FT/GN/68/00/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

D		
B.E/B.Tech/M.E/M.Tech	LP: OE18207	
	Biotechnology)	Rev. No: 00
Regulation	: 2018A	Date: 10.07.2023
PG Specialisation	: NA	
Sub. Code / Sub. Name	: OE18207 / BASICS OF NANOBIOTECHNOLOGY	
Unit	:1	

Unit Syllabus: BASICS OF BIOLOGY AND MACROMOLECULES

6h

Basics of biology - cell, organelles and nucleic acids as genetic material and Biomacromolecules -Carbohydrates, lipids, proteins and Nucleic acids

Objective: To acquaint the basic knowledge of biology and macromolecules in the application of nanotechnology

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Basics of Biology	TB3 (1-2)	Animations & BB
2.	Cell and Organelles	TB3 (2-5)	PPT & BB
3.	Nucleic Acids as Genetic Material	TB3 (11)	Animations & BB
4.	Bio-macromolecules: Carbohydrates	TB3 (6-7)	PPT & BB
5.	Lipids	TB3 (7)	PPT & BB
6.	Proteins and Nucleic acids	TB3 (7-10)	Animations & BB
Content beyond syllabus covered (if any):			

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

12h

Sub. Code / Sub. Name : OE18207 / BASICS OF NANOBIOTECHNOLOGY :2

Unit

Unit Syllabus: NANOMATERIAL IN BIOTECHNOLOGY

Biomimetic nanotechnology, protein-based nanostructures, Nanomotors, bacterial (E. coli) and mammalian (Myosin family), DNA nanotechnology, nanostructures in cells study, microarray platforms, Nano printing of DNA, RNA, and proteins biochips applications in nano scale detection, lab-on-a-chip devices (LOC), tissue engineering

Objective: To Describe the role of nanomaterials in biotechnology.

Session No *	Topics to be covered	Ref	Teaching Aids
7.	Biomimetic Nanotechnology	TB1 (7-9) RB1 (11-14)	PPT & BB
8.	Protein-Based Nanostructures	TB1 (11-13) RB1 (16-19)	Animations & BB
9.	Nanomotors	TB3 (16-17)	PPT & BB
10.	Bacterial (E. Coli) and Mammalian (Myosin Family)	TB3 (18-19)	Animations & BB
11.	DNA Nanotechnology	TB1 (20-24) RB2 (8-12)	PPT & BB
12.	Nanostructures in Cells Study	TB2 (28-30) RB1 (11-14)	PPT & BB
13.	Microarray Platforms	TB2 (44-46) RB2 (32-38)	Animations & BB
14.	Nano Printing of DNA	TB2 (81-84) RB1 (69-72	PPT & BB
15.	Nano Printing of RNA And Proteins	TB2 (101-104) RB2 (121-124)	PPT & BB
16.	Biochips Applications in Nano Scale Detection	TB2 (149-153) RB3 (11-14)	PPT & BB
17.	Lab-On-A-Chip Devices (LOC)	TB1 (189-193) RB3 (15-18)	Animations & BB
18.	Tissue Engineering	TB3 (7-9) RB2 (18-23)	PPT & BB
Content beyond syllabus covered (if any):			

: 3

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name : OE18207 / BASICS OF NANOBIOTECHNOLOGY

Unit

Unit Syllabus: NANOMATERIAL CHARACTERIZATION

9h

X-ray diffraction, electron microscopy, interaction between electron beam and solids, TEM, SEM, SPM (STM & AFM), AES, XPS, SIMS

Objective: To Apply the knowledge of instrumental analysis methods for characterization of biomaterials.

Session No *	Topics to be covered	Ref	Teaching Aids
19.	X-ray diffraction	TB4 (107-110) RB3 (44-46)	Animations & BB
20.	Electron Microscopy	TB4 (111-115) RB3 (47-48)	PPT & BB
21.	Interaction Between Electron Beam and Solids	TB4 (116-117) RB3 (48-49)	PPT & BB
22.	Transmission Electron Microscopy (TEM)	TB4 (107-110) RB3 (50-51)	Animations & BB
23.	Scanning Electron Microscope (SEM)	TB4 (111-114) RB3 (51-53)	PPT & BB
24.	Scanning Probe Microscopy (SPM), Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy AFM)	TB4 (114-115) RB3 (53-55)	PPT & BB
25.	Auger Electron Spectroscopy (AES)	TB4 (115-117) RB3 (56-58)	Animations & BB
26.	X-Ray Photoelectron Spectroscopy (XPS)	TB4 (114-119) RB3 (59-60)	PPT & BB
27.	Secondary Ion Mass Spectrometry (SIMS)	TB4 (120) RB3 (60-61)	PPT & BB
Content beyond syllabus covered (if any):			

:4

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name : OE18207 / BASICS OF NANOBIOTECHNOLOGY

Unit

Unit Syllabus: NANO BIOTECHNOLOGY APPLICATIONS

12h

Micro- and Nano electromechanical devices in drug delivery, other applications in drug delivery, photodynamic therapy in targeted drug administration, Nano biosensors, applications of quantum dots in biotechnology, DNA based nanomaterials as biosensors

Objective: To implement the application of nanotechnology for construction materials and therapeutic drug delivery

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Micro-Electromechanical Devices in Drug Delivery	TB3 (14-18)	Animations & BB
29.	Nano-Electromechanical Devices in Drug Delivery	TB3 (18-19) RB3 (65)	Animations & BB
30.	Drug Delivery Applications	TB3 (20-24) RB3 (66-67)	PPT & BB
31.	Photodynamic Therapy in Targeted Drug Administration	TB3 (25-27) RB3 (68)	PPT & BB
32.	Application of Photodynamic Therapy in Targeted Drug Administration	TB3 (28-32)	PPT & BB
33.	Nano Biosensors	TB3 (33-37) RB3 (72-74)	Animations & BB
34.	Applications of Nano Biosensors	TB3 (37-39) RB3 (75)	PPT & BB
35.	Quantum Dots	TB3 (40-47)	PPT & BB
36.	Applications of Quantum Dots in Biotechnology	TB3 (47-49) RB3 (76-77)	PPT & BB
37.	DNA Based Nanomaterials	TB3 (50-51)	Animations & BB
38.	DNA Based Nanomaterials as Biosensors	RB3 (78-81)	Animations & BB
39.	Applications of DNA Based Nanomaterials	TB3 (52-55) RB3 (82-84)	PPT & BB
39. Content be	Applications of DNA Based Nanomaterials eyond syllabus covered (if any):	RB3 (82-84)	PP

: 5

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name : OE18207 / BASICS OF NANOBIOTECHNOLOGY

Unit

Unit Syllabus: SOCIETAL IMPACTS OF NANO-BIOTECHNOLOGY 6h

Engineered nanomaterial of relevance to human health, routes of entry into the body, toxic effects on health, plants and microbes as nano factories

Objective: To assess the societal impacts of nanobiotechnology

Session No *	Topics to be covered	Ref	Teaching Aids
40.	Engineered Nanomaterial of Relevance to Human Health	TB5 (16-19) RB3 (21-27)	PPT & BB
41.	Routes of Entry of Nanomaterials into The Body	TB5 (21-27) RB3 (30-33)	PPT & BB
42.	Toxic Effects of Nanomaterial on Health	TB4 (111-120) RB3 (35-38)	Animations & BB
43.	Toxic Effects of Nanomaterial on Plants	TB4 (121-124) RB3 (29-41)	Animations & BB
44.	Toxic Effects of Nanomaterial on Environment	TB4 (121-125) RB3 (42-44)	PPT & BB
45.	Microbes as Nano Factories	TB4 (114-119)	PPT & BB
Content beyond syllabus covered (if any):			

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name : OE18207 / BASICS OF NANOBIOTECHNOLOGY

REFERENCES:

Text Books:

- 1. Christof M. Niemeyer, Chad A. Mirkin, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley VCH, Weinhelm, Germany, 2004.
- 2. Chad A Mirkin and Christ M. Niemeyer, "Nanobiotechnology II More concepts and applications", Wiley VCH, Weinhelm, Germany. 2007.
- 3. David S. Goodsell, "Bio-nanotechnology: Lessons from Nature", A John Wiley & Sons, INC, Publication, New Jersey, USA, 2004.
- 4. Subbiah Balaji, "Nanobiotechnology" 1st Ed., MJP Publishers, India, 2010.
- 5. Niemeyer C.M and Mirkin CA, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley-VCH, USA, 2004.

Reference Books:

- 1. Yubing Xie, "The Nanobiotechnology Handbook", 1st Ed, Taylor & Francis Publication, Florida, USA, 2018.
- 2. Alok Dhawan, Sanjay Singh, Ashutosh Kumar, Rishi Shanker, "Nanobiotechnology: Human Health and the Environment", CRC Press, Florida, USA, 2018.
- 3. Arunava Goswami, Samrat Roy Choudhury, "Nanobiotechnology: Basic and Applied Aspects", Anthem Press, London, UK.2017

	Prepared by	Approved by
Signature	10/7/h3	Jun .
Name	Dr. Aswin Jeno J G	Prof. E. Nakkeeran
Designation	Assistant Professor	Head - Biotechnology
Date	10.07.2023	10.07.2023
Remarks *:		

The same lesson plan will be followed in the subsequent semester