

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

			LP: BY22202
Department of Biotechnology			Rev. No: 00
B.E/B.Tech/M.E/M.Tech	: Biotechnology	Regulation: 2022	Date: 12.02.2024
PG Specialisation	: Biotechnology		
Sub. Code / Sub. Name	: BY22202 & Advanced I	Bioseparation Technology	
Unit	: I - Bioseparation in Biot	technology	

Unit Syllabus: Role and importance of bioseparation in biotechnological processes; Problems and requirements of bioproduct purification; Economics of bioseparation techniques in Biotechnology, cost-cutting strategies; Separation characteristics of proteins and enzymes – size, stability, properties; Flocculation and conditioning of broth; Process design criteria for various classes of bioproducts like high volume, low value products and low volume, high value products; Upstream production methods affecting purification strategies (9 h).

Objective: To understand the physicochemical properties of bioproducts and economics of bioseparation techniques.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Role and importance of bioseparation in biotechnological processes	T1 (1-9) T2 (1-12) T3 (277-280)	PPT & BB
2.	Problems and requirements of bioproduct purification;	T1 (1-9) T2 (1-12) T3 (277-280)	PPT & BB
3.	Economics of bioseparation techniques in Biotechnology, cost-cutting strategies	T2 (214-239)	PPT & BB
4.	Separation characteristics of proteins and enzymes – size, stability, properties	T1 (1-9) T2 (1-12)	PPT & BB
5.	Flocculation and conditioning of broth	R1 (14-17) T4 (17-27)	PPT & BB
6.	Process design criteria for various classes of bioproducts like high volume, low value products	T2 (1-12) R3 (58-61)	PPT & BB
7.	Process design criteria for various classes of bioproducts like low volume, high value products	T2 (1-12) R3 (58-61)	PPT & BB
8.	Upstream production methods affecting purification strategies-I	T4 (45-52) R2 (15-19)	PPT & BB
9.	Upstream production methods affecting purification strategies-II	T4 (45-52) R2 (15-19)	PPT & BB
Content bey	ond syllabus covered (if any): Nil		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BY22202 & Advanced Bioseparation Technology

Unit : II - Cell Disruption and Solid-Liquid Separation

Objective : To inculcate the importance of mechanical separation process for recovery of bioproducts.

Session No *	Topics to be covered	Ref	Teaching Aids	
10.	Physical, chemical, mechanical cell disruption methods for intracellular products	T2 (13-25) R1 (63-67)	PPT & BB	
11.	Removal of insoluble, biomass and particulate debris separation techniques	T2 (25-27) R1 (67-72)	PPT & BB	
12.	Filtration at constant pressure and at constant rate	T4 (98-101) R1 (112-115)	PPT & BB	
13.	Empirical equations for batch and continuous filtration	T3 (57-61) R2 (41-49)	PPT & BB	
14.	Types of filtrations - Centrifugal flow filtration	T2 (50-52) R2 (49-54)	PPT & BB	
15.	Types of filtrations - Tangential- flow filtration	T2 (53-57) R2 (55-59)	PPT & BB	
16.	Types of filtration equipment – Centrifugation – Basic principles, design characteristics	T3 (77-81) R2 (60-66)	PPT & BB	
17.	Types of centrifuges and applications-I	T2 (50-52) R4 (114-119)	PPT & BB	
18.	Types of centrifuges and applications-II	T2 (50-52) R4 (114-119)	PPT & BB	
Content bey	Content beyond syllabus covered (if any): Nil			

Unit Syllabus : Physical, chemical, mechanical cell disruption methods for intracellular products; Removal of insoluble, biomass and particulate debris separation techniques – Filtration at constant pressure and at constant rate – Empirical equations for batch and continuous filtration – Types of filtration - Centrifugal and tangentialflow filtration – Types of filtration equipment – Centrifugation – Basic principles, design characteristics – Types of centrifuges and applications (9 h).

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BY22202 & Advanced Bioseparation Technology

Unit : III - Membrane Processes and Enrichment Operations

Unit Syllabus : Theory, Design consideration and configuration of membrane processes – microfiltration, ultrafiltration, nanofiltration, reverse osmosis, dialysis – Structure and characteristics of membranes – Membrane modules; Enrichment Operations – Extraction – equipment for extraction – Aqueous two-phase extraction – Reverse micellar extraction – Protein precipitation – Methods of precipitation (9 h).

Objective : To provide the knowledge on bioproduct isolation process at laboratory and pilot scale.

Session No *	Topics to be covered	Ref	Teaching Aids
19.	Theory, Design consideration and configuration of membrane processes	T2 (100-107) R4 (189-192)	PPT & BB
20.	Microfiltration, ultrafiltration, nanofiltration, reverse osmosis	T2 (110-115) R2 (67-72)	PPT & BB
21.	Dialysis – Structure and characteristics of membranes – Membrane modules	T2 (116-117) R2 (72-77)	PPT & BB
22.	Enrichment Operations – Extraction – equipment for extraction	T2 (117-118) R2 (77-81)	PPT & BB
23.	Aqueous two-phase extraction	T2 (86-87) R5 (44-49)	Flipped Model Blended Learning
24.	Reverse micellar extraction	T2 (90-91) R5 (49-54)	PPT & BE
25.	Protein precipitation	T2 (119-120) R6 (54-57)	PPT & BE
26.	Methods of precipitation-I	T2 (119-142) R6 (57-66)	PPT & BB
27.	Methods of precipitation-II	T2 (119-142) R6 (57-66)	PPT & BE

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BY22202 & Advanced Bioseparation Technology

Unit : IV - Modes of Chromatographic Separation

Unit Syllabus : Chromatography – Classification of chromatographic techniques – General description of column chromatography – Chromatographic terms and parameters – Practice of chromatography – molecular sieve, ion exchange, hydrophobic, hydroxyapatite, partition, displacement, normal-phase, reversed-phase, affinity, chiral, supercritical fluid chromatography – Scale-up of chromatography – Process considerations in Preparative liquid chromatography and HPLC (9 h).

Objective : To understand the chromatographic separation processes and its selection.

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Chromatography – Classification of chromatographic techniques	T2 (143-145) R3 (14-17)	PPT & BB
29.	General description of column chromatography – Chromatographic terms and parameters	T2 (145-161) R3 (17-21)	PPT & BB
30.	Practice of chromatography – molecular sieve, ion exchange, hydrophobic, hydroxyapatite	T2 (145-161) R3 (24-27)	Flipped Model Blended Learning
31.	Practice of chromatography - partition, displacement, normal-phase, reversed-phase	R3 (27-34)	PPT & BB
32.	Practice of chromatography - affinity, chiral, supercritical fluid chromatography	R3 (34-37)	PPT & BB
33.	Practice of chromatography - supercritical fluid chromatography	R3 (37-39)	PPT & BE
34.	Scale-up of chromatography	T2 (166-167) R3 (40-42) R6 (89-93)	PPT & BE
35.	Process considerations in Preparative liquid chromatography-I	T2 (169-171) R3 (42-45)	PPT & BE
36.	Process considerations in Preparative liquid chromatography-II	T2 (169-171) R3 (42-45)	PPT & BE

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BY22202 & Advanced Bioseparation Technology

Unit : V - Finishing Operations and Formulations

Unit Syllabus : Drying – Mechanism, methods and applications, Types of dryers – Tray, spray, rotary, belt, disc; Crystallization – Nucleation, crystal growth – Types of crystallizers – Tank, scrapped surface, Oslo, Circulating-magma evaporator; Freeze drying – Principle, process, applications – Case studies Penicillin, Cephalosporin, Recombinant Streptokinase, Interferon (9 h).

Objective : To enhance the knowledge on stabilization and formulation of biotechnology products.

Session No *	Topics to be covered	Ref	Teaching Aids
37.	Drying – Mechanism, methods and applications	T2 (259-261) R6 (112-117)	PPT & BB
38.	Types of dryers – Tray, spray, rotary, belt, disc	T2 (259-264) R6 (117-127)	Flex mode Blended Learning
39.	Crystallization – Nucleation, crystal growth	T2 (255-256) R6 (127-134)	PPT & BB
40.	Types of crystallizers – Tank, scrapped surface, Oslo, Circulating- magma evaporator	T2 (256-258) R6 (134-138)	PPT & BB
41.	Freeze drying – Principle, process, applications	T2 (259-263) R6 (138-142)	PPT & BB
42.	Case studies Penicillin	Journal Papers (R7)	PPT & BB
43.	Case studies Cephalosporin	Journal Papers (R8)	PPT & BE
44.	Case studies Recombinant Streptokinase	Journal Papers (R9)	PPT & BB
45.	Case studies Interferon	Journal Papers (R10)	PPT & BE

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BY22202 & Advanced Bioseparation Technology

Text Books

- 1. Belter, P.A., Gussler, E.L. and Hu, W.S., "Bio-separation: Downstream Processing for Biotechnology", John Wiley and Sons, 2011.
- 2. Sivasankar, B., Bioseparations: Principles and Techniques, Prentice-Hall, 2005.
- 3. Roger, H., "Bio-separations Science and Engineering", Oxford University Press, 2006.
- 4. Forciniti, D., "Industrial Bio-separation: Principles & Practice", Blackwell, 2008.

Reference Books

- 1. Ladisch, M.R., "Bioseparations Engineering: Principles, Practice, and Economics", John Wiley & Sons, 2001.
- 2. Ghosh, R., "Principles of Bio-separations Engineering", World Scientific Publishers, 2006.
- 3. Carta, G and Jungbauer, A., "Protein Chromatography", Wiley-VCH, 2010.
- 4. Stanbury, P.F., Whitaker, A. and Stephen J.H., Principles of Fermentation Technology, Aditya Books, 1997.
- 5. Scopes R.K. Protein Purification Principles and Practice, Narosa, 1994.
- Janson J.C, & Ryden L. Protein Purification: Principles, High Resolution Methods and Applications, VCH Pub., 1989.
- 7. Mehran Javanbakht, Khatereh Ali Pishro, Amir Heidari Nasab, Behrouz Akbari-adergani, Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers, Materials Science and Engineering: C, Volume 32, Issue 8, 2012, Pages 2367-2373.
- Fereshteh Moradi, Javad Rahbar Shahrouzi, Phase equilibrium and partitioning of cephalosporins (cephalexin, cefazolin, cefixime) in aqueous two-phase systems based on carbohydrates (glucose, fructose, sucrose, maltose) / acetonitrile, Fluid Phase Equilibria, Volume 507, 2020, 112388.
- 9. Ehab El-Dabaa, Hend Okasha, Safia Samir, Sami Mohamed Nasr, Hadeer Adel El-Kalamawy, Mohamed Ali Saber, Optimization of high expression and purification of recombinant streptokinase and in vitro evaluation of its thrombolytic activity, Arabian Journal of Chemistry, Volume 15, Issue 5, 2022, 103799.
- 10. Fakiha Bajwa, Nadeem Ahmed, Mohsin Ahmad Khan, Farhana Azam, Muhammad Akram, Saad Tahir, Ahmad Usman Zafar, Evaluating the ion exchange chromatography for matrix-assisted PEGylation and purification of consensus interferon, Volume 67, Issue 2, March/April 2020, Pages 196-205.

	Prepared by	Approved by	
Signature	Lacencer	Dacencer	
Name	Prof. E. Nakkeeran	Prof. E. Nakkeeran	
Designation	Professor	Professor & Head	
Date	12.02.2024	12.02.2024	
Remarks *: Yes			
Remarks *: Yes			

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD