

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Chemical Engineering

B.E/B.Tech/M.E/M.Tech: B.Tech

Regulation: 2018A

LP: CH18604 Rev. No: 00

Date: 27/12/2023

PG Specialisation

: NA

Sub. Code / Sub. Name : CH18604/ Process Equipment Design I

Unit

: 1

Unit Syllabus: Sources of information on manufacturing processes, General sources of physical properties, Accuracy required of engineering data, Prediction of physical properties. Flow of fluids: Properties and units, pipeline networks, optimum pipe diameter, non-newtonian liquids.

Objective: To impart the knowledge on retrieve the chemical engineering basic design of process Equipments

Session No *	Topics to be covered	Ref	Teaching Aids	
1	Sources of information on manufacturing processes	T1: Ch 8; P. no. 271 T2: Ch 1; P.no: 2-6	PPT/BB.	
2	General sources of physical properties	T1: Ch 8; P. no. 272 T2: Ch 1; P.no: 2-6	PPT/ BB.	
3	Accuracy required of Engineering data	T1: Ch 8; P. no. 273	PPT/ BB.	
4	Prediction of physical properties	T1: Ch 8; P. no. 274	PPT/BB.	
5	Flow of fluids: Properties and units	T2: Ch 1; Pno. 83-84	PPT/ BB.	
6	Pipeline networks	T2: Ch 6; P no. 90-92	PPT/BB.	
7	Optimum pipe diameter	T2; Ch 6; P no. 92-94	PPT/BB.	
8	Non- newtonian liquids.	T2: Ch 6; P no. 94-100	PPT/BB.	

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: CH18604/ Process Equipment Design I

Unit: II

Unit Syllabus: Separation Columns: Continuous Distillation: Basic Principles, Design Variables In Distillation, Design Methods For Binary Systems, Concepts of multicomponent distillation. Packed columns: Types of packing, Packed-bed height, Prediction of the height of a transfer unit (HTU), Column diameter (capacity), Column internals, Wetting rates. Solvent extraction: Type of extraction, Liquid-liquid extraction, Extraction equipment Extractor design, Extraction columns.

Objective: To understand the design features in distillation and extraction columns

Session No *	Topics to be covered	Ref	Teaching Aids
36	Continuous distillation: Basic principles	T1: Ch 2; P no 448-452	PPT/BB.
37	Design variables in distillation	T1: Ch 2 _i P no 453-455.	PPT/BB.
38	Design methods for binary systems	T1: Ch 2; P no 456-466.	PPT/BB.
39	Concepts of multicomponent distillation	T1: Ch 2; P no 470-540	PPT/BB.
40	Packed columns: Types of packing	T1: Ch 2; P no 541-546	PPT/BB.
41	Packed-bed height	T1: Ch 2; P no 547-551	PPT/BB.
42	Prediction of the height of a transfer unit (HTU)	T1: Ch 2; P no 551-556	PPT/BB.
43	Prediction of the height of a transfer unit (HTU)	T1: Ch 2; P no 551-556	PPT/BB.
44	Column diameter (capacity)	T1: Ch 2; P no 556-563	PPT/BB.
45	Column internals, Wetting rates	T1: Ch 2; P no 563-570	PPT/BB.
46	Solvent extraction: Type of extraction	T2: Ch 14; P no 481-482	PPT/BB.
47	Liquid-liquid extraction	T2: Ch 14; P no 482-487	PPT/BB.
48	Extraction equipment	T2: Ch 14; P no 501-518	PPT/BB.
49	Extractor design	T2: Ch 14; P no 458-494;497-500	PPT/BB.
50	Extraction columns	T2: Ch 14; P no 481-482	PPT/ BB.

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: Sub. Code / Sub. Name: CH18604/ Process Equipment Desfgn I

Unit: III

Unit Syllabus: Heat Transfer Equipments; Heat Exchangers: Basic design procedure and theory, Overall heattransfer coefficient, Fouling factors, Shell and tube exchangers: Mean temperature difference, general design considerations, Tube-side heat-transfer coefficient and pressure drop(single phase), Shell-side heat-transfer and pressure drop (single phase). Condensers: Heat-transfer fundamentals, Condensation outside horizontal tubes, Condensation inside horizontal tubes, Condensation of steam, Mean temperature difference, Pressure drop in condensers. Reboilers: Boiling heat-transfer fundamentals, Pool boiling, Convective boiling, Design of forcedcirculation reboilers.

Objective: To impart the knowledge on Shell and tube heat exchangers & Condenser basics and design

Session No *	Topics to be covered	Ref	Teaching Aids
21	Heat Exchangers: Basic design procedure and theory	T1:-Ch 12; P no 579-580	PPT/BB.
22	Overall heat-transfer coefficient, Fouling factors	T1: Ch 12; P no 580-584	PPT/ BB.
23	Shell and tube exchangers	T1: Ch 12; P no 584-598	PPT/BB.
24	Mean temperature difference, General design considerations	T1: Ch 12; P no 598-605	PPT/BB.
25	Tube-side heat-transfer coefficient and pressure drop (single phase)	T1: Ch 12; P no 606-612	PPT/BB.
26	Shell-side heat-transfer and pressure drop (single phase)	T1: Ch 12; P no 612-631	PPT/BB.
27	Shell-side heat-transfer and pressure drop (single phase)	T1: Ch 12; P no 612-631	PPT/BB.
28	Condensers: Heat-transfer fundamentals	T1: Ch 12; P no 650.	PPT/BB.
29	Condensation outside horizontal tubes	T1: Ch 12; P no 650-652	PPT/BB.
30	Condensation inside horizontal tubes	T1: Ch 12; P no 656-657	PPT/BB.
31	Condensation of steam, Mean temperature difference	T1: Ch 12; P no 657-663	PPT/BB.
32	Pressure drop in condensers	T1: Ch 12; P no 663-669	PPT/BB.
33	Reboilers: Boiling heat-transfer fundamentals	T1: Ch 12; P no 669-674	PPT/ BB.
34	Pool boiling, Convective boiling	T1: Ch 12; P no 674-680	PPT/BB.
35	Design of forced-circulation reboilers	T1: Ch 12; P no 681-686	PPT/ BB.

Content beyond syllabus covered (if any): Video lecture on various types of condenser and heat transfer equipments used in industries

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: Sub. Code / Sub. Name: CH18604/ Process Equipment Design I

Unit: IV

Unit Syllabus: Types of fluid movers and applications, Pumps: Type, selection, performance curves, pump efficiency, NPSH, Head calculations, & power calculation. Compressors: Type, selection, performance curves, Head calculations and power calculations. Vacuum system: Type and selection. Valves: Type and selection. Safety valves: Types and selection. Drivers for moving equipments.

Objective: To understand fluid moving equipments like pumps and its design considerations

lession No *	Topics to be covered	Ref	Teaching Aids
9	Types of fluid movers and applications, Pumps	T2: Ch7; P no 119-121.	PPT/BB.
10	Type, selection, performance curves	T2: Ch 7; P no 126-137	PPT/BB.
11	Pump efficiency	T2: Ch 7; P no 137-150	PPT/BB.
12	NPSH	T2: Ch 7; P no 123,137	PPT/BB.
13	Head calculations, & power calculation	T2: Ch 7; P no 123,137	PPT/BB.
14	Compressors: Type, selection	T2: Ch 7; P no 132-137	PPT/BB.
15	Performance curves	T2: Ch 7; P no 134-137	PPT/BB.
16	Head calculations and power calculations	T2: Ch 7; P no 137-150	PPT/BB.
17	Vacuum system: Type and selection	T2: Ch 7; P no 150-155	PPT/BB.
18	Valves: Type and selection	T2: Ch 7; P no 119-123	PPT/BB.
19	Safety valves: Types and selection	T2: Ch 7; P no 120	PPT/BB.
20	Drivers for moving equipments	T1: Ch 4; P. no. 53-59	PPT/BB.

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: Sub. Code / Sub. Name: CH18604/ Process Equipment Design I

Unit: V

Unit Syllabus: Piping & Instrumentation and Site Selection,P and I diagram, valve selection, pumps, mechanical design of piping systems, pipe size selection, Instrumentation and control objectives, Automatic-control schemes, Plant location and site selection, Site layout, Plant layout, Utilities, Environmental considerations.

Objective: To learn the concepts of piping and instrumentation diagram and site selection

Session No *	Topics to be covered	Ref	Teaching Aids
51	Piping & Instrumentation and Site Selection	T1: Ch 5, P. no. 179-180	PPT/BB.
52	P and I diagram	T1: Ch 5; P. no. 180-182	PPT/ BB.
53	Valve selection, pumps	T1: Ch 5; P. no. 182-187	PPT/ BB.
54	Mechanical design of piping systems, pipe size selection	T1: Ch 5; P. no. 187-197	PPT/BB.
55	Instrumentation and control objectives	T1: Ch 5; P. no. 197-198	PPT/BB.
56	Automatic-control schemes	T1: Ch 5; P. no. 198-199	PPT/BB.
57	Plant location and site selection, Site layout	T1: Ch 14; P. no. 816-820	PPT/BB.
58	Plant layout	T1: Ch 14; P. no. 820-821	PPT/BB.
59	Utilities	T1: Ch 14; P. no. 824-826	PPT/BB.
60	Environmental considerations	T1: Ch 14; P. no. 826-830	PPT/BB.

Content beyond syllabus covered (if any): Video lecture in automatic control systems and environmental considerations related to design

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

TEXTBOOKS:

 M. Coulson, J.Richardson, "Chemical Engineering", Vol. 6, Asian Books Printers, Fourth edition 2005.
James R. Couper, James R. Fair & W. Roy Penney, "Chemical Process Equipment -Selection and Design", Published by Butterworth-Heinmann, 2007.

REFERENCES:

R.H.Perry, "Chemical Engineers Handbook", Seventh Edition, McGrawHill, 2004.

2.S B Thakore, B I Bhatt, "Introduction to Process Engineering and Design", Tata McGraw Hill, 2007.

3.B.C.Bhattacharyya, "Introduction to Chemical Equipment Design", CBSPublishers & Distributors, New Delhi, 2003.

	Prepared by	Approved by
Signature	Lettur 127/12/23	N. Mayor 28110123
Name	Dr. N. P. Kavitha	Dr. N. Meyyappan
Designation	Assistant Professor	Professor and Head
Date	27.12.2023	28.12.2023