

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology		LP: BY22101 Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Biotechnology	Regulation: 2022	Date: 09.11.2022
PG Specialisation : NA		
Sub. Code / Sub. Name : BY22101 / Advanced Biopre		
Unit : I		

Unit Syllabus: STOICHIOMETRY AND ENERGETICS (9 + 3 h)

Stoichiometry of growth and product formation - Elemental balances, Electron Balances, Degrees of reduction, Yield coefficients; Energy Balances-Thermodynamics of Microbial growth, Heat of Reaction, Energy balance equation for cell culture

Objective: To provide knowledge on material and energy balances in microbial systems.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Stoichiometry of growth and product formation	T1(13-88); T2(10-15)	BB & PPT
2	Elemental balances and Problems	T1(67-72); T2(51-68); T3(29-37)	BB & PPT
3	Electron Balances and Problems	T1(67-72); T2(51-68); T3(29-37)	BB & PPT
4	Degrees of reduction and Problems	T1(96-97); T3(67-79)	BB & PPT
5	Yield coefficients and Problems	T1(139-154);	BB & PPT
6	Energy Balances and Problems	T2(100-102)	BB & PPT
7	Energy balance equation for cell culture	T1(73-74); T2(20-22)	BB & PPT
8	Heat of Reaction and Problems	T2 (20-29);	BB & PPT
9	Thermodynamics of Microbial growth	T1(134-154)	BB & PPT
10	Problems on Materials and Energy Balances	R1(139-154);	BB & PPT
11	Problems on Materials and Energy Balances	R2(100-102)	BB & PPT
12	Problems on Materials and Energy Balances	T1(129-154);	BB & PPT
Content beyond syllabus covered (if any): NA			

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BY22101 / Advanced Bioprocess Technology

Unit : II

Unit Syllabus : MICROBIAL KINETICS AND MODELS (9 + 3 h)

Michaelis-menton kinetics; Cell growth kinetics– Monod model, Models with growth inhibitors, Logistic equation; Structured models; Kinetics of product formation; Substrate uptake kinetics; Thermal death kinetics; Determination of kinetic parameters.

Objective: To get knowledge on microbial kinetics and different structured and unstructured models.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Michaelis-menton kinetics	T1(83-88); T2(140-143)	BB & PPT
14	Cell growth kinetics: Derivation	T1(67-72); T2(151-168) T3(29-37, 309-312)	BB & PPT
15	Monod model and Problems	T1(91-93); R1(296-308)	BB & PPT
16	Models with growth inhibitors: Derivation	T1(96-97); T3(67-79)	BB & PPT
17	Problems on Models with growth inhibitors	T1(99-100); T3(67-79)	BB & PPT
18	Problems on Logistic Equation	T1(136-140); T2(200-202)	BB & PPT
19	Structured models	R1(124-136, 152-169)	BB & PPT
20	Kinetics of product formation	T1(170-181)	BB & PPT
21	Substrate uptake kinetics	T3(167-178)	BB & PPT
22	Thermal death kinetics	T1(99-100); T3(67-79)	BB & PPT
23	Determination of kinetic parameter: Problems	R1(136-140); R3(200-202)	BB & PPT
24	Determination of kinetic parameter: Problems	T1(99-100); T3(67-79)	BB & PPT
Content beyond syllabus covered (if any): NA			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BY22101 / Advanced Bioprocess Technology

Unit : III

Unit Syllabus: IDEAL BIOREACTOR OPERATION (9 + 3 h)

Batch operation of a mixed reactor, Fed-batch operation of a mixed reactor, Continuous operation of a mixed reactor, Chemostat with immobilized cells, Chemostat cascade, Chemostat with cell recycle, Continuous operation of a plug flow reactor.

Objective: To familiarize about different modes of operating ideal bioreactors.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Modes of Operation of Bioreactors	T1(257-260); T2(767-769);	BB & PPT
26	Batch operation of a mixed reactor: Derivation	T2(769-770);	BB & PPT
27	Batch operation of a mixed reactor: Problems	T1(260-266); T2(771-776);	BB & PPT
28	Fed-batch operation of a mixed reactor: Derivation	T1(267-273); T2(773-774, 779-781);	BB & PPT
29	Fed-batch operation of a mixed reactor: Problems	T1(283-316); T2(808-809)	BB & PPT
30	Chemostat with immobilized cells: Derivation	T1(283-316);T3(852-853)	BB & PPT
31	Chemostat with immobilized cells: Problems	T1(305-309); T3(874-877);	BB & PPT
32	Chemostat Cascade	T3(321-338); T3(848-852)	BB & PPT
33	Chemostat with cell recycle: Derivation	T3(329-332);	BB & PPT
34	Chemostat with cell recycle: Problems	T3(260-266); T4(771-776);	BB & PPT
35	Continuous operation of a plug flow reactor: Derivation	T1(267-273); T2(773-774, 779-781);	BB & PPT
36	Continuous operation of a plug flow reactor: Problems	T1(260-266); T2(771-776);	BB & PPT
Content be	Content beyond syllabus covered (if any): Combined first and second-generation technology.		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BY22101 / Advanced Bioprocess Technology

 $Unit: {\bf IV}$

Unit Syllabus : BIOREACTOR DESIGN AND CONSTRUCTION (9 + 3 h)

Practical considerations for Bioreactor construction; Bioreactor configurations; Agitator design -Power requirements for mixing, Estimation of mixing time; Oxygen transfer in Fermenters -Measurement of kLa; Heat transfer equipment - Design and Applications.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Practical considerations for Bioreactor construction	T1(369-374);T3(154-170)	BB & PPT
38	Stirred Tank Reactor	T1(376-406) T2(191-213)	BB & PPT
39	Air driven Reactors: Fluidized bed reactors	T1(376-406) T4(191-213)	BB & PPT
40	Air driven Reactors: Bubble column reactors	T2 (224-238)	BB & PPT
41	Air driven Reactors: Air lift reactors	T2 (238-256)	BB & PPT
42	Packed bed reactors	T1(198-213)	BB & PPT
43	Power requirements for mixing: Problems	T1(407-416)	BB & PPT
44	Estimation of mixing time: Problems	T1(577-586)	BB & PPT
45	Oxygen transfer in Fermenters	T1(566-576) T2(512-522)	BB & PPT
46	Measurement of kLa: Problems	T1(376-406) T2(191-213)	BB & PPT
47	Design and Applications of heat transfer equipments	T1(376-406) T21(191-213)	BB & PPT
48	Problems on design of heat transfer equipments	T1(376-406) T3(191-213)	BB & PPT
Content be	Content beyond syllabus covered (if any): Dark Fermentation for Biohydrogen production		

Objective: To design bioreactors with efficient heat and mass transfer provisions.

* Session duration: 50 mins

FT/GN/68/01/23.01.16

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BY22101 / Advanced Bioprocess Technology

 $Unit: {\bm V}$

Unit Syllabus : ADVANCED BIOREACTORS AND BIOPRODUCTS (9 + 3 h)

Bioreactor considerations for immobilized cell systems, Plant cell cultures, Animal cell cultures, Organized tissues; Case studies on production of Monoclonal antibodies, Recombinant insulin, Green fuels and chemicals; Case studies on medium optimization.

Objective. To fearly about advancement in bioreactors for hon-conventional biological systems.			
Session No *	Topics to be covered	Ref	Teaching Aids
49	Introduction to Advanced bioprocesses	T4(447-451)	BB & PPT
50	Bioreactor considerations for immobilized cell systems	T4(451-470)	BB & PPT
51	Bioreactor considerations for Plant cell cultures	T4(500-503)	BB & PPT
52	Bioreactor considerations for Animal cell cultures	T4(503-510)	BB & PPT
53	Bioreactor considerations for Organized tissues	T4(523-535); T5(614-618)	BB & PPT
54	Monoclonal antibodies	T1(540-546)	BB & PPT
55	Production of Monoclonal antibodies	R4(500-503); R5(618-619);	BB & PPT
56	Recombinant insulin	R4(536-537, 551-562)	BB & PPT
57	Production of recombinant insulin	R3(512-534)	BB & PPT
58	Green fuels and chemicals	T4(523-535); T5(614-618)	BB & PPT
59	Production of Green fuels and chemicals	T3(523-535); T2(614-618)	BB & PPT
60	Statistical Medium optimization.	T1(523-535); T2(614-618)	BB & PPT
Content beyond syllabus covered (if any): NA			

Objective: To learn about advancement in bioreactors for non-conventional biological systems.

* Session duration: 50 mins

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BY22101 / Advanced Bioprocess Technology

TEXT BOOKS

- 1. Pauline D., Bioprocess Engineering Principles, Elsevier, 2nd Edition, 2012.
- 2. Shuler, M.L., Kargi F., Bioprocess Engineering, Prentice Hall, 2nd Edition, 2002
- 3. Bailey, J.E. and Ollis, D.F. Biochemical Engineering Fundamentals", McGraw Hill, 2nd Edition, 2017.
- Stanbury, P.F., Stephen J.H., Whitaker A., Principles of Fermentation Technology, Science & Technology Books, 2nd Edition, 2009
- 5. Blanch H.W., Clark D. S., Biochemical Engineering, Marcel Dekker, Inc. 2nd Edition, 1997.

REFERENCE BOOKS

- 1. James M. Lee, Biochemical Engineering, Prentice Hall, 1992.
- 2. Ghasem D.Najafpour, Biochemical Engineering and Biotechnology, Elsevier, 2007.
- 3. Irving J.Dunn, Elmar Heinzle, John Ingham, Jiri E. Prenosil, Biological Reaction Engineering, Wiley, 2003.
- 4. Jens Nielson, John Villadsen, Gunnar Liden, Bioreaction Engineering principles, Kluwer Academic/Plenum Publishers, 2003.
- 5. Michael C.Flickinger, Stephen W.Drew, Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation Volumes 1-5, John Wiley & Sons, Inc., 1999.

	Prepared by	Approved by
Signature	Boun	An
Name	Dr. K. Vasantharaj	Prof.E.Nakkeeran
Designation	Assistant Professor	HOD
Date	09-11-2022	09-11-2022
Remarks *: Yes		
Remarks *: Yes		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD