

COURSE DELIVERY PLAN - THEORY

Page 1 of 7

Department of Applied Chemistry

LP: OC18002

B.E/B.Tech

: (Common to CHE&CSE)

Rev. No: 00

(Open Elective)Regulation: 2018

Date: 02.0 1.24

Sub. Code / Sub. Name : OC18002/FUEL CELL CHEMISTRY

Unit

: 1

UNIT 1 BASICSOF FUEL CELL

Basics, History of Fell Cell Technology, Open Circuit Voltage, Efficiency, Basic Principles, Components Reactions for Alkaline, Proton Exchange Membrane, Direct Methanol.

Objective: To goin knowledge on fundamentals of fuel cell technology

Session No *	Topics to be covered	Ref	Teaching Aids
1	Definition of a fuel cell, Components of a Fuel Cell, Need for Fuel Cells, Difference between Electrolysis Battery and Fuel cell.		PPT
2	Conventional route and Fuel cell route for Energy Conversion &History of Fell Cell Technology.		PPT
3	Open Circuit Voltage, Efficiency of fuel cell. Typical polarization curve for a fuel cell (Fuel cell performance)		PPT
4	Types of Fuel Cells, Comparison of the different types of fuel cells.		PPT
5	Advantages and disadvantages of Fuel cell.		PPT
6	Working Principles, Components & Reactions for Alkaline Fuel cell.	R9, P71-73	PPT
	Membrane Fuel cell.		PPT
8	Components and Reactions for Proton Exchange Membrane Fuel cell.		PPT
9	Working Principles, Components & Reactions for Direct Methanol Fuel cell.	R9, P 68-70	PPT

COURSE DELIVERY PLAN - THEORY

Page 2 of 7

Sub. Code / Sub. Name: OC18002/ FUEL CELL CHEMISTRY

Unit: 2

UNIT 2 CHEMICAL THERMODYNAMICS

Basic Reactions, Heat of reaction, - Enthalpy change of a reacting system - Gibbs free energy of substances - Gibbs free energy change of a reacting system - Efficiency - Power, heat due to entropy change.

Objective: To make the students to understand the importance of CHEMICAL THERMODYNAMICS

Session No *	Topics to be covered	Ref	Teaching Aids
10	System, Boundary, Surrounding – Types of system – Properties of system	T1/2/113 R8/18/670 R1/16/549	PPT
11	Process and their types – Internal Energy – Enthalpy	T1/2/115- 117 R8/18/670	PPT
12	Zeroth Law of Thermodynamics - First law of Thermodynamics	T1/2/115-	PPT
13	Need of Second law of thermodynamics - Clausius and Kelvin statement	T1/2/115- 117 R8/18/670	PPT
14	Entropy - Definition - Mathematical expression of entropy - Significance of entropy - Entropy change in reversible and irreversible process	T1/2/137- 140 R8/18/665	PPT
15	Entropy change in an Isothermal expansion of an Ideal gas - Entropy change in Physical transformations	T1/2/137- 140 R8/18/665	PPT
16	Spontaneous Process – definition Examples of Spontaneous process Gibbs free energy and spontaneity	T1/2/143 R4/4/90 R5/8/309- 315	PPT
17	Helmholtz Work function; Gibbs free Energy - Significance	T1/2/143 R4/4/90 R5/8/309-	PPT
18	Standard free energy change Gibb's-Helmholtz equation - Significance - Applications	315 T1/2/145 R8/18/657- 672 R1/16/568	PPT

COURSE DELIVERY PLAN - THEORY

Page 3 of 7

Sub. Code / Sub. Name: OC18002/ FUEL CELL CHEMISTRY

Unit: 3

Unit: 3 ELECTROCHEMISTRY

Nernst equation and open circuit potential, pressure effect, temperature effect -Stoichiometric coefficients and reactants utilization - Mass flow rate calculation - voltage and current in parallel and serial connection - Over- potentials and polarizations - Activation polarization

Objective: • To make the students to understand the importance of electrochemistry.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Basic of galvanic cells, electrochemical energy conversion		PPT
20	Electrochemical energy storage, dynamics of equivalent circuits, impedance of electrode	R8/60	PPT
21	The Nernst Equation - Significance of the Nernst Equation	R8/44	PPT
22	Two, Three and Four Electrode Experiments	R8/45	PPT
23	Open Circuit Potential (OCP)	R8/22	PPT
24	Stoichiometric Coefficient - Balanced Reactions and Mole Ratios		PPT
25	Parallel Circuit vs. Series Circuit	R8/373	PPT
26	Types of over voltages, chemical and electrochemical over potentials	R8/663	PPT
27	Polarizations - Activation polarization	R8/40	PPT

COURSE DELIVERY PLAN - THEORY

Page 4 of 7

Sub. Code / Sub. Name: OC18002 / FUEL CELL CHEMISTRY

Unit: 4

UNIT4 FUEL SYSTEM DESIGN & OPTIMISATION

Geometries of fuel cells and fuel cell stacks - Fuel Delivery and Crossover Prevention- Water flooding and water management, Thermal Management, Mass Transport/Concentration Losses and current collection - Bipolar plates and cooling plate design - Flow uniformity consideration

Objective: • To gain knowledge of in relation to Applications and Challenges of fuel cell..

Session No *	Topics to be covered	Ref	Teaching Aids
28	Optimization of Channel Geometry in a Proton Exchange Membrane (PEM) single Fuel Cell&Stacks.	R13 P I-15	PPT
29	Analysis and control of a fuel delivery system.	R14 P 4655-4670	PPT
30	Effect of reactant gas Crossover Prevention in fuel cells	R 15, P 246	PPT
31	Influence of Water flooding and water management on fuel cels.	R 15,16, P 1-	PPT
32	Experimental Investigations on Thermal Management of a PEMFC stack.	R 9, R 16, P 115847,R 18 P 16.	PPT
2.0	Mass Transport/Concentration Losses and current collection-an overview.	R 11,R 9, P 50	PPT
	Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact.	R18, P 152.	PPT
	ANALYSIS OF COOLING PLATE DESIGNS FOR FUEL CELL APPLICATIONS	R18, P 1-10	PPT
	Enhanced gas flow uniformity across parallel channel cathode low field of Proton Exchange Membrane fuel cells.	R13, P 40,R 18.	PPT

Content beyond syllabus covered (if any): FUEL SYSTEM DESIGN & OPTIMISATION OF DMFC.

COURSE DELIVERY PLAN - THEORY

Page 5 of 7

Sub. Code / Sub. Name: OC18002/ FUEL CELL CHEMISTRY

Unit:5

UNITS APPLICATIONS AND CHALLENGES

Automotive applications & issues - Micro fuel cells & portable power - Distributed & Stationary power. Cost Reductions, System Integration, Reliability, Technical Issues.

Objective: • To reduce the production cost of fuel cell systems to be used in transport applications.

Sessio n	Topics to be covered	Ref	Teaching Aids
37	Hydrogen PEMFC system for automotive applications.	R 9, P 31	PPT
38	Micro fuel cells principles and applications.		PPT
39	39 Fuel Cells for Portable power – Distributed Power Application.		PPT
40	Challenges for PEM Fuel Cell-based uninterrupted power supply (UPS) system.	R 9, P 19- 27	PPT
41	Fuel Cells for Stationary power Application.	R 9, P 19- 27	PPT
42	An assessment of past and potential cost reductions for fuel cells.	R 9, P 81- 83	PPT
43	Overview of Cost reductions in fuel cell technology.	R 9, P 81-	PPT
44	System Integration and Control of Proton Exchange Membrane Fuel Cells.	R 9.R 11 P 27-38,	PPT
45	Durability and reliability of fuel cells: Challenges and solutions.	R 9.R 11, P 45-63.	PPT

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 7

OUTCOMES:

Upon successful completion of the course, students should be able to:

- 1. To foundational knowledge of the fuel cell.
- Understand the way to Fuel system design & optimization.
- 3. Apply their learned knowledge to develop conventional technologies.
- Understand the importance of fuel cell applications.
- The students will acquire knowledge on various fuel cell techniques and their mechanism.

REFERENCES:

TEXT BOOKS:

- Jain P.C. "Engineering Chemistry- Vol 1, 16th Edition", DhanpatRai Publishing Company (P) Ltd., New Delhi, 2013 [T1]
- B. Viswanathan and Aulice M. Scibioh, "Fuel Cells: Principles and Applications", Universities Press, 1st Edition 2006. [T2]

REFERENCES

- 1. Puri, Sharma, Pathania., "Principles of Physical Chemistry", Vishal Publishing C., Jalandhar 2004 [R1]
- Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New a. Delhi, 2008. [R2]
- Gowariker V.R., Viswanathan N.V. and JayadevSreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006. [R3]
- 4. Atkins .. P., J.D. Paula, "Physical Chemistry", Oxford University Press, Oxford, 2002. [R4]
- 5. Agarwal. OP, "Engineering Chemistry", Khanna Publishers, New Delhi, 2010. [R5]
- Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010 IR81
- 7. J. Newman, E. Karen Thomas-Alyea, Electrochemical Systems. 3rd Ed., Wiley-Interscience, 2004
- A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd Ed., Wiley, 2001.
- 9. Introduction to Fuel CellsContinuing Education and Development, Inc. P: (877) 322-5800 [R9]
- The Open Circuit Voltage of Polymer Electrolyte Membrane Fuel CellsDie Leerlaufspannung von Polymerelektrolyt-Membran-Brennstoffzellen Chapter 1, 2019. [R10]
- Fuel Cells Challenges Ahead, B. Viswanathan, National Centre for Catalysis Research, Indian Institute of Technology, Madras, Chennai. [R11]
- 12. Fuel Cells and Their Applications, M. Ghouse, King Abdulaziz City for Science and Technology, June 2012. [R112]
- Optimization of channel geometry in a proton exchange membrane (PEM) fuel cellJephanya Kasukurthi. University of Nevada Las Vegas, 2009.
- Analysis and control of a fuel delivery system considering a two-phase anodemodel of the polymer electrolyte membrane fuel cell stack, Journal of Power Sources 196 (2011) 4655

 4670.
- Energy, Volume 179, 15 July 2019, Pages 246-267
- Water flooding in the proton exchange membrane fuel cellP.K. Bhattacharya, 2015.
- Applied Thermal Engineering, Volume 180, 5 November 2020, 115847
- Design analysis, Journal of Power Sources 129 (2004) 152–169
- ANALYSIS OF COOLING PLATE DESIGNS FOR FUEL CELL APLICATIONS, May 2016, Blice Nuchka Okome M'bika, University of Central Oklahoma, Directed by: Dr. Evan Lemley.
- Micro-fuel cells—Current development and applications Journal of Power Sources Volume 170, Issue 1, 30 June 2007, Pages 67-78

COURSE DELIVERY PLAN - THEORY

Page 7 of 7

	Prepared by	Approved by
Signature	or engalist	Support 2024.
Name	Dr.N.Nachiappan	Dr.S. Stanly
Designation	Asso. Professor	Prof. & Head
Date	02.01.24	02.01.24

Remarks *: No change in LP.

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD