

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotecl	hnology	LP: BY22102 Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Biotechnology	Regulation: 2022	Date:
PG Specialisation : Not Applicable		04.01.2023
Sub. Code / Sub. Name : BY22102 / Computational	and Systems Biology	
Unit : 1		
Unit Syllabus: Tools and databases for com	putational systems biology	9+6

Tools and databases for modelling: Pathway databases KEGG, EMP, Metacyc, Enzyme kinetics, Database BRENDA, Gene expression databases, Biomodels database, Basics of Systems Biology Markup Language (SBML), SBML editors.

1. Biological databases: DNA, Protein and Enzymes

2. Databases for computational systems biology: Genomes, Pathways and Reactions.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Introduction to computational systems biology	TB2 (139-166)	GCR/LCD/BB
2.	Overview of databases in systems biology	TB1 (47-56)	GCR/LCD/BB
3.	Overview of Pathway databases in systems biology	TB2 (24-25)	GCR/LCD/BB
4.	Overview of Enzyme kinetics database in systems biology	TB3 (49-53)	GCR/LCD/BB
5.	Gene expression databases in systems biology	TB1 (6-7)	GCR/LCD/BB
6.	Introduction to Systems Biology Markup Language	TB2(74-81)	GCR/LCD/BB
Content be	eyond syllabus covered (if any):		

Objective: To impart knowledge on databases and tools used in computational biology.

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

FT/GN/68/00/23.01.16

Sub. Code / Sub. Name: BY22102/ Computational and Systems BiologyUnit: 2

Unit Syllabus : Machine learning and applications in biology

9+6

Machine learning techniques: Artificial Neural Networks and Hidden Markov Models: Systems Biology and its applications in whole-cell modelling, Microarrays and Clustering techniques for microarray data analysis, Informatics in Genomics and Proteomics, DNA computing.

- 1. Gene expression analysis
- 2. Microarray analysis using open-source tools
- **Objective**: To illustrate practical aspects and application of systems biology.

Session No *	Topics to be covered	Ref	Teaching Aids
7.	Machine learning techniques	TB2(149 - 184)	GCR/LCD/BB
8.	Artificial Neural Networks	TB2(189-232)	GCR/LCD/BB
9.	Hidden Markov Models	TB2(30- 36)	GCR/LCD/BB
10.	Systems Biology	TB2(43-46)	GCR/LCD/BB
11.	Whole-cell modelling	TB2(49 - 72)	GCR/LCD/BB
12.	Microarrays	TB2(37-43)	GCR/LCD/BB
13.	Clustering techniques	TB3(176-209)	GCR/LCD/BB
14.	Microarray data analysis	TB2(47 - 48)	GCR/LCD/BB
15.	DNA computing	TB3(571-581)	GCR/LCD/BB
16.	Informatics in Genomics and Proteomics,	TB3(582-594)	GCR/LCD/BB
Content be	yond syllabus covered (if any): Nil		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name : BY22102/ Computational and Systems Biology Unit : 3

Unit Syllabus : Modelling of biological systems

Machine learning techniques: Artificial Neural Networks and Hidden Markov Models: Kinetic modelling of biochemical reactions, describing dynamics with ODEs, rate equations, deriving a rate equation, incorporating regulation of enzyme activity by effectors, E-cell platform and erythrocyte modelling, applications in whole cell modelling.

1. Solving ODEs using a mathematical tool box.

2. Solving enzyme kinetics using ODEs

Objective: To impart knowledge on solving ODEs using computational tools.

Session No *	Topics to be covered	Ref	Teaching Aids
17.	Kinetic modelling of biochemical reactions	TB3 (137-139)	GCR/LCD/BB
18.	Machine learning techniques in	TB 1 (27-29,31-32, 35-46, 49)	GCR/LCD/BB
19.	Kinetic modelling of biochemical reactions	TB 1 (96 - 100)	GCR/LCD/BB
20.	ODEs in biochemical reactions dynamics	TB 1 (89-95)	GCR/LCD/BB
21.	Rate equations in biochemical reactions	TB1 (373-391)	GCR/LCD/BB
22.	Regulation of enzyme activity by effectors	TB5 (40-42)	GCR/LCD/BB
23.	E-cell platform and erythrocyte modelling	TB5 (43-46)	GCR/LCD/BB
24.	Artificial Neural Networks and Hidden Markov Models	TB4 (453-456) TB3 (134-136)	GCR/LCD/BB
25.	Applications in whole cell modelling	TB4 (458-466)	GCR/LCD/BB
Content be	yond syllabus covered (if any): Nil		

* Session duration: 50 mins

9+6

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

FT/GN/68/00/23.01.16

Sub. Code / Sub. Name : BY22102/ Computational and Systems Biology Unit : 4

Unit Syllabus : Biological networks

Complex Biological Systems, Types of Biological networks, Intra-cellular networks: Generegulatory network, Protein-interaction network, Metabolic networks and Signaling network; Inter-cellular networks: Neuronal networks, Network motifs, Network medicine.

1. Creating gene-regulatory and biochemical networks.

2. Simulation and analysis of biochemical networks.

Session No *	Topics to be covered	Ref	Teaching Aids
26.	Complex Biological Systems	TB1 (129-135)	GCR/LCD/BB
27.	Types of Biological networks	TB1 (142-145)	GCR/LCD/BB
28.	Intra-cellular networks	TB1 (151-161)	GCR/LCD/BB
29.	Gene-regulatory network	TB1 (175-161)	GCR/LCD/BB
30.	Protein-interaction network	TB1 (199-200)	GCR/LCD/BB
31.	Metabolic networks	TB1 (223 -225) TB1 (244 -246)	GCR/LCD/BB
32.	Signaling network	TB1 (225-229)	GCR/LCD/BB
33.	Inter-cellular networks	TB1 (234-239)	GCR/LCD/BB
34.	Network motifs	TB1 (299-320)	GCR/LCD/BB
35.	Network medicine	TB1 (205-208)	GCR/LCD/BB
Content be	eyond syllabus covered (if any): Commercial applications	lg G	

* Session duration: 50 mins

9+6

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

9+6

Sub. Code / Sub. Name : BY22102/ Computational and Systems Biology

Unit

: 5

Unit Syllabus: CONSTRAINT-BASED MODELLING

Metabolic reconstruction, Flux Balance Analysis (FBA): Translating biochemical networks into linear algebra, Stoichiometric matrix, Elementary mode, Extreme pathways, Objective function, Optimization using linear programming. Genome-scale cellular models: Virtual Erythrocytes, Global human metabolic model.

1. Visualization of molecular interaction networks

2. Constraint-based modeling using Open-source tools.

Objective: To train students to work with genome-scale models.

Session No *	Topics to be covered	Ref	Teaching Aids
36.	Metabolic reconstruction	TB3 (1-20)	GCR/LCD/BB
37.	Flux Balance Analysis (FBA)	RB2 (1-3)	GCR/LCD/BB
38.	Translating biochemical networks into linear algebra	TB3 (140-145)	GCR/LCD/BB
39.	Stoichiometric matrix	TB3 (37-46)	GCR/LCD/BB
40.	Elementary mode analysis	RB2 (47-57)	GCR/LCD/BB
41.	Extreme pathways analysis	RB2 (61-67) RB3 (237-255)	GCR/LCD/BB
42.	Objective function	RB2 (72-74) RB 3 (87-124)	GCR/LCD/BB
43.	Optimization using linear programming	RB2 (75-79)	GCR/LCD/BB
44.	Genome-scale cellular models	TB3 (158-163)	GCR/LCD/BB
45.	Virtual Erythrocytes	RB2 (81-89)	GCR/LCD/BB
Content b	eyond syllabus covered (if any): Nil		·

* Session duration: 50 mins

FT/GN/68/00/23.01.16

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name : BY22102/ Computational and Systems Biology

REFERENCES:

- Karthik Raman, An Introduction to Computational Systems Biology Systems-Level Modelling of Cellular Networks, CRC Press, 2021.
- Uri Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd Edition, CRC Press, 2019.
- Wong, Ka-Chun, Computational biology and bioinformatics: Gene Regulation; gene, RNA, protein, epigenetics, CRC press 2016.
- Sumeet Dua, Pradeep Chowriappa, Data Mining for Bioinformatics, CRC Press, 2012.
- Bernhard O. Palsson. Systems Biology: Simulation of Dynamic Network States, 2nd Edition, Cambridge University Press, 2011.

TEX	ГВООК
1.	Eberhard O. Voit, A first course in systems biology, 2nd Edition, Garland Science, 2018.
2.	Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Systems Biology: A Textbook, 2nd Edition, 2016.
3.	Edda Klipp, Ralf Herwig, Axel Kowald, Christoph Wierling, Hans Lehrach, Systems Biology in Practice: Concepts, Implementation and Application, Wiley- Blackwell, 2015.
4.	Bernhard O. Palsson, Systems Biology Constraint-based Reconstruction and Analysis, 2nd Edition, Cambridge University Press, 2015.
5.	David W Mount, Bioinformatics: Sequence and Genome Analysis, 2nd Edition, Cold Spring Harbor Laboratory Press, 2004.

	Prepared by	Approved by
Signature	5000	A- 44123
Name	Mr. S. Naga Vignesh	Prof. E. Nakkeeran
Designation	Assistant Professor	Head of the Department
Date	4/1/23.	AH1123
Remarks *: This lesson plan is	followed from previous year lesson plan and	d the same can be followed in future.