

COURSE DELIVERY PLAN - THEORY

Page 1 of 4

Department of Biotechnology	LP: BY22104
B.E/B.Tech/M.E/M.Tech: M. Tech Biotechnology Regulation: 2022	Rev. No: 00
PG Specialisation : Biotechnology	Date:
Sub. Code / Sub. Name: BY22104/ Scaffold Designing and 3D Bioprinting	09.11.2022
Unit : I	d.mainaethila

Unit I: Introduction to 3D Bioprinting

5

Introduction to 3D Bioprinting, Understanding different types of bioprinting: Extrusion based, Inkjet based and laser assisted bioprinting

Objective: To introduce the concepts of bioprinting and its types.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction and history of 3D Bioprinting	T1 (1-25)	BB/PPT
2	The importance of Industry 4.0 and additive manufacturing in 3D printing	T1 (30-35)	BB/PPT
3	Understanding different types of bioprinting and its application in interdisciplinary aspects	T1 (124- 160)	BB/PPT
4	Principle and application of Extrusion based, Inkjet based, and laser assisted bioprinting	T1 (124- 160)	BB/PPT
5	Principle and application of Extrusion based, Inkjet based, and laser assisted bioprinting	T1 (124- 160)	BB/PPT

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 4

Sub. Code / Sub. Name: BY22104/ Scaffold Designing and 3D Bioprinting

Unit: II

UNIT II BIOLOGY AND BIOMATERIALS IN 3D BIOPRINTING

7

Introduction to Cells, Tissues, Organs and ECM, In-Vitro Cell Handling for 3D Bioprinting, Types of Cells used in 3D Bioprinting and their limitations, In-Depth Understanding of Hydrogels and Biomaterials.

Objective: To study the application of cells, crosslinking and scaffold designing in bioprinting.

Session No *	Topics to be covered	Ref	Teaching Aids
6.	Introduction to Cells, Tissues, Organs, and Extracellular matrix as a model for 3D Bioprinting	R5	BB/PPT
7.	In-Vitro Cell Handling for 3D Bioprinting	R4	BB/PPT
8.	Advance In-Vitro Cell Handling for 3D Bioprinting	R4	BB/PPT
9.	Types of Cells used in 3D Bioprinting and their limitations	R5	BB/PPT
10.	Types of Cells used in 3D Bioprinting and their limitations		BB/PPT
11.	In-Depth Understanding of Hydrogels and Biomaterials to implement in 3D Printing Technologies	T2 (129- 143)	BB/PPT
12.	In-Depth Understanding of Hydrogels and Biomaterials to implement in 3D Printing Technologies	T2 (129- 143)	BB/PPT
Content b	eyond syllabus covered (if any): Cell Sources and processing fo	r Bioprinting	

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 4

Sub. Code / Sub. Name: BY22104/ Scaffold Designing and 3D Bioprinting

Unit: III

UNIT III SCAFFOLD DESIGNING AND CROSSLINKING

3

An Introduction to Crosslinking, importance and application, Scaffolds and Scaffold Design.

Objective: To study the application of cells, crosslinking and scaffold designing in bioprinting.

Session No *	Topics to be covered	Ref	Teaching Aids
13.	An Introduction to Crosslinking related to 3D Bioprinting	T2 (140- 145)	BB/PPT
14.	Importance and application of Crosslinking related to 3D Bioprinting specifically in cancer studies	T2 (179- 191)	BB/PPT
15.	Importance of Scaffolds and Scaffold Design in 3D printing.	T2 (17-62)	BB/PPT

Content beyond syllabus covered (if any): Application of scaffolds as a model for various diseases/disorders

REFERENCES:

TEXT BOOKS:

- 1. 3D Bioprinting Fundamentals, Principles and Applications by Ibrahim Ozbolat 1st Edition, 2016.
- 2. Bioprinting: Principles And Applications: 1 (World Scientific Series In 3d Printing) by Wai Yee Yeong and Chee Kai Chua, 2015.

3. 3D Printing: Applications in Medicine and Surgery Volume 2 by Vasileios N. Papadopoulos, Vassilios Tsioukas and Jasjit S. Suri, 2021.

- 4. Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications by Daniel X. B. Chen, 2019.
- 5. Pugliese R, Beltrami B, Regondi S, Lunetta C. Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine. 2021 Jun 1;2:100011.

REFRENCE BOOKS:

Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. Journal of biological engineering. 2015 Dec;9(1):1-4.

Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms, by Liliang Ouyang, 2020.

Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, Casado JG, Macías-García A, Díaz Díez MA, Carrasco-Amador JP, Torrejón Martín D, Sánchez-Margallo FM, Pagador JB.

Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Frontiers in Bioengineering and

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 4

Biotechnology. 2020 Aug 6;8:776.

- 4. Gupta D, Negi NP. 3D bioprinting: Printing the future and recent advances. Bioprinting. 2022 May 18:e00211.
 - Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W,
- 5. Dell'Erba V, Assawes P, Shin SR, Dokmeci MR. 3D bioprinting for tissue and organ fabrication. Annals of biomedical engineering. 2017 Jan;45(1):148-63.

on "	Prepared by	Approved by
Signature	r.g.W-	Satular
Name	Dr. K. Ganesh Prasath	Prof. E. Nakkeeran
Designation	Assistant Professor	Head of the Department
Date	09.11.2022	09.11.2022
Remarks *: Yes		
Remarks *: Yes		

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD