY** Unit : 4

Unit Syllabus: TRANSCRIPTION AND TRANSLATION

Structure and function of mRNA, rRNA and tRNA, Initiation, elongation and termination of RNA synthesis, Basic concepts in RNA world: Ribozymes, RNA processing: 5'- Capping, Splicing- Poly 'A' tail addition and base modification, Genetic code, Codon degeneracy-Wobble hypothesis and its importance- Prokaryotic and eukaryotic ribosomes- Steps in translation: Initiation, Elongation and termination of protein synthesis- Inhibitors of protein synthesis- Post translational modifications and its importance.

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Structure and function of mRNA, rRNA, and tRNA	TB3 (14-18)	Animations & BB
29.	Initiation, elongation and termination of RNA synthesis	TB3 (18-19) RB2 (65)	Animations & BB
30.	Basic concepts in RNA world: Ribozymes	TB3 (20-24) RB2 (66-67)	PPT & BB
31.	RNA processing: 5'- Capping, Splicing- Poly 'A' tail addition and base modification	TB3 (25-27) RB2 (68)	PPT & BB
32.	Genetic code, Codon degeneracy- Wobble hypothesis and its importance	TB3 (28-32)	PPT & BB
33.	Prokaryotic and eukaryotic ribosomes	TB3 (33-37) RB2 (72-74)	Animations & BB
34.	Steps in translation: Initiation, Elongation and termination of protein synthesis	TB3 (37-39) RB2 (75)	PPT & BB
35.	Inhibitors of protein synthesis	TB3 (40-47)	PPT & BB
36.	Post translational modifications and its importance	TB3 (47-49) RB2 (76-77)	PPT & BB
Content beyond syllabus covered (if any): NIL			

Objective: To explain the steps involved in mRNA and protein production.

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name : **BT22404 / GENETICS AND MOLECULAR BIOLOGY** Unit : 5

Unit Syllabus: GENE REGULATION

Organization of genes in prokaryotic and eukaryotic chromosomes- Hierarchical levels of gene regulation, Inducible, Repressible operon, Prokaryotic gene regulation- lactose (lac), tryptophan (trp) and arabinose (ara) operon- Regulation of gene expression with reference to λ phage life cycle.

Objective: To explain the mechanism of gene regulation.

Session No *	Topics to be covered	Ref	Teaching Aids
37.	Organization of genes in prokaryotic chromosomes	TB3 (16-19) RB2 (21-27)	PPT & BB
38.	Organization of genes in eukaryotic chromosomes	TB3 (21-27) RB2 (30-33)	PPT & BB
39.	Hierarchical levels of gene regulation	TB3 (111-120) RB2 (35-38)	Animations & BB
40.	Inducible operon	TB3 (121-124) RB2 (29-41)	Animations & BB
41.	Repressible operon	TB3 (121-125) RB2 (42-44)	PPT & BB
42.	Prokaryotic gene regulation: lactose (lac) operon	TB3 (114-119)	PPT & BB
43.	Prokaryotic gene regulation: tryptophan (trp) operon	TB3 (128-131) RB2 (42-47)	Animations, BB
44.	Prokaryotic gene regulation: arabinose (ara) operon	TB1 (121-125) RB2 (47-49)	PPT & BB
45.	Regulation of gene expression with reference to λ phage life cycle	TB2 (119-121)	PPT & BB
Content beyond syllabus covered (if any): NIL			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name : BT22404 / GENETICS AND MOLECULAR BIOLOGY

REFERENCES:

Text Books:

- 1. Klug W. S. and Cummings M. R, "Concepts of Genetics", 12th Edition, Prentice Hall, 2019.
- 2. Benjamin A Pierce, "Genetics-a Conceptual Approach", 7th Edition, W H Freeman & Company, 2019.
- 3. Krebs, J. E., Goldstein, E. S., Kilpatrick, S. T, Lewin's GENES XII. Japan: Jones & Bartlett Learning, 2017.

Reference Books:

- 1. Freifelder, D., Cronan, J. E., Maloy, S. R Microbial genetics. Boston: Jones and Bartlett Publishers, 1994.
- 2. Lewis, J., Johnson, A., Alberts, B., Shamoo, A. E., Khin-Maung Gyi, F. A., Raff, M., Hunt., Walter, P., Roberts, K, Molecular Biology of the Cell. United Kingdom: Garland Science, 2002.

YouTube Video:

1. <u>https://www.youtube.com/playlist?list=PLODKZZeKAWb8-X2nbdiO304TFKBZeWg8b</u>

Prepared by	Approved by
Que Ju Jan 23/1/2m	Ju 2311129
Dr. Aswin Jeno J G	Prof. E. Nakkeeran
Assistant Professor	Head - Biotechnology
23/01/2024	23/01/2024
	Prepared by Augustanian Dr. Aswin Jeno J G Assistant Professor 23/01/2024

Remarks: The same lesson plan will be followed in the subsequent semester.